首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The standard reduction potential of the redox couple compound I/native enzyme has been determined for human myeloperoxidase (MPO) and eosinophil peroxidase (EPO) at pH 7.0 and 25 degrees C. This was achieved by rapid mixing of peroxidases with either hydrogen peroxide or hypochlorous acid and measuring spectrophotometrically concentrations of the reacting species and products at equilibrium. By using hydrogen peroxide, the standard reduction potential at pH 7.0 and 25 degrees C was 1.16 +/- 0.01 V for MPO and 1.10 +/- 0.01 V for EPO, independently of the concentration of hydrogen peroxide and peroxidases. In the case of hypochlorous acid, standard reduction potentials were dependent on the hypochlorous acid concentration used. They ranged from 1.16 V at low hypochlorous acid to 1.09 V at higher hypochlorous acid for MPO and from 1.10 V to 1.03 V for EPO. Thus, consistent results for the standard reduction potentials of redox couple compound I/native enzyme of both peroxidases were obtained with all hydrogen peroxide and at low hypochlorous acid concentrations: possible reasons for the deviation at higher concentrations of hypochlorous acid are discussed. They include instability of hypochlorous acid, reactions of hypochlorous acid with different amino-acid side chains in peroxidases as well as the appearance of a compound I-chloride complex.  相似文献   

2.
3.
4.
Myeloperoxidase (MPO), which is involved in host defence and inflammation, is a unique peroxidase in having a globin-like standard reduction potential of the ferric/ferrous couple. Intravacuolar and exogenous MPO released from stimulated neutrophils has been shown to exist in the oxyferrous form, called compound III. To investigate the reactivity of ferrous MPO with molecular oxygen, a stopped-flow kinetic analysis was performed. In the absence of dioxygen, ferrous MPO decays to ferric MPO (0.04 s(-1) at pH 8 versus 1.4 s(-1) at pH 5). At pH 7.0 and 25 degrees C, compound III formation (i.e., binding of dioxygen to ferrous MPO) occurs with a rate constant of (1.1+/-0.1) x 10(4)M(-1)s(-1). The rate doubles at pH 5.0 and oxygen binding is reversible. At pH 7.0, the dissociation equilibrium constant of the oxyferrous form is (173+/-12)microM. The rate constant of dioxygen dissociation from compound III is much higher than conversion of compound III to ferric MPO (which is not affected by the oxygen concentration). This allows an efficient transition of compound III to redox intermediates which actually participate in the peroxidase or halogenation cycle of MPO.  相似文献   

5.
A comparative study on the reactivity of five indole derivatives (tryptamine, N-acetyltryptamine, tryptophan, melatonin, and serotonin), with the redox intermediates compound I (k2) and compound II (k3) of the plant enzyme horseradish peroxidase (HRP) and the two mammalian enzymes lactoperoxidase (LPO) and myeloperoxidase (MPO), was performed using the sequential-mixing stopped-flow technique. The calculated bimolecular rate constants (k2, k3) revealed substantial differences regarding the oxidazibility of the substrates by redox intermediates at pH 7.0 and 25 degrees C. With HRP it was shown that k2 and k3 are mainly determined by the reduction potential (Eo') of the substrate with k2 being 7-45 times higher than k3. Compound I of mammalian peroxidases was a much better oxidant than HRP compound I with the consequence that the influence of the indole structure on k2 of LPO and MPO was small varying by a factor of only 88 and 38, respectively, which is in strong contrast to a factor of 160,000 determined for k2 of HRP. Interestingly, the k3 values for all three enzymes were very similar. Oxidation of substrates by mammalian peroxidase compound II is strongly constrained by the nature of the substrate. The k3 values for the five indoles varied by a factor of 3,570 (LPO) and 200,000 (MPO), suggesting that the reduction potential of compound II of mammalian peroxidase is less positive than that of compound I, which is in contrast to the plant enzyme.  相似文献   

