首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
Escherichia coli K-12 has long been known not to produce an O antigen. We recently identified two independent mutations in different lineages of K-12 which had led to loss of O antigen synthesis (D. Liu and P. R. Reeves, Microbiology 140:49-57, 1994) and constructed a strain with all rfb (O antigen) genes intact which synthesized a variant of O antigen O16, giving cross-reaction with anti-O17 antibody. We determined the structure of this O antigen to be -->2)-beta-D-Galf-(1-->6)-alpha-D-Glcp- (1-->3)-alpha-L-Rhap-(1-->3)-alpha-D-GlcpNAc-(1-->, with an O-acetyl group on C-2 of the rhamnose and a side chain alpha-D-Glcp on C-6 of GlcNAc. O antigen synthesis is rfe dependent, and D-GlcpNAc is the first sugar of the biological repeat unit. We sequenced the rfb (O antigen) gene cluster and found 11 open reading frames. Four rhamnose pathway genes are identified by similarity to those of other strains, the rhamnose transferase gene is identified by assay of its product, and the identities of other genes are predicted with various degrees of confidence. We interpret earlier observations on interaction between the rfb region of Escherichia coli K-12 and those of E. coli O4 and E. coli Flexneri. All K-12 rfb genes were of low G+C content for E. coli. The rhamnose pathway genes were similar in sequence to those of (Shigella) Dysenteriae 1 and Flexneri, but the other genes showed distant or no similarity. We suggest that the K-12 gene cluster is a member of a family of rfb gene clusters, including those of Dysenteriae 1 and Flexneri, which evolved outside E. coli and was acquired by lateral gene transfer.  相似文献   

2.
In Salmonella enterica, there is a great variety of O antigens, each consisting of a short oligosaccharide (the repeating unit) repeated many times. The O antigens differ in their sugar composition and glycosidic linkages. The genetic determinants of the O antigen are located in an rfb gene cluster, and some, including those of S. enterica O serogroups B, C2, and E1, have been cloned and sequenced. In this study of the glycosyltransferases which form the glycosidic linkages, we identify and characterize the four mannosyl and three rhamnosyl transferase genes of the three rfb gene clusters.  相似文献   

3.
大肠杆菌O54 O-抗原基因簇的破译及进化分析   总被引:1,自引:0,他引:1  
破译了大肠杆菌O5 4O 抗原基因簇的序列 ,序列全长 1 4 0 6 2bp。用生物信息学方法分析序列并鉴定基因 ,共确定 1 0个基因 ,包括鼠李糖合成酶基因BDA和C(rmlBDA和rmlC) ,糖基转移酶基因 ,O 抗原转运酶基因 ,O 抗原聚合酶基因和合成磷酸丝氨酸侧链的基因及 1个不能确定功能的开放阅读框。对rmlC的 (G C) %含量 ,稀有密码子含量及进化分析都表明大肠杆菌O5 4O 抗原基因簇是在近期通过rmlC介导的重组形成 ,而且大肠杆菌O5 4和鲍氏志贺氏菌 9型的亲缘关系很近。对UTP 葡萄糖 1 磷酸 尿苷转移酶基因 (galF)和 6 磷酸葡萄糖脱氢酶基因(gnd)的进化分析揭示志贺氏菌属与大肠杆菌属在进化上属于同一个属。用PCR方法筛选出了针对大肠杆菌O5 4的特异基因 ,用于基因芯片或PCR方法对大肠杆菌O5 4的快速检测。  相似文献   

4.
The O antigens of Salmonella serogroups A, B, and D differ structurally in their side chain sugar residues. The genes encoding O-antigen biosynthesis are clustered in the rfb operon. The gene rfbJ in strain LT2 (serovar typhimurium, group B) and the genes rfbS and rfbE in strain Ty2 (serovar typhi, group D) account for the known differences in the rfb gene clusters used for determination of group specificity. In this paper, we report the nucleotide sequence of 2.9 kb of DNA from the rfb gene cluster of strain Ty2 and the finding of two open reading frames which have limited similarity with the corresponding open reading frames of strain LT2. These two genes complete the sequence of the rfb region of group D strain Ty2 if we use strain LT2 sequence where restriction site data show it to be extremely similar to the strain Ty2 sequence. The restriction map of the rfb gene cluster in group A strain IMVS1316 (serovar paratyphi) is identical to that of the cluster in strain Ty2 except for a frameshift mutation in rfbE and a triplicated region. The rfb gene clusters of these three strains are compared, and the evolutionary origin of these genes is discussed.  相似文献   

