首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Transducin (T alpha beta gamma), the heterotrimeric GTP-binding protein that interacts with photoexcited rhodopsin (Rh*) and the cGMP-phosphodiesterase (PDE) in retinal rod cells, is sensitive to cholera (CTx) and pertussis toxins (PTx), which catalyze the binding of an ADP-ribose to the alpha subunit at Arg174 and Cys347, respectively. These two types of ADP-ribosylations are investigated with transducin in vitro or with reconstituted retinal rod outer-segment membranes. Several functional perturbations inflicted on T alpha by the resulting covalent modifications are studied such as: the binding of T alpha to T beta gamma to the membrane and to Rh*; the spontaneous or Rh*-catalysed exchange of GDP for GTP or guanosine 5-[gamma-thio]triphosphate (GTP[gamma S]), the conformational switch and activation undergone by transducin upon this exchange, the activation of T alpha GDP by fluoride complexes and the activation of the PDE by T alpha GTP. ADP-ribosylation of transducin by CTx requires the GTP-dependent activation of ADP-ribosylation factors (ARF), takes place only on the high-affinity, nucleotide-free complex, Rh*-T alpha empty-T beta gamma and does not activate T alpha. Subsequent to CTx-catalyzed ADP-ribosylation the following occurs: (a) addition of GDP induces the release from Rh* of inactive CTxT alpha GDP (CTxT alpha, ADP-ribosylated alpha subunit of transducin) which remains associated to T beta gamma; (b) CTxT alpha GDP-T beta gamma exhibits the usual slow kinetics of spontaneous exchange of GDP for GTP[gamma S] in the absence of Rh*, but the association and dissociation of fluoride complexes, which act as gamma-phosphate analogs, are kinetically modified, suggesting that the ADP-ribose on Arg174 specifically perturbs binding of the gamma-phosphate in the nucleotide site; (c) CTxT alpha GDP-T beta gamma can still couple to Rh* and undergo fast nucleotide exchange; (d) CTxT alpha GTP[gamma S] and CTxT alpha GDP-AlFx (AlFx, Aluminofluoride complex) activate retinal cGMP-phosphodiesterase (PDE) with the same efficiency as their unmodified counterparts, but the kinetics and affinities of fluoride activation are changed; (e) CTxT alpha GTP hydrolyses GTP more slowly than unmodified T alpha GTP, which entirely accounts for the prolonged action of CTxT alpha GTP on the PDE; (f) after GTP hydrolysis, CTxT alpha GDP reassociates to T beta gamma and becomes inactive. Thus, CTx catalyzed ADP-ribosylation only perturbs in T alpha the GTP-binding domain, but not the conformational switch nor the domains of contact with the T beta gamma subunit, with Rh* and with the PDE.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The gamma-subunit of retinal rod-outer-segment phosphodiesterase (PDE-gamma) is a multifunctional protein which interacts directly with both of the catalytic subunits of PDE (PDE alpha/beta) and the alpha-subunit of the retinal G (guanine-nucleotide-binding)-protein transducin alpha (T alpha). We have previously reported that the PDE gamma binds to T alpha at residue nos. 24-45 [Morrison. Rider & Takemoto (1987) FEBS Lett. 222, 266-270]. In vitro this results in inhibition of T alpha GTP/GDP exchange [Morrison, Cunnick, Oppert & Takemoto (1989) J. Biol. Chem. 264, 11671-11681]. We now report that the inhibitory region of PDE gamma for PDE alpha/beta occurs at PDE gamma residues 54-87. This binding results in inhibition of either trypsin-solubilized or membrane-bound PDE alpha/beta. PDE gamma which has been treated with carboxypeptidase Y, removing the C-terminus, does not inhibit PDE alpha/beta, but does inhibit T alpha GTP/GDP exchange. Inhibition by PDE gamma can be removed by T alpha-guanosine 5'-[gamma-thio]triphosphate (GTP[S]) addition to membranes. This results in a displacement of PDE gamma, but not in removal of this subunit from the membrane [Whalen, Bitensky & Takemoto (1990) Biochem. J. 265, 655-658]. These results suggest that low levels of T alpha-GTP[S] can result in displacement of PDE gamma from the membrane in vitro as a GTP[S]-T alpha-PDE gamma complex. Further activation by high levels of T alpha-GTP[S] occurs by displacement of PDE gamma from its inhibitory site on PDE alpha/beta, but not in removal from the membrane.  相似文献   

3.