6.
Mechanism of reaction of myeloperoxidase with nitrite   总被引:10,自引:0,他引:10  
Myeloperoxidase (MPO) is a major neutrophil protein and may be involved in the nitration of tyrosine residues observed in a wide range of inflammatory diseases that involve neutrophils and macrophage activation. In order to clarify if nitrite could be a physiological substrate of myeloperoxidase, we investigated the reactions of the ferric enzyme and its redox intermediates, compound I and compound II, with nitrite under pre-steady state conditions by using sequential mixing stopped-flow analysis in the pH range 4-8. At 15 degrees C the rate of formation of the low spin MPO-nitrite complex is (2.5 +/- 0.2) x 10(4) m(-1) s(-1) at pH 7 and (2.2 +/- 0.7) x 10(6) m(-1) s(-1) at pH 5. The dissociation constant of nitrite bound to the native enzyme is 2.3 +/- 0.1 mm at pH 7 and 31.3 +/- 0.5 micrometer at pH 5. Nitrite is oxidized by two one-electron steps in the MPO peroxidase cycle. The second-order rate constant of reduction of compound I to compound II at 15 degrees C is (2.0 +/- 0.2) x 10(6) m(-1) s(-1) at pH 7 and (1.1 +/- 0.2) x 10(7) m(-1) s(-1) at pH 5. The rate constant of reduction of compound II to the ferric native enzyme at 15 degrees C is (5.5 +/- 0.1) x 10(2) m(-1) s(-1) at pH 7 and (8.9 +/- 1.6) x 10(4) m(-1) s(-1) at pH 5. pH dependence studies suggest that both complex formation between the ferric enzyme and nitrite and nitrite oxidation by compounds I and II are controlled by a residue with a pK(a) of (4.3 +/- 0.3). Protonation of this group (which is most likely the distal histidine) is necessary for optimum nitrite binding and oxidation.  相似文献   

7.
Nitric oxide-derived oxidants (e.g., peroxynitrite) are believed to participate in antimicrobial activities as part of normal host defenses but also in oxidative tissue injury in inflammatory disorders. A similar role is ascribed to the heme enzyme myeloperoxidase (MPO), the most abundant protein of polymorphonuclear leukocytes, which are the terminal phagocytosing effector cells of the innate immune system. Concomitant production of peroxynitrite and release of millimolar MPO are characteristic events during phagocytosis. In order to understand the mode of interaction between MPO and peroxynitrite, we have performed a comprehensive stopped-flow investigation of the reaction between all physiological relevant redox intermediates of MPO and peroxynitrite. Both iron(III) MPO and iron(II) MPO are rapidly converted to compound II by peroxynitrite in monophasic reactions with calculated rate constants of (6.8+/-0.1) x 10(6) M(-1)s(-1) and (1.3+/-0.2) x 10(6) M(-1)s(-1), respectively (pH 7.0 and 25 degrees C). Besides these one- and two-electron reduction reactions of peroxynitrite, which produce nitrogen dioxide and nitrite, a one-electron oxidation to the oxoperoxonitrogen radical must occur in the fast monophasic transition of compound I to compound II mediated by peroxynitrite at pH 7.0 [(7.6+/-0.1) x 10(6) M(-1)s(-1)]. In addition, peroxynitrite induced a steady-state transition from compound III to compound II with a rate of (1.0+/-0.3) x 10(4) M(-1)s(-1). Thus, the interconversion among the various oxidation states of MPO that is prompted by peroxynitrite is remarkable. Reaction mechanisms are proposed and the physiological relevance is discussed.  相似文献   

8.
The reaction of human myeloperoxidase (MPO) with hypochlorous acid (HOCl) was investigated by conventional stopped-flow spectroscopy at pH 5, 7, and 9. In the reaction of MPO with HOCl, compound I is formed. Its formation is strongly dependent on pH. HOCl (rather than OCl-) reacts with the unprotonated enzyme in its ferric state. Apparent second-order rate constants were determined to be 8.1 x 10(7) M(-1)s(-1) (pH 5), 2.0 x 10(8) M(-1)s(-1) (pH 7) and 2.0 x 10(6) M(-1)s(-1) (pH 9) at 15 degrees C. Furthermore, the kinetics and spectra of the reactions of halides and thiocyanate and of physiologically relevant one-electron donors (ascorbate, nitrite, tyrosine and hydrogen peroxide) with this compound I were investigated using the sequential-mixing technique. The results show conclusively that the redox intermediates formed upon addition of either hydrogen peroxide or hypochlorous acid to native MPO exhibit the same spectral features and reactivities and thus are identical. In stopped-flow investigations, the MPO/HOCl system has some advantage since: (i) in contrast to H2O2, HOCl cannot function as a one-electron donor of compound I; and (ii) MPO can easily be prevented from cycling by addition of methionine as HOCl scavenger. As a consequence, the observed absorbance changes are bigger and errors in data analysis are smaller.  相似文献   