5.
The O antigens of Salmonella serogroups A, B, and D differ structurally in their side-chain sugar residue. These genes encoding O-antigen biosynthesis are clustered in the rfb operon. We report here the molecular cloning and analysis of the rfb operons of Salmonella paratyphi A (serogroup A) and S. typhi (serogroup D). The regions of DNA nonhomology between the rfb operons of these serogroup A, B, and D representatives are identified, and the evolutionary derivation of serogroup A from a serogroup D progenitor is discussed.  相似文献   

6.
S H Xiang  M Hobbs    P R Reeves 《Journal of bacteriology》1994,176(14):4357-4365
The Salmonella enterica O antigen is a highly variable surface polysaccharide composed of a repeated oligosaccharide (the O unit). The O unit produced by serogroup D2 has structural features in common with those of groups D1 and E1, and hybridization studies had previously suggested that the D2 rfb gene cluster responsible for O-unit biosynthesis is indeed a hybrid of the two. In this study, the rfb gene cluster was cloned from a group D2 strain of S. enterica sv. Strasbourg. Mapping, hybridization, and DNA sequencing showed that the organization of the D2 rfb genes is similar to that of group D1, with the alpha-mannosyl transferase gene rfbU replaced by rfbO, the E1-specific beta-mannosyl transferase gene. The E1-specific polymerase gene (rfc) has also been acquired. Interestingly, the D1-like and E1-like rfb regions are separated by an additional sequence closely related to an element (Hinc repeat [H-rpt]) associated with the Rhs loci of Escherichia coli. The H-rpt resembles an insertion sequence and possibly mediated the intraspecific recombination events which produced the group D2 rfb gene organization.  相似文献   

7.
We recently reported a novel genetic locus located in the sbcB-his region of the chromosomal map of Escherichia coli K-12 which directs the expression of group 6-positive phenotype in Shigella flexneri lipopolysaccharide, presumably due to the transfer of O-acetyl groups onto rhamnose residues of the S. flexneri O-specific polysaccharide (Z. Yao, H. Liu, and M. A. Valvano, J. Bacteriol. 174:7500-7508, 1992). In this study, we identified the genetic region encoding group 6 specificity as part of the rfb gene cluster of E. coli K-12 strain W3110 and established the DNA sequence of most of this cluster. The rfbBDACX block of genes, located in the upstream region of the rfb cluster, was found to be strongly conserved in comparison with the corresponding region in Shigella dysenteriae type 1 and Salmonella enterica. Six other genes, four of which were shown to be essential for the expression of group 6 reactivity in S. flexneri serotypes Y and 4a, were identified downstream of rfbX. One of the remaining two genes showed similarities with rfc (O-antigen polymerase) of S. enterica serovar typhimurium, whereas the other, located in the downstream end of the cluster next to gnd (gluconate-6-phosphate dehydrogenase), had an IS5 insertion. Recently, it has been reported that the IS5 insertion mutation (rfb-50) can be complemented, resulting in the formation of O16-specific polysaccharide by E. coli K-12 (D. Liu and P. R. Reeves, Microbiology 140:49-57, 1994). We present immunochemical evidence suggesting that S. flexneri rfb genes also complement the rfb-50 mutation; in the presence of rfb genes of E. coli K-12, S. flexneri isolates express O16-specific polysaccharide which is also acetylated in its rhamnose residues, thereby eliciting group 6 specificity.  相似文献   

8.
The O antigen of Escherichia coli O111 is identical in structure to that of Salmonella enterica serovar adelaide. Another O-antigen structure, similar to that of E. coli O111 and S. enterica serovar adelaide is found in both E. coli O55 and S. enterica serovar greenside. Both O-antigen structures contain colitose, a 3,6 dideoxyhexose found only rarely in the Enterobacteriaceae. The O-antigen structure is determined by genes generally located in the rfb gene cluster. We cloned the rfb gene cluster from an E. coli O111 strain (M92), and the clone expressed O antigen in both E. coli K-12 and a K-12 strain deleted for rfb. Lipopolysaccharide analysis showed that the O antigen produced by strains containing the cloned DNA is polymerized. The chain length of O antigen was affected by a region outside of rfb but linked to it and present on some of the plasmids containing rfb. The rfb region of M92 was analysed and compared, by DNA hybridization, with that of strains with related O antigens. The possible evolution of the rfb genes in these O antigen groups is discussed.  相似文献   

