首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Diabetes mellitus (DM) is characterized by alterations in fluid balance and blood volume homeostasis. Renal interstitial hydrostatic pressure (RIHP) has been shown to play a critical role in mediating sodium and water excretion under various conditions. The objective of this study was to determine the effects of immediate and delayed initiation of insulin treatment on the restoration of the relationship between RIHP, natriuretic, and diuretic responses to acute saline volume expansion (VE) in diabetic rats. Diabetes was induced by an intraperitoneal injection of streptozotocin (STZ; 65 mg/kg body wt). Four groups of female Sprague-Dawley rats were studied: normal control group (C), untreated diabetic group (D), immediate insulin-treated diabetic group (DI; treatment with insulin for 2 wk was initiated immediately when diabetes was confirmed, which was 2 days after STZ injection), and delayed insulin-treated diabetic group (DDI; treatment with insulin for 2 wk was initiated 2 wk after STZ injection). RIHP and sodium and water excretions were measured before and during VE (5% body wt/30 min) in the four groups of anesthetized rats. VE significantly increased RIHP, fractional excretion of sodium (FE(Na)), and urine flow rate (V) in all groups of rats. Basal RIHP, RIHP response to VE (Delta RIHP), and FE(Na) and V responses to VE (Delta FE(Na) and Delta V) were significantly lower in the D group compared with the C group of rats. Delta RIHP was significantly higher in both DI and DDI groups compared with D group but was similar to that of the C group of rats. While in the DI group the Delta FE(Na) response to VE was restored, Delta FE(Na) was significantly increased in DDI compared with D group, but it remained lower than that of the C group. In conclusion, insulin treatment initiated immediately after the onset of diabetes restores basal RIHP and RIHP, natriuretic, and diuretic responses to VE; however, delayed insulin treatment restores the basal RIHP and RIHP response to VE but does not fully restore the natriuretic response to VE.  相似文献   

2.
Yu T  Khraibi AA 《Life sciences》2008,83(9-10):364-368
The renin-angiotensin system (RAS) plays an important role in the regulation of blood pressure, fluid and electrolyte homeostasis. The RAS is activated and renal interstitial hydrostatic pressure (RIHP) is decreased in diabetic rats. The objective of this study was to evaluate the roles of proximal tubule reabsorption and RAS in the decreased RIHP and blunted natriuretic and diuretic responses to acute saline volume expansion (VE) in diabetic rats. Enalapril was utilized to inhibit angiotensin II (AII) formation. Diabetes mellitus (DM) was induced by a single intraperitoneal (i.p.) injection of streptozotocin (STZ, 65 mg/kg). RIHP was measured by a polyethylene (PE) matrix that was chronically implanted in the left kidney. Fractional excretion of phosphate (FE(Pi)) and fractional excretion of lithium (FE(Li)) were used as indexes for proximal tubule reabsorption. VE significantly increased both FE(Li) and FE(Pi) in all groups of rats studied. However, the increase in FE(Li) (DeltaFE(Li)=17.26+/-3.83%) and FE(Pi) (DeltaFE(Pi)=7.38+/-2.37%) in diabetic rats (DC, n=12) were significantly lower as compared with those in nondiabetic control rats (NC, n=8; DeltaFE(Li)=32.15+/-4.71% and DeltaFE(Pi)=20.62+/-3.27%). The blunted increases in FE(Li) and FE(Pi) were associated with an attenuated increase in RIHP (DeltaRIHP) in DC (1.8+/-0.4 mm Hg) compared with NC rats (4.3+/-0.3 mm Hg). Enalapril treatment (25 mg/kg/day in drinking water) had no effect on nondiabetic rats (NE, n=8) as compared with untreated NC rats, but significantly improved RIHP response (DeltaRIHP) to VE in diabetic rats (DE, n=9; 2.8+/-0.5 mm Hg). Both DeltaFE(Li) and DeltaFE(Pi) were restored by enalapril treatment in diabetic rats and no significant differences were found in DeltaFE(Li) and DeltaFE(Pi) between DE (DeltaFE(Li)=26.81+/-4.94% and DeltaFE(Pi)=10.45+/-4.67%) and NC groups of rats in response to VE. These data suggest that the activated RAS and the decrease in RIHP may play an important role in the increased proximal tubule reabsorption, and the attenuated natriuretic and diuretic responses to acute volume expansion in diabetic rats.  相似文献   