J W Erickson  R A Cerione 《Biochemistry》1991,30(29):7112-7118
Resonance energy-transfer approaches have been used to directly monitor the interactions of the GTP gamma S-bound alpha subunit of transducin (alpha T GTP gamma S) with the retinal cyclic GMP phosphodiesterase (PDE). The PDE was labeled with 5-(iodoacetamido) fluorescein (IAF-PDE) and served as the fluorescence donor in these experiments while the alpha T GTP gamma S was labeled with eosin-5-isothiocyanate (EITC-alpha T GTP gamma S) and served as the energy acceptor. The EITC-alpha T GTP gamma S species was able to quench a significant percentage of the IAF-PDE fluorescence (typically greater than or equal to 30%) due to resonance energy transfer between the IAF and EITC moieties. The quenching by the EITC-alpha T GTP gamma S species was dose-dependent, saturable (Kd = 21 nM), and specific for the GTP gamma S-bound form of the alpha T subunit. Limited trypsin treatment of the IAF-PDE, which selectively removes a fluorescein-labeled gamma subunit (gamma PDE), completely eliminates the quenching of the IAF fluorescence by the EITC-alpha T GTP gamma S complex. Although the EITC-alpha T GTP gamma S complex competes with the unlabeled alpha T GTP gamma S for a binding site on the IAF-PDE, as well as for a site on the native PDE, it is not able to stimulate PDE activity. Thus, the modification of a single EITC-reactive residue on the alpha T GTP gamma S complex prevents this subunit from eliciting a key activation event within the retinal effector enzyme.  相似文献   

4.
J Bigay  P Deterre  C Pfister    M Chabre 《The EMBO journal》1987,6(10):2907-2913
Fluoride activation of G proteins requires the presence of aluminium or beryllium and it has been suggested that AIF4- acts as an analogue of the gamma-phosphate of GTP in the nucleotide site. We have investigated the action of AIF4- or of BeF3- on transducin (T), the G protein of the retinal rods, either indirectly through the activation of cGMP phosphodiesterase, or more directly through their effects on the conformation of transducin itself. In the presence of AIF4- or BeF3-, purified T alpha subunit of transducin activates purified cyclic GMP phosphodiesterase (PDE) in the absence of photoactivated rhodopsin. Activation is totally reversed by elution of fluoride or partially reversed by addition of excess T beta gamma. Activation requires that GDP or a suitable analogue be bound to T alpha: T alpha-GDP and T alpha-GDP alpha S are activable by fluorides, but not T alpha-GDP beta S, nor T alpha that has released its nucleotide upon binding to photoexcited rhodopsin. Analysis of previous works on other G proteins and with other nucleotide analogues confirm that in all cases fluoride activation requires that a GDP unsubstituted at its beta phosphate be bound in T alpha. By contrast with alumino-fluoride complexes, which can adopt various coordination geometries, all beryllium fluoride complexes are tetracoordinated, with a Be-F bond length of 1.55 A, and strictly isomorphous to a phosphate group. Our study confirms that fluoride activation of transducin results from a reversible binding of the metal-fluoride complex in the nucleotide site of T alpha, next to the beta phosphate of GDP, as an analogue of the gamma phosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The rod outer segments of the bovine and frog retina possess a cyclic GMP phosphodiesterase (PDE) that is composed of two larger subunits, alpha and beta (P alpha beta), which contain the catalytic activity and a smaller gamma (P gamma) subunit which inhibits the catalytic activity. We studied the binding of P gamma to P alpha beta in both the bovine and frog rod outer segment membranes. Analysis of these data indicates that there are two classes of P gamma binding sites per P alpha beta in both species. The activation of PDE by the guanosine 5'-[gamma-thio]triphosphate form of the alpha subunit of transducin, T alpha.GTP gamma S, was also studied. These data indicate that the two classes of P gamma binding sites contribute to the formation of two classes of binding sites for T alpha.GTP gamma S. We demonstrate solubilization of a portion of the P gamma by T alpha.GTP gamma S in both species. There is also present, in both species, a second class of P gamma which is not solubilized even when it is dissociated from its inhibitory site on P alpha beta by T alpha.GTP gamma S. The amount of full PDE activity which results from release of the solubilizable P gamma is about 50% in the frog PDE but only approx. 17% in the bovine PDE. We also show that activation of frog rod outer segment PDE by trypsin treatment releases the PDE from the membranes. This type of release by trypsin has already been demonstrated in bovine rod outer segments [Wensel & Stryer (1986) Proteins: Struct. Funct. Genet. 1, 90-99].  相似文献   

6.