9.
Recently, it was suggested that melatonin (N-acetyl-5-methoxytryptamine) is oxidized by activated neutrophils in a reaction most probably involving myeloperoxidase (Biochem. Biophys. Res. Commun. (2000) 279, 657-662). Myeloperoxidase (MPO) is the most abundant protein of neutrophils and is involved in killing invading pathogens. To clarify if melatonin is a substrate of MPO, we investigated the oxidation of melatonin by its redox intermediates compounds I and II using transient-state spectral and kinetic measurements at 25 degrees C. Spectral and kinetic analysis revealed that both compound I and compound II oxidize melatonin via one-electron processes. The second-order rate constant measured for compound I reduction at pH 7 and pH 5 are (6.1 +/- 0.2) x 10(6) M(-1) s(-1) and (1.0 +/- 0.08) x 10(7) M(-1) s(-1), respectively. The rates for the one-electron reduction of compound II back to the ferric enzyme are (9.6 +/- 0.3) x 10(2) M(-1) s(-1) (pH 7) and (2.2 +/- 0.1) x 10(3) M(-1) s(-1) (pH 5). Thus, melatonin is a much better electron donor for compound I than for compound II. Steady-state experiments showed that the rate of oxidation of melatonin is dependent on the H(2)O(2) concentration, is not affected by superoxide dismutase, and is quickly terminated by sodium cyanide. Melatonin can markedly inhibit the chlorinating activity of MPO at both pH 7 and pH 5. The implication of these findings in the activated neutrophil is discussed.  相似文献   

10.
Reduction potentials for the catalytic compound I/compound II and compound II/Fe3+ redox couples, and for the two-electron compound I/Fe3+ redox couple, have been determined for ascorbate peroxidase (APX) and for a number of site-directed variants. For the wild type enzyme, the values are E degrees '(compound I/compound II) = 1156 mV, E degrees '(compound II/Fe3+) = 752 mV, and E degrees '(compound I/Fe3+) = 954 mV. For the variants, the analysis also includes determination of Fe3+/Fe2+ potentials which were used to calculate (experimentally inaccessible) E degrees '(compound II/Fe3+) potentials. The data provide a number of new insights into APX catalysis. The measured values for E degrees '(compound I/compound II) and E degrees '(compound II/Fe3+) for the wild type protein account for the much higher oxidative reactivity of compound I compared to compound II, and this correlation holds for a number of other active site and substrate binding variants of APX. The high reduction potential for compound I also accounts for the known thermodynamic instability of this intermediate, and it is proposed that this instability can account for the deviations from standard Michaelis kinetics observed for most APX enzymes during steady-state oxidation of ascorbate. This study provides the first systematic evaluation of the redox properties of any ascorbate peroxidase using a number of methods, and the data provide an experimental and theoretical framework for accurate determination of the redox properties of Fe3+, compound I, and compound II species in related enzymes.  相似文献   

11.
In human heme peroxidases the prosthetic group is covalently attached to the protein via two ester linkages between conserved glutamate and aspartate residues and modified methyl groups on pyrrole rings A and C. Here, monomeric recombinant myeloperoxidase (MPO) and the variants D94V and D94N were produced in Chinese hamster ovary cell lines. Disruption of the Asp(94) to heme ester bond decreased the one-electron reduction potential E'(0) [Fe(III)/Fe(II)] from 1 to -55 mV at pH 7.0 and 25 degrees C, whereas the kinetics of binding of low spin ligands and of compound I formation was unaffected. By contrast, in both variants rates of compound I reduction by chloride and bromide (but not iodide and thiocyanate) were substantially decreased compared with the wild-type protein. Bimolecular rates of compound II (but not compound I) reduction by ascorbate and tyrosine were slightly diminished in D94V and D94N. The presented biochemical and biophysical data suggest that the Asp(94) to heme linkage is no precondition for the autocatalytic formation of the other two covalent links found in MPO. The findings are discussed with respect to the known active site structure of MPO and its complexes with ligands.  相似文献   