9.
The Salmonella enterica group C1 O antigen structure has a Man-Man-Man-Man-GlcNAc backbone with a glucose branch, which differs from the S. enterica group B O antigen structure which has a Man-Rha-Gal backbone with abequose as side-chain. We have cloned the group C1 rfb (O antigen) gene cluster from serovar montevideo strain M40, using a low-copy-number cosmid vector. The restriction map of the group C1 (M40) rfb gene cluster was compared with that of group B strain LT2 by Southern hybridization and restriction enzyme analysis. The results indicate that the flanking genes are very similar in the two strains, but there is no detectable similarity in the rfb regions. We localized the mannose pathway genes rfbM and rfbK and one of the genes, rfbK, shows considerably similarity to cpsG of strain LT2, suggesting that part of the mannose pathway in the group C1 rfb cluster is derived from a gene of the M antigen (cps) cluster. The M antigen, which forms a capsule, is comprised of four sugars, including fucose. The biosynthetic pathway of GDP-fucose has steps in common with the GDP-mannose pathway, and the cps cluster has isogenes of rfbK and rfbM, presumably as part of a fucose pathway. We discuss the structure and possible evolution of the group C1 rfb gene cluster.  相似文献   

10.
A murine hybridoma cell line that produces monoclonal antibody (mAb) against the serogroup D1 Salmonella lipopolysaccharide (LPS) antigen was established. The trisaccharide tyvelose alpha 1----3 mannose alpha 1----4 rhamnose was shown to be involved in the reactive epitope of the mAb since this mAb reacted strongly with strains of serogroup D1 Salmonella but not with Salmonella strains from the O serogroups of A, B, and D2, and sodium meta-periodate was found to destroy the reactivity of the serogroup D1 O-antigen with the mAb. As such this mAb was found to be a useful serotyping reagent for the identification of serogroup D1 Salmonella, and for the differentiation of strains of serogroups D1 and D2 Salmonella which have identical flagellar H antigens.  相似文献   

11.
The rfb gene cluster of Escherichia coli O9 directs the synthesis of the O9-specific polysaccharide which has the structure -->2-alpha-Man-(1-->2)-alpha-Man-(1-->2)-alpha-Man-(1-->3)-alpha- Man-(1-->. The E. coli O9 rfb cluster has been sequenced, and six genes, in addition to the previously described rfbK and rfbM, were identified. They correspond to six open reading frames (ORFs) encoding polypeptides of 261, 431, 708, 815, 381, and 274 amino acids. They are all transcribed in the counter direction to those of the his operon. No gene was found between rfb and his. A higher G+C content indicated that E. coli O9 rfb evolved independently of the rfb clusters from other E. coli strains and from Shigella and Salmonella spp. Deletion mutagenesis, in combination with analysis of the in vitro synthesis of the O9 mannan in membranes isolated from the mutants, showed that three genes (termed mtfA, -B, and -C, encoding polypeptides of 815, 381, and 274 amino acids, respectively) directed alpha-mannosyl transferases. MtfC (from ORF274), the first mannosyl transferase, transfers a mannose to the endogenous acceptor. It critically depended on a functional rfe gene (which directs the synthesis of the endogenous acceptor) and initiates the growth of the polysaccharide chain. MtfB (from ORF381) then transfers two mannoses into the 3 position of the previous mannose, and MtfA (from ORF815) transfers three mannoses into the 2 position. Further chain growth needs only the two transferases MtfA and MtfB. Thus, there are fewer transferases needed than the number of sugars in the repeating unit. Analysis of the predicted amino acid sequence of the ORF261 and ORF431 proteins indicated that they function as components of an ATP-binding cassette transport system. A possible correlation between the mechanism of polymerization and mode of membrane translocation of the products is discussed.  相似文献   

12.
Twenty-seven of 37 non-toxigenic, urease-negative strains originally identified as Clostridium bifermentans that were isolated in the Antarctic are reidentified as C. sordellii by the tests for DNA-DNA homology, by the absence of mannose in the cell wall, and by growth inhibition of mannose. The test for cell wall sugar components of urease-negative and -positive strains of C. sordellii revealed that glucose, mannose, and rhamnose could not be detected in any of eight urease-negative strains used by galactose was detectable in seven of the eight strains and that glucose or galactose or both of the two sugars were present in the urease-positive strains tested.  相似文献   

13.
In Salmonella typhimurium, three groups of genes located in rfb, rfe, and rff clusters are known to be involved in the biosynthesis of the enterobacterial common antigen. We found that enzymatic synthesis of uridine diphosphate N-acetylmannosaminouric acid, the activated form of a constituent sugar of the common antigen, followed the pathway previously described in Escherichia coli (N. Ichihara, N. Ishimoto, and E. Ito, FEBS Lett. 39:46--48, 1974). All of the six rff mutants tested, which fail to synthesize the common antigen, were deficient in one or both of the two enzymes needed for the synthesis of this sugar nucleotide from uridine diphosphate N-acetylglucosamine; these results established the physiological role of the pathway studied for the biosynthesis of N-acetylmannosaminuronic acid residues. The levels of these enzymes were not reduced in rfe mutants or rfb deletion mutants, although they produced no or only traces of the common antigen.  相似文献   