The cyclic GMP phosphodiesterase of retinal rods is composed of three distinct polypeptides: alpha (90 kDa), beta (86 kDa), and gamma (10 kDa). In this multimeric form, the enzyme is inhibited. Its activity is stimulated by the interaction with the GTP-bound form of the T alpha subunit of transducin and reversed upon the recombination of the inhibitory gamma subunit with the catalytic alpha beta subunit. We show here by a novel coimmunoprecipitation technique that the gamma subunit, but not the alpha beta subunit, forms a 1:1 complex with T alpha. The binding of gamma to T alpha is nucleotide-dependent and is facilitated by GTP gamma S or Gpp(NH)p. This study provides convincing evidence that the T alpha-GTP subunit of transducin stimulates phosphodiesterase activity by binding to gamma and physically carrying it away from alpha beta.  相似文献   

7.
An antibody (AS/7) prepared against the carboxyl-terminal decapeptide of the alpha subunit of transducin (alpha T) has been used in various reconstitution studies aimed at characterizing the role of the carboxyl-terminal domain in the different functional activities of transducin. The peptide-specific antibody is a potent inhibitor of the rhodopsin-stimulated GTPase activity in phospholipid vesicle systems containing pure rhodopsin and pure holo-transducin, or rhodopsin and the purified alpha T and beta/gamma (beta gamma T) subunit components, with the highest levels of inhibition (80-95%) occurring under conditions where the molar ratio of holo-transducin (or alpha T) to AS/7 approximately equal to 1. The inhibition of the receptor-stimulated GTPase does not represent an interference in the interactions between the alpha T subunit and the beta gamma T complex, since essentially identical levels of inhibition are observed when AS/7 is preincubated with either free alpha T, holo-transducin, or alpha T in the presence of excess beta gamma T, prior to assay. The AS/7-induced inhibition also does not appear to reflect an alteration in the ability of alpha T to bind or hydrolyze GTP and, in fact, the incubation of alpha T with AS/7 results in a stimulation of the intrinsic GTPase activity for alpha T alone (i.e. in the absence of rhodopsin). Thus, we conclude that the inhibition of the rhodopsin-stimulated GTPase activity by AS/7 is due to the direct blocking (by the antibody) of rhodopsin-alpha T interactions. While AS/7 is capable of uncoupling rhodopsin-transducin interactions, it appears to promote the stimulation of the cyclic GMP phosphodiesterase (PDE) by an activated alpha T subunit. Specifically, when the pure alpha T-guanosine 5-O-(3-thiotriphosphate) (alpha TGTP gamma S) species is preincubated with AS/7 prior to its addition to an assay solution containing PDE, there is at least a 4-fold increase in the resultant cyclic GMP hydrolysis relative to the activities measured with alpha TGTP gamma S, alone, or with alpha TGTP gamma S preincubated with nonimmune (control) rabbit IgG. The AS/7-induced promotion is specific for the active form of alpha T; the inactive alpha TGDP species does not stimulate PDE activity either in the presence or absence of the antibody. The different effects by AS/7 on the various activities of the alpha T subunit highlight the existence of distinct functional domains on alpha T.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The visual transduction cascade of the retinal rod outer segment responds to light by decreasing membrane current. This ion channel is controlled by cyclic GMP which is, in turn, controlled by its synthesis and degradation by guanylate cyclase and phosphodiesterase, respectively. When light bleaches rhodopsin there is an induced exchange of GTP for GDP bound to the alpha subunit of the retinal G-protein, transducin (T). The T alpha.GTP then removes the inhibitory constraint of a small inhibitory subunit (PDE gamma) on the retinal cGMP phosphodiesterase (PDE). This results in activation of the PDE and in hydrolysis of cGMP. Recently both low and high affinity binding sites have been identified for PDE gamma on the PDE alpha/beta catalytic subunits. The discovery of two PDE gamma subunits, each with different binding affinities, suggests that a tightly regulated shut-off mechanism may be present.  相似文献   

9.