12.
The reduction of prostaglandin H synthase compound II to native enzyme by phenol and by hydroquinone, in the presence of diethyldithiocarbamate as a stabilizing agent, was studied by rapid scan spectrometry and transient state kinetics at 4.0 +/- 0.5 degrees C in 0.1 M phosphate buffer, pH 8.0. The plot of pseudo-first-order rate constants for the conversion of prostaglandin H synthase compound II to native enzyme versus phenol concentration was linear with a non-zero intercept. The second-order rate constant was determined from the slope to be (5.3 +/- 0.3) x 10(5) M-1 s-1. For the reduction by hydroquinone, the second-order rate constant was determined from pointwise measurements of the pseudo-first-order rate constant to be (2.1 +/- 0.4) x 10(6) M-1 s-1. Rapid scan spectrum results also showed the reduction of compound I to compound II by both phenol and hydroquinone. Thus reduction of both compound I and compound II is one electron process. Our results suggest that the tyrosyl radical, detected in the presence of oxidizing agents, is formed by intramolecular electron transfer from the tyrosyl residue to the porphyrin pi-cation radical, and this reaction tends to disappear in the presence of sufficient reducing substrate. These in vitro results support speculation that there is a role of the peroxidase component of prostaglandin H synthase in benzene-induced toxicity. In the present work, the effect of indomethacin on the reduction of prostaglandin H synthase compound II by diethyldithiocarbamate, phenol, and hydroquinone was also investigated. Results revealed, for the first time, that indomethacin is an inhibitor of the peroxidase activity of prostaglandin H synthase, although not as effectively as in its well-known inhibition of cyclooxygenase activity.  相似文献   

13.
The reaction of native myeloperoxidase (MPO) and its redox intermediate compound I with hydrogen peroxide, ethyl hydroperoxide, peroxyacetic acid, t-butyl hydroperoxide, 3-chloroperoxybenzoic acid and cumene hydroperoxide was studied by multi-mixing stopped-flow techniques. Hydroperoxides are decomposed by MPO by two mechanisms. Firstly, the hydroperoxide undergoes a two-electron reduction to its corresponding alcohol and heme iron is oxidized to compound I. At pH 7 and 15 degrees C, the rate constant of the reaction between 3-chloroperoxybenzoic acid and ferric MPO was similar to that with hydrogen peroxide (1.8x10(7) M(-1) s(-1) and 1.4x10(7) M(-1) s(-1), respectively). With the exception of t-butyl hydroperoxide, the rates of compound I formation varied between 5.2x10(5) M(-1) s(-1) and 2.7x10(6) M(-1) s(-1). Secondly, compound I can abstract hydrogen from these peroxides, producing peroxyl radicals and compound II. Compound I reduction is shown to be more than two orders of magnitude slower than compound I formation. Again, with 3-chloroperoxybenzoic acid this reaction is most effective (6. 6x10(4) M(-1) s(-1) at pH 7 and 15 degrees C). Both reactions are controlled by the same ionizable group (average pK(a) of about 4.0) which has to be in its conjugated base form for reaction.  相似文献   

14.
Abstract

The reaction of human myeloperoxidase (MPO) with hypochlorous acid (HOCl) was investigated by conventional stopped-flow spectroscopy at pH 5, 7, and 9. In the reaction of MPO with HOCl, compound I is formed. Its formation is strongly dependent on pH. HOCl (rather than OCl-) reacts with the unprotonated enzyme in its ferric state. Apparent second-order rate constants were determined to be 8.1×107 M-1s-1 (pH 5), 2.0×108 M-1s-1 (pH 7) and 2.0×106 M-1s-1 (pH 9) at 15°C. Furthermore, the kinetics and spectra of the reactions of halides and thiocyanate and of physiologically relevant one-electron donors (ascorbate, nitrite, tyrosine and hydrogen peroxide) with this compound I were investigated using the sequential-mixing technique. The results show conclusively that the redox intermediates formed upon addition of either hydrogen peroxide or hypochlorous acid to native MPO exhibit the same spectral features and reactivities and thus are identical. In stopped-flow investigations, the MPO/HOCl system has some advantage since: (i) in contrast to H2O2, HOCl cannot function as a one-electron donor of compound I; and (ii) MPO can easily be prevented from cycling by addition of methionine as HOCl scavenger. As a consequence, the observed absorbance changes are bigger and errors in data analysis are smaller.  相似文献   