14.
The O7-specific lipopolysaccharide (LPS) in strains of Escherichia coli consists of a repeating unit made of galactose, mannose, rhamnose, 4-acetamido-2,6-dideoxyglucose, and N-acetylglucosamine. We have recently cloned and characterized genetically the O7-specific LPS biosynthesis region (rfbEcO7) of the E. coli O7:K1 strain VW187 (C. L. Marolda, J. Welsh, L. Dafoe, and M. A. Valvano, J. Bacteriol. 172:3590-3599, 1990). In this study, we localized the gnd gene encoding gluconate-6-phosphate dehydrogenase at one end of the rfbEcO7 gene cluster and sequenced that end of the cluster. Three open reading frames (ORF) encoding polypeptides of 275, 464, and 453 amino acids were identified upstream of gndEcO7, all transcribed toward the gnd gene. ORF275 had 45% similarity at the protein level with ORF16.5, which occupies a similar position in the Salmonella enterica LT2 rfb region, and presumably encodes a nucleotide sugar transferase. The polypeptides encoded by ORFs 464 and 453 were expressed under the control of the ptac promoter and visualized in Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gels and by maxicell analysis. ORF464 expressed GDP-mannose pyrophosphorylase and ORF453 encoded a phosphomannomutase, the enzymes for the biosynthesis pathway of GDP-mannose, one of the nucleotide sugar precursors for the formation of the O7 repeating unit. They were designated rfbMEcO7 and rfbKEcO7, respectively. The RfbMEcO7 polypeptide was homologous to the corresponding protein in S. enterica LT2, XanB of Xanthomonas campestris, and AlgA of Pseudomonas aeruginosa, all GDP-mannose pyrophosphorylases. RfbKEcO7 was very similar to CpsG of S. enterica LT2, an enzyme presumably involved in the biosynthesis of the capsular polysaccharide colanic acid, but quite different from the corresponding RfbK protein of S. enterica LT2.  相似文献   

15.
Individual Escherichia coli strains produce several cell surface polysaccharides. In E. coli E69, the his region of the chromosome contains the rfb (serotype O9 lipopolysaccharide O-antigen biosynthesis) and cps (serotype K30 group IA capsular polysaccharide biosynthesis) loci. Polymorphisms in this region of the Escherichia coli chromosome reflect extensive antigenic diversity in the species. Previously, we reported a duplication of the manC-manB genes, encoding enzymes involved in GDP-mannose formation, upstream of rfb in strain E69 (P. Jayaratne et al., J. Bacteriol. 176:3126-3139, 1994). Here we show that one of the manC-manB copies is flanked by IS1 elements, providing a potential mechanism for the gene duplication. Adjacent to manB1 on the IS1-flanked segment is a further open reading frame (ugd), encoding uridine-5'-diphosphoglucose dehydrogenase. The Ugd enzyme is responsible for the production of UDP-glucuronic acid, a precursor required for K30 antigen synthesis. Construction of a chromosomal ugd::Gm(r) insertion mutation demonstrated the essential role for Ugd in the biosynthesis of the K30 antigen and confirmed that there is no additional functional ugd copy in strain E69. PCR amplification and Southern hybridization were used to examine the distribution of IS1 elements and ugd genes in the vicinity of rfb in other E. coli strains, producing different group IA K antigens. The relative order of genes and, where present, IS1 elements was established in these strains. The regions adjacent to rfb in these strains are highly variable in both size and gene order, but in all cases where a ugd homolog was present, it was found near rfb. The presence of IS1 elements in the rfb regions of several of these strains provides a potential mechanism for recombination and deletion events which could contribute to the antigenic diversity seen in surface polysaccharides.  相似文献   

16.
Samples from chickens and pork sausages were examined for the presence of Vero cytotoxin-producing Escherichia coli by using DNA probes for the Vero cytotoxin genes. Hybridization was detected in 25% of the 184 sausage samples, but none of the chickens was positive. No E. coli O157:H7 strains were isolated, and serotyping showed that the Vero cytotoxin-producing E. coli strains belonged to eight different O serogroups and that six strains had an unidentifiable O antigen.  相似文献   