In this study, we have examined the interactions of the beta gamma subunit complex of the retinal GTP-binding protein transducin (beta gamma T) with its alpha subunit (alpha T) using fluorescence spectroscopic approaches. The beta gamma T subunit complex was covalently labeled with 2-(4'-maleimidylanilino)napthalene-6-sulfonic acid (MIANS), an environmentally sensitive fluorescent cysteine reagent. The formation of the MIANS beta gamma T complexes (two to five MIANS adducts per beta gamma T) resulted in 2-3-fold enhancements in the MIANS fluorescence, and 20-25-nm blue shifts in the fluorescence emission maxima, relative to the emission for identical concentrations of MIANS-labeled MIANS complexes. The addition of alpha T.GDP to these MIANS beta gamma T complexes resulted in an additional enhancement in the MIANS fluorescence (typically ranging from 20 to 40%) and a 5-10-nm blue shift in the wavelength for maximum emission. These fluorescence changes were specifically elicited by the GDP-bound form of alpha T and were not observed upon the addition of purified alpha T.guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) complexes to the MIANS beta gamma T species. Conditions which resulted in the activation of the alpha T.GDP subunit (i.e. the addition of AlF4- or the addition of rhodopsin-containing vesicles and GTP gamma S) resulted in a reversal of the alpha T.GDP-induced enhancement of the MIANS beta gamma T fluorescence. Thus the MIANS beta gamma T fluorescence provided a spectroscopic monitor for transducin-subunit association and transducin-activation. Based on the results from studies using this spectroscopic read-out, it appears that the association of the alpha T.GDP species with the beta gamma T subunit complex to form the holotransducin molecule is rapid and does not limit the rate of the rhodopsin-stimulated activation of holotransducin. However, either the dissociation of the activated alpha T subunit from the beta gamma T complex, or a conformational change in beta gamma T which occurs as a result of the subunit dissociation event, appears to be slow relative to the G protein-subunit association event.  相似文献   

10.
We have produced a recombinant transducin alpha subunit (rT alpha) in sf9 cells, using a baculovirus system. Deletion of the myristoylation site near the N-terminal increased the solubility and allowed the purification of rT alpha. When reconstituted with excess T beta gamma on retinal membrane, rT alpha displayed functional characteristics of wild-type T alpha vis à vis its coupled receptor, rhodopsin and its effector, cGMP phosphodiesterase (PDE). We further mutated a tryptophan, W207, which is conserved in all G proteins and is suspected to elicit the fluorescence change correlated to their activation upon GDP/GTP exchange or aluminofluoride (AlFx) binding. [W207F]T alpha mutant displayed high affinity receptor binding and underwent a conformational switch upon receptor-catalysed GTP gamma S binding or upon AlFx binding, but this did not elicit any fluorescence change. Thus W207 is the only fluorescence sensor of the switch. Upon the switch the mutant remained unable to activate the PDE. To characterize better its effector-activating interaction we measured the affinity of [W207F]T alpha GDP-AlFx for PDE gamma, the effector subunit that binds most tightly to T alpha. [W207F]T alpha still bound in an activation-dependent way to PDE gamma, but with a 100-fold lower affinity than rT alpha. This suggests that W207 contributes to the G protein effector binding.  相似文献   

11.