15.
The oxidation of serotonin (5-hydroxytryptamine) by the myeloperoxidase intermediates compounds I and II was investigated by using transient-state spectral and kinetic measurements at 25.0 +/- 0.1 degrees C. Rapid scan spectra demonstrated that both compound I and compound II oxidize serotonin via one-electron processes. Rate constants for these reactions were determined using both sequential-mixing and single-mixing stopped-flow techniques. The second order rate constant obtained for the one-electron reduction of compound I to compound II by serotonin is (1.7 +/- 0.1) x 10(7) M(-1) x s(-1), and that for compound II reduction to native enzyme is (1.4 +/- 0.1) x 10(6) M(-1) x s(-1) at pH 7.0. The maximum pH of the compound I reaction with serotonin occurs in the pH range 7.0-7.5. At neutral pH, the rate constant for myeloperoxidase compound I reacting with serotonin is an order of magnitude larger than for its reaction with chloride, (2.2 +/- 0.2) x 10(6) M(-1) x s(-1). A direct competition of serotonin with chloride for myeloperoxidase compound I oxidation was observed. Our results suggest that serotonin may have a role to protect lipoproteins from oxidation and to prevent enzymes from inactivation caused by the potent oxidants HOCl and active oxygen species.  相似文献   

16.
The reversibility of the stepwise reduction of Compound I to the ferric state via Compound II was confirmed in horseradish peroxidases A2 and C. The values of E'o (compound I/Compound II) and E'O (Compound II/ferric) were measured from equilibrium data coupled with the K2IrCl6-K3IrCl6 system in a narrow region of pH near 6.3. The ferric enzymes were also oxidized by ferricyanide to Compound II at alkaline pH and the values of E'O (Compound II/ferric) were measured from the equilibrium data. The pH dependence of E'O (Compound II/ferric) was in accord with the equation: E'O = EO + 0.058 log (Kr[H+] + [H+]2)/(KO + [H+]), where Kr and KO are proton dissociation constants in the ferric enzyme and Compound II, respectively. The pH-E'O (Compound I/Compound II) curves were likewise obtained from the equation, E'O = EO + 0.058 log (Kr + [H+]), where Kr is the proton dissociation constant in Compound II. The forward and backward rate constants were measured in each of one-electron transfer reactions of the peroxidases with the K2IrCl6-K3IrCl6 system at various pH values. The E'O values calculated on the assumption that the ratio of the rate constants equals the equilibrium constant were compared with those obtained from the equilibrium data.  相似文献   

17.
The kinetics of p-aminobenzoic acid oxidation catalyzed by horseradish peroxidase Compounds I and II was investigated intensively as a function of pH at 25 degrees in aqueous solutions of ionic strength 0.11. All of the rate data were collected from single turnover experiments involving reactions of a single enzyme compound. In reactions of both compounds, deviations from first order behavior with respect to the enzyme were observed at high pH values which were explained in terms of a free radical interaction of product with the enzyme. The effect could be eliminated with sufficient excess of substrate. Kinetic behavior which deviated from first order in substrate, observed at low pH, was explained by a mechanism involving an enzyme-substrate complex which reacted with an additional molecule of substrate but at a slower rate. The pH dependence of the second order rate constants for the reaction of p-aminobenzoic acid with free Compounds I and II is similar to results obtained for the comparable reactions of ferrocyanide, suggesting similar proton-transfer mechanisms for both reducing substrates. The reduction of Compound II by p-aminobenzoic acid appeared to be influenced by two ionizable groups on the enzyme which affect the electronic environment of the heme. The lack of influence of substrate ionizable groups on the rate of the Compound II reaction indicated that potential differences in reactivities of NH2C6H4COO- and NH2C6H4COOH were levelled by the diffusion-controlled limit in the acid region of pH. The reduction of Compound I by p-aminobenzoic acid was not diffusion-controlled and the rate-pH profile could be explained in terms of three acid ionizations, two on the substrate and one on Compound I.  相似文献   