17.
The chemical composition of each O-antigen subunit in gram-negative bacteria is a reflection of the unique DNA sequences within each rfb operon. By characterizing DNA sequences contained with each rfb operon, a diagnostic serotype-specific probe to Escherichia coli O serotypes that are commonly associated with bacterial infections can be generated. Recently, from an E. coli O157:H7 cosmid library, O-antigen-positive cosmids were identified with O157-specific antisera. By using the cosmid DNAs as probes, several DNA fragments which were unique to E. coli O157 serotypes were identified by Southern analysis. Several of these DNA fragments were subcloned from O157-antigen-positive cosmids and served as DNA probes in Southern analysis. One DNA fragment within plasmid pDS306 which was specific for E. coli O157 serotypes was identified by Southern analysis. The DNA sequence for this plasmid revealed homology to two rfb genes, the first of which encodes a GDP-mannose dehydratase. These rfb genes were similar to O-antigen biosynthesis genes in Vibrio cholerae and Yersinia enterocolitica serotype O:8. An oligonucleotide primer pair was designed to amplify a 420-bp DNA fragment from E. coli O157 serotypes. The PCR test was specific for E. coli O157 serotypes. PCR detected as few as 10 cells with the O157-specific rfb oligonucleotide primers. Coupled with current enrichment protocols, O157 serotyping by PCR will provide a rapid, specific, and sensitive method for identifying E. coli O157.  相似文献   

18.
The Kauffmann-White scheme for serotyping Salmonella recognizes 46 somatic (O) antigen groups, which together with detection of the flagellar (H) antigens form the basis for serotype identification. Although serotyping has become an invaluable typing method for epidemiological investigations of Salmonella, it does have some practical limitations. We have been characterizing the genes required for O and H antigen biosynthesis with the goal of developing a DNA-based system for the determination of serotype in Salmonella. The majority of the enzymes involved in O antigen biosynthesis are encoded by the rfb gene cluster. We report the sequencing of the rfb region from S. enterica serotype Sundsvall (serogroup O:6,14). The S. enterica serotype Sundsvall rfb region is 8.4 kb in length and comprises six open reading frames. When compared with other previously characterized rfb regions, the serogroup O:6,14 sequence is most related to serogroup C(1). On the basis of DNA sequence similarity, we identified two genes from the mannose biosynthetic pathway, two mannosyl transferase genes, the O unit flippase gene and, possibly, the O antigen polymerase. The whole cluster is derived from a low-G+C-content organism. Comparative sequencing of an additional serogroup O:6,14 isolate (S. enterica serotype Carrau) revealed a highly homologous sequence, suggesting that O antigen factors O:24 and O:25 (additional O factors associated with serogroup O:6,14) are encoded outside the rfb gene cluster. We developed a serogroup O:6,14-specific PCR assay based on a region of the putative wzx (O antigen flippase) gene. This provides the basis for a sensitive and specific test for the rapid identification of Salmonella serogroup O:6,14.  相似文献   

19.
Samples from chickens and pork sausages were examined for the presence of Vero cytotoxin-producing Escherichia coli by using DNA probes for the Vero cytotoxin genes. Hybridization was detected in 25% of the 184 sausage samples, but none of the chickens was positive. No E. coli O157:H7 strains were isolated, and serotyping showed that the Vero cytotoxin-producing E. coli strains belonged to eight different O serogroups and that six strains had an unidentifiable O antigen.  相似文献   

20.
The kinetic properties of UDP-N-acetylglucosamine:glycoprotein N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase) partially purified from the soil amoeba Acanthamoeba castellanii have been studied. The transferase phosphorylated the lysosomal enzymes uteroferrin and cathepsin D 3-90-fold better than nonlysosomal glycoproteins and 16-83-fold better than a Man9GlcNAc oligosaccharide. Deglycosylated uteroferrin was a potent competitive inhibitor of the phosphorylation of intact uteroferrin (Ki of 48 microM) but did not inhibit the phosphorylation of RNase B or the simple sugar alpha-methylmannoside. Deglycosylated RNase (RNase A) did not inhibit the phosphorylation of RNase B or uteroferrin. These results indicate that purified amoeba GlcNAc-phosphotransferase recognizes a protein domain present on lysosomal enzymes but absent in most nonlysosomal glycoproteins. The transferase also exhibited a marked preference for oligosaccharides containing mannose alpha 1,2-mannose sequences, but this cannot account for the high affinity binding to lysosomal enzymes. A. castellanii extracts do not contain detectable levels of N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase, the second enzyme in the biosynthetic pathway for the mannose 6-phosphate recognition marker. We conclude that A. castellanii does not utilize the phosphomannosyl sorting pathway despite expression of very high levels of GlcNAc-phosphotransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号