In bullfrog (Rana catesbiana) rods the activity of cyclic GMP (cGMP) phosphodiesterase was stimulated 10 times by washing disc membranes with an isotonic, GTP-containing buffer. This stimulation was maintained following hydrolysis of GTP and after removal of guanine nucleotides. At least 60-70% of the inhibitory gamma subunit of cGMP phosphodiesterase (P gamma) was physically released from membranes by these washing procedures. When cGMP phosphodiesterase was activated by a hydrolysis-resistant GTP analogue, P gamma was found in the supernatant complexed with the transducin alpha subunit (T alpha) using three chromatography systems. When GTP was used to activate cGMP phosphodiesterase, P gamma was also found in the supernatant complexed with GDP.T alpha. This complex was also isolated using the same three chromatography systems, indicating that P gamma remained tightly bound to T alpha even after bound GTP was hydrolyzed. Interaction with the beta,gamma subunits of transducin, which remained associated with disc membranes, was required for the release of P gamma from the GDP.T alpha complex, which resulted in the deactivation of active cGMP phosphodiesterase. We conclude that during activation of cGMP phosphodiesterase, P gamma is complexed with T alpha (both GTP and GDP forms) in the supernatant and that, following GTP hydrolysis, beta,gamma subunits of transducin are necessary for the release of P gamma from the complex and the resulting inactivation of cGMP phosphodiesterase in frog photoreceptors.  相似文献   

12.
We have made use of the enhancement of the intrinsic fluorescence of the alpha subunit of transducin (alpha T), which accompanies guanine nucleotide exchange, to follow the reconstituted interactions between pure rhodopsin and pure transducin in phospholipid vesicles. When the pure alpha T.GDP complex is added to lipid vesicles containing rhodopsin and the beta gamma T complex, a light- and guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-dependent enhancement of the fluorescence emission of alpha T is observed. When GTP is substituted for GTP gamma S, a similar enhancement of the intrinsic fluorescence of alpha T occurs; however, this enhancement is transient and precedes a fluorescence decay which is complete in 2-5 min. The fact that the fluorescence decay is specifically induced by GTP and is not observed either with nonhydrolyzable GTP analogs or with NaF (plus AlCl3) indicates that the decay represents GTP hydrolysis in alpha T. The dose-response profiles for the effects of the beta gamma T complex on the rate and extent of the GTP gamma S-stimulated fluorescence enhancement of alpha T have also been examined. The addition of relatively low levels of beta gamma T to these reconstituted systems can promote the GTP gamma S-stimulated enhancement of the fluorescence of multiple alpha T subunits with half-maximal enhancement occurring at alpha T:beta gamma T ratios of 150:1. These findings are consistent with earlier suggestions (Fung, B. K.-K. (1983) J. Biol. Chem. 258, 10495-10502) that the beta gamma T subunit dissociates from alpha T as a result of the GDP-GTP exchange reaction and thus can act catalytically to promote the activation of a number of inactive alpha T species. However, the dependence of the rate of the GTP gamma S-stimulated fluorescence enhancement on beta gamma T is complex and cannot be explained adequately by simple models where alpha T-beta gamma T interactions (or rhodopsin-transducin interactions) are rate-limiting for the rhodopsin-stimulated activation of the alpha T subunits. Overall, the results reported here demonstrate that fluorescence spectroscopy can be used to monitor directly a receptor-catalyzed activation-deactivation cycle of a GTP-binding protein within a lipid milieu.  相似文献   

13.