18.
The standard redox potential of acrylyl-CoA/propionyl-CoA couple (C(3)) was determined to be 69 mV (vs. standard hydrogen electrode) at pH 7 and 25 degrees C. This value implies that the 2, 3-dehydrogenation of propionyl-CoA is thermodynamically much more unfavorable than that of longer acyl-CoAs because the standard redox potentials of crotonyl-CoA/butyryl-CoA (C(4)), octenoyl-CoA/octanoyl-CoA (C(8)), and hexadecenoyl-CoA/palmitoyl-CoA (C(16)) are all about -10 mV. The unusually high standard redox potential of the acrylyl-CoA/propionyl-CoA couple is thought to be one of the reasons that in mammals propionyl-CoA is not metabolized by beta-oxidation as in the case of longer acyl-CoAs, but by a methylmalonyl-CoA pathway. The obvious structural difference between C(3) and C(4) (and longer) is whether an H or the C(4) atom is connected to -C(3)H=C(2)H-C(1)O-S-CoA. The molecular orbital calculations (MOPAC) for the enoyl and acyl forms of C(3) and C(4) revealed that this structural feature is the main cause for the higher standard redox potential of the C(3) couple. That is, the C(4)-C(3) bond is stabilized by the dehydrogenation to a greater degree than the H-C(3) bond.  相似文献   

19.
Myeloperoxidase is very susceptible to reducing radicals because the reduction potential of the ferric/ferrous redox couple is much higher compared with other peroxidases. Semiquinone radicals are known to reduce heme proteins. Therefore, the kinetics and spectra of the reactions of p-hydroquinone, 2,3-dimethylhydroquinone and 2,3,5-trimethylhydroquinone with compounds I and II were investigated using both sequential-mixing stopped-flow techniques and conventional spectrophotometric measurements. At pH 7 and 15 degrees C the rate constants for compound I reacting with p-hydroquinone, 2,3-dimethylhydroquinone and 2,3,5-trimethylhydroquinone were determined to be 5.6+/-0.4 x 10(7) M(-1)s(-1), 1.3+/-0.1 x 10(6) M(-1)s(-1) and 3.1+/-0.3 x 10(6) M(-1)s(-1), respectively. The corresponding reaction rates for compound II reduction were calculated to be 4.5+/-0.3 x 10(6) M(-1)s(-1), 1.9+/-0.1 x 10(5) M(-1)s(-1) and 4.5+/-0.2 x 10(4) M(-1)s(-1), respectively. Semiquinone radicals, produced by compounds I and II in the classical peroxidation cycle, promote compound III (oxymyeloperoxidase) formation. We could monitor formation of ferrous myeloperoxidase as well as its direct transition to compound II by addition of molecular oxygen. Formation of ferrous myeloperoxidase is shown to depend strongly on the reduction potential of the corresponding redox couple benzoquinone/semiquinone. With 2,3-dimethylhydroquinone and 2,3,5-trimethylhydroquinone as substrate, myeloperoxidase is extremely quickly trapped as compound III. These MPO-typical features could have potential in designing specific drugs which inhibit the production of hypochlorous acid and consequently attenuate inflammatory tissue damage.  相似文献   

20.
Capsaicinoids are the pungent compounds in Capsicum fruits (i.e., "hot" peppers). Peroxidases catalyze capsaicinoid oxidation and may play a central role in their metabolism. However, key kinetic aspects of peroxidase-catalyzed capsaicinoid oxidation remain unresolved. Using transient-state methods, we evaluated horseradish peroxidase compound I and II reduction by two prominent capsaicinoids (25 degrees C, pH 7.0). We determined rate constants approaching 2 x 10(7) and 5 x 10(5)M(-1)s(-1) for compound I and compound II reduction, respectively. We also determined k(app) values for steady-state capsaicinoid oxidation approaching 8 x 10(5)M(-1)s(-1) (25 degrees C, pH 7.0). Accounting for stoichiometry, these are in excellent agreement with constants for compound II reduction, suggesting that this reaction governs capsaicinoid-dependent peroxidase turnover. Ascorbate rapidly reduced capsaicinoid radicals, assisting in the determination of the kinetic constants reported. Because ascorbate accumulates in Capsicum fruits, it may also be an important determinant for capsaicinoid content and preservation in Capsicum fruits and related products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号