T G Wensel  L Stryer 《Biochemistry》1990,29(8):2155-2161
The cyclic GMP phosphodiesterase (PDE) of vertebrate retinal rod outer segments (ROS) is kept inactive in the dark by its gamma subunits and is activated following illumination by the GTP form of the alpha subunit of transducin (T alpha-GTP). Recent studies have shown that the stoichiometry of the inhibited holoenzyme is alpha beta gamma 2. T alpha-GTP and gamma act reciprocally. We have investigated the activation mechanism using fluorescein-labeled gamma subunit (gamma F) as a probe. gamma F containing a single covalently attached fluorescein was prepared by reaction of PDE with 5-(iodoacetamido)fluorescein and purification by reversed-phase high-pressure liquid chromatography (HPLC). gamma F, like native gamma, inhibits the catalytic activity of trypsin-activated PDE and transducin-activated PDE. Inhibition by gamma F was overcome by further addition of T alpha-GTP. gamma F binds very weakly to ROS membranes stripped of PDE and other peripheral membrane proteins. gamma F added to ROS membranes became incorporated into a component that could be extracted with a low ionic strength buffer. HPLC gel filtration showed that gamma F became part of the PDE holoenzyme. Incorporation occurred in less than 1 min in the presence of light and GTP, but much more slowly (t1/2 approximately 500 s) in the absence of GTP. This result indicates that transducin activates PDE by binding to the holoenzyme and accelerating the dissociation of gamma from the inhibitory sites. The binding of gamma F to trypsin-activated PDE alpha beta was monitored by steady-state emission anisotropy measurements and compared with PDE activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In this work we have characterized the ability of a carboxyl peptide-specific antibody (AS/7), raised against the alpha subunit of transducin (alpha T), to potentiate the stimulation of the cyclic GMP phosphodiesterase (PDE) by transducin. The complexation of the purified guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-bound form of alpha T (alpha T.GTP gamma S) with AS/7 results in a 2-5-fold enhancement in the total levels of cyclic GMP hydrolysis measured after 1 min. This potentiation by AS/7 cannot be attributed simply to an increase in the apparent affinity of alpha T.GTP gamma S for the effector enzyme, nor to an increased affinity of the enzyme for the substrate cyclic GMP. The AS/7-induced potentiation is specific for alpha T.GTP gamma S-PDE interactions; this antibody has no effect on the activity of the trypsin-activated PDE nor on the ability of the GDP-bound form of alpha T to inhibit the trypsin-activated enzyme (Kroll, S., Phillips, W. J., and Cerione, R. A. (1989) J. Biol. Chem. 264, 4490-4497). Phosphatidylcholine vesicles also will enhance the alpha T.GTP gamma S-stimulated PDE activity (1.5-2-fold) relative to that measured in the absence of a lipid milieu. However, the potentiations of alpha T-stimulated cyclic GMP hydrolysis elicited by AS/7 and lipids represent separate events. Titration profiles describing the AS/7-induced potentiation, as a function of the amount of antibody added to the assay mixtures, indicate that maximal activity occurs when there is one molecule of AS/7 per two molecules of alpha T.GTP gamma S; the AS/7-induced potentiation is lost when AS/7 much greater than alpha T. GTP gamma S, i.e. conditions which favor the formation of monovalent AS/7-alpha T.GTP gamma S complexes. When the AS/7 is papain-treated to yield monovalent antibody molecules, complexation between these monovalent antibodies and alpha T still occurs (as reflected by the ability of these antibodies to block rhodopsin-alpha T coupling); however, the potentiation of the alpha T.GTP gamma S-stimulated PDE activity is lost. Taken together, these results suggest that the AS/7-induced potentiation of alpha T-stimulated activity is dependent on the bivalent nature of the antibody, and maximal stimulation of PDE activity is achieved by the interactions of two activated-alpha T molecules with a single molecule of PDE.  相似文献   

15.
G Yamanaka  F Eckstein  L Stryer 《Biochemistry》1985,24(27):8094-8101
The stereochemistry of the guanyl nucleotide binding site of transducin from bovine retinal rod outer segments was probed with phosphorothioate analogues of GTP and GDP. Transducin has markedly different affinities for the five thio analogues of GTP, as measured by their effectiveness in inhibiting GTPase activity, competing with GTP for entry into transducin, and displacing GDP bound to transducin. The order of binding affinities is GTP gamma S = (Sp)-GTP alpha S greater than (Rp)-GTP alpha S greater than (Sp)-GTP beta S much greater than (Rp)-GTP beta S. The affinity of transducin for GTP gamma S is greater than 10(4) higher than that for (Rp)-GTP beta S. These five analogues have the same relative potencies in eliciting the release of transducin from the membrane and in activating the phosphodiesterase. Transducin hydrolyzes (Sp)-GTP alpha S with a l/e time of 55 s, compared with 28 s for GTP. In contrast, (Rp)-GTP alpha S, like GTP gamma S, is not hydrolyzed on the time scale of several hours. The order of effectiveness of thio analogues of GDP in displacing bound GDP is (Sp)-GDP alpha S greater than GDP greater than (Rp)-GDP alpha S greater than GDP beta S. The affinity of transducin for (Sp)-GDP alpha S is about 10-fold higher than that for GDP beta S. Mg2+ is required for the binding of GTP and GDP to transducin. Cd2+ does not lead to a reversal of stereospecificity at either the alpha- or beta-phosphorus atom of GTP. These results lead to the following conclusions: The pro-R oxygen atom at the alpha-phosphorus of GTP does not bind Mg2+ but instead interacts with the protein. The pro-S oxygen at the alpha-phosphorus does not appear to be involved in a critical interaction with transducin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Cross-linking of the different subunits of the retinal cGMP-phosphodiesterase (PDE) with its activator G alpha GTP gamma S (alpha subunit of the retinal G-protein transducin with GTP gamma S (guanosine 5'-O-(3-thiotriphosphate) bound) has been investigated using purified proteins, with a N-hydroxysuccinimide homobifunctional cross-linker, bis(sulfosuccinimidyl)suberate (BS3) and its cleavable analog 3,3'-dithiobis(sulfosuccinimidylpropionate) (DTSSP). Interaction of purified G-protein and PDE is achieved in the presence of lecithin vesicles, at protein concentrations sufficient for full PDE activation. Protein subunits linked with DTSSP are separated by cleavage of the disulfide bridge and identified by electrophoresis. Complexes of PDE alpha (PDE beta) with 1 and 2 molecules of activator G alpha GTP gamma S are observed, providing direct evidence for an interaction or at least a close proximity between 2 molecules of activator G alpha and each of the catalytic PDE subunits in the activated state of PDE. The results also reveal symmetrical roles of PDE alpha and PDE beta, with the existence of one site for PDE gamma and one site for G alpha on each catalytic subunit.  相似文献   

17.
The retinal nucleotide regulatory protein, transducin, can substitute for the inhibitory guanine nucleotide-binding regulatory protein (Ni) in inhibiting adenylate cyclase activity in phospholipid vesicle systems. In the present work we have assessed the roles of the alpha (alpha T) and beta gamma (beta gamma T) subunit components in mediating this inhibition. The inclusion of either a preactivated alpha T . GTP gamma S (where GTP gamma S is guanosine 5'-O-(thiotriphosphate)) complex, or the beta gamma complex, in phospholipid vesicles containing the pure human erythrocyte stimulatory guanine nucleotide-binding regulatory protein (Ns) and the resolved catalytic moiety of bovine caudate adenylate cyclase (C) resulted in inhibition of the GppNHp-stimulated (where GppNHp is guanyl-5'-yl imidodiphosphate) activity (by approximately 30-60 and 90%, respectively, at 2 mM MgCl2). The inhibitions by both of these subunit species are specific for the Ns-stimulated activity with neither alpha T . GTP gamma S nor beta gamma T having any direct effect on the intrinsic activity of the catalytic moiety. Increasing the MgCl2 concentration in the assay incubations significantly decreases the inhibitions by both alpha T . GTP gamma S and beta gamma T. Similarly, when the pure hamster lung beta-adrenergic receptor is included in the lipid vesicles with Ns and C, the levels of inhibition of the GppNHp-stimulated activity by both alpha T . GTP gamma S and beta gamma T are reduced compared to those obtained in vesicles containing just Ns and C (but not stimulatory receptor). These inhibitions are reduced still further under conditions where the agonist stimulation of adenylate cyclase activity is maximal, i.e. when stimulating with isoproterenol plus GTP. In these cases the alpha T . GTP gamma S inhibitory effects are completely eliminated and the inhibitions observed with holotransducin can be fully accounted for by the beta gamma T complex. The ability of the beta-adrenergic receptor to relieve these inhibitions suggests that the receptor may remain coupled to Ns (or alpha s) during the activation of the regulatory protein and the stimulation of adenylate cyclase. These results also suggest that under physiological conditions the beta gamma subunit complex is primarily responsible for mediating the inhibition of adenylate cyclase activity.  相似文献   

18.
For reconstitution studies with rhodopsin and cGMP phosphodiesterase (PDE), all three subunits of heterotrimeric transducin (T alpha beta gamma) were simultaneously expressed in Sf9 cells at high levels using a baculovirus expression system and purified to homogeneity. Light-activated rhodopsin catalyzed the loading of purified recombinant T alpha with GTP gamma S. In vitro reconstitution of rhodopsin, recombinant transducin, and PDE in detergent solution resulted in cGMP hydrolysis upon illumination, demonstrating that recombinant transducin was able to activate PDE. The rate of cGMP hydrolysis by PDE as a function of GTP gamma S-loaded recombinant transducin (T(*)) concentration gave a Hill coefficient of approximately 2, suggesting that the activation of PDE by T(*) was cooperatively regulated. Furthermore, the kinetic rate constants for the activation of PDE by T(*) suggested that only the complex of PDE with two T(*) molecules, PDE. T(2)(*), was significantly catalytically active under the conditions of the assay. We conclude that the model of essential coactivation best describes the activation of PDE by T(*) in a reconstituted vertebrate visual cascade using recombinant heterotrimeric transducin.  相似文献   

19.
T G Wensel  L Stryer 《Proteins》1986,1(1):90-99
The switching on of the cGMP phosphodiesterase (PDE) in retinal rod outer segments by activated transducin (T alpha-GTP) is a key step in visual excitation. The finding that trypsin activates PDE (alpha beta gamma) by degrading its gamma subunit and the reversal of this activation by gamma led to the proposal that T alpha-GTP activates PDE by relieving an inhibitory constraint imposed by gamma (Hurley and Stryer: J. Biol. Chem. 257:11094-11099, 1982). We report here studies showing that the addition of gamma subunit also reverses the activation of PDE by T alpha-GTP-gamma S. A procedure for preparing gamma in high yield (50-80%) is presented. Analyses of SDS polyacrylamide gel slices confirmed that inhibitory activity resides in the gamma subunit. Nanomolar gamma blocks the activation of PDE by micromolar T alpha-GTP gamma S. The degree of activation of PDE depends reciprocally on the concentrations of gamma and T alpha-GTP gamma S. gamma remains bound to the disk membrane during the activation of PDE by transducin. The binding of gamma to the alpha beta subunits of native PDE is very tight; the dissociation constant is less than 10 pM, indicating that fewer than 1 in 1,700 PDE molecules in rod outer segments are activated in the absence of T alpha-GTP.  相似文献   

20.
Photoexcitation of retinal rod photoreceptor cells involves the activation of cGMP enzyme cascade in which sequential activation of rhodopsin, transducin, and the cGMP phosphodiesterase in the rod outer segment constitutes the signal amplification mechanism. Phosducin, a 33-kDa phosphoprotein, has been shown to form a tight complex with the T beta gamma subunit of transducin. In this study, we examined the interaction of phosducin-T beta gamma and the possible regulatory role of phosducin on the cGMP cascade. Addition of phosducin to photolyzed rod outer segment (ROS) membrane reduced the GTP hydrolysis activity of transducin as well as the subsequent activation of the cGMP phosphodiesterase. Phosducin also inhibited the pertussis toxin-catalyzed ADP-ribosylation of transducin, indicating that the interaction between the T alpha and T beta gamma subunits of transducin was interrupted upon binding of phosducin. The inhibitory effects of phosducin were reversed by the addition of exogenous T beta gamma. These results suggest that phosducin is capable of regulating the amount of T beta gamma available to interact with T alpha to form the active transducin complex and thereby functions as a negative regulator of the cGMP cascade. The phosducin-induced alteration of the subunit organization of transducin was examined by chemical cross-linking method using para-phenyl dimaleimide as cross-linker. It was found that the cross-linking among T alpha and T beta gamma was blocked in the presence of phosducin. This result implies that T beta gamma may undergo a conformational change upon phosducin binding which leads to the release of T alpha. Since phosducin is a soluble protein, the interaction with transducin only occurs when transducin is dissociated from ROS disc membrane. Indeed, phosducin failed to dissociate membrane-bound transducin and did not inhibit the initial cycle of transducin activation as measured by the presteady state GTP hydrolysis. However, phosducin interacts effectively with transducin released into solution after the initial activation and blocks the re-binding of T alpha. T beta gamma to ROS membrane by forming a tight complex with T beta gamma. This interaction may play an important role in regulating the turnover of the cGMP cascade in photoreceptor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号