3.
Tang D  Yu T  Khraibi AA 《Life sciences》2004,74(23):2909-2918
The objective of this study was to characterize the cardiovascular and renal alterations that occur during diabetic pregnancy, and to evaluate the effect of insulin treatment in 12-14 days pregnant diabetic rats. Four groups of female Sprague Dawley rats were studied: virgin control group (NP), pregnant control group (CP), diabetic pregnant group (DP), and diabetic pregnant group with insulin treatment (DPI). Systolic arterial pressure (SAP) was increased on day 12, whereas heart rate (HR) decreased starting with day 3 in DP group of rats. DP rats exhibited marked renal hypertrophy with greater kidney weight (wt) and kidney wt/body wt ratio. Insulin treatment normalized blood glucose (BG) concentration, SAP and HR, and prevented the increase in kidney wt/body wt ratio in DPI rats. At the time of the terminal acute experiment, acute saline volume expansion (VE, 5% body wt/30 min) significantly increased renal interstitial hydrostatic pressure (RIHP), urinary sodium excretion (U(Na)V) and urine flow rate (V) in all groups, but the increases (Delta) were significantly attenuated in both CP (1.7 +/- 0.2mmHg, 12.0 +/- 1.5 microEq.min(-1).g kidney wt(-1) and 76.2 +/- 10.9 microl.min(-1).g kidney wt(-1) for DeltaRIHP, DeltaU(Na)V and DeltaV respectively) and DP (1.3 +/- 0.1 mmHg, 6.8 +/- 1.8 microEq.min(-1).g kidney wt(-1) and 32.3 +/- 9.3 microl.min(-1).g kidney wt(-1) for DeltaRIHP, DeltaU(Na)V and DeltaV respectively) group of rats as compared to NP (4.0 +/- 0.6 mmHg, 21.6 +/- 1.4 microEq.min(-1).g kidney wt(-1)and 136.8 +/- 10.5 microl.min(-1).g kidney wt(-1) for DeltaRIHP, DeltaU(Na)V and DeltaV respectively) group of rats. Although RIHP response to VE was similar in DP and CP group of rats, the natriuretic and diuretic responses to VE were significantly lower in DP as compared to CP group of rats. Insulin treatment had no effect on RIHP response (DeltaRIHP = 1.5 +/- 0.3 mmHg), but restored most of the natriuretic (DeltaU(Na)V = 15.7 +/- 2.9 microEq.min(-1).g kidney wt(-1)) and diuretic (DeltaV = 100.2 +/- 19.3 microl.min(-1).g kidney wt(-1)) responses to VE in DPI as compared with CP group of rats. These data suggest that with VE, the restoration of the increase in U(Na)V and V with insulin treatment in diabetic pregnant rats is not mediated by changes in RIHP.  相似文献   

4.
This study examined the changes in the circulating level of endogenous atrial natriuretic factor during diuresis and natriuresis produced by acute volume expansion in anesthetized rats with either bilateral atrial appendectomy (n = 9) or sham operation (n = 9). Following control measurements in the sham-operated rats, 1% body weight volume expansion with isotonic saline produced an increment in urinary sodium excretion of over 4 mueq/min (P less than 0.05) while urine volume increased by more than 20 microliter/min (P less than 0.05). These responses were associated with a significant increase in immunoreactive plasma atrial natriuretic factor from a baseline value of 82 +/- 10 pg/ml to a level of 120 +/- 14 pg/ml (P less than 0.05). In contrast, in the group of rats with bilateral atrial appendectomy an identical degree of volume expansion increased urinary sodium excretion and urine volume by only 0.61 mueq/min (P less than 0.05) and 3.07 microliter/min (P less than 0.05), respectively. In this group, immunoreactive plasma atrial natriuretic factor remained statistically unchanged from a control value of 70 +/- 12 pg/ml to a level of 82 +/- 16 pg/ml (P greater than 0.05). Comparison of the two groups indicates that the natriuresis, diuresis, and plasma atrial natriuretic factor levels during volume expansion were significantly reduced in the rats with bilateral atrial appendectomy. No differences in mean arterial pressure and heart rate were observed between the two groups. These data demonstrate that removal of both atrial appendages in the rat attenuated the release of atrial natriuretic factor during volume expansion; and this effect, in turn, was associated with a reduction in the natriuretic and diuretic responses.  相似文献   

5.
To determine whether the renal responses to atrial natriuretic factor (ANF) are altered in the diabetic state, the diuretic and natriuretic responses to ANF (0.25 microgram.kg-1.min-1, i.v.) were measured in streptozotocin (STZ) induced diabetic (DIA) rats. Urine flow and sodium excretion were measured before and after ANF from innervated and denervated kidneys in anesthetized (Inactin 0.1 g/kg, i.p.) control and DIA rats (Sprague-Dawley rats injected with vehicle or STZ 65 mg/kg, i.p., respectively, 2 weeks prior to the experiment). Blood glucose levels were significantly elevated in the DIA group compared with the control group. ANF produced a significantly blunted diuresis and natriuresis in DIA rats compared with control rats. In addition, reducing the hyperglycemia in DIA rats by treatment with insulin (third group) reversed the blunted urine flow and sodium excretion responses to ANF. This study demonstrates that (i) there is a blunted natriuresis and diuresis to ANF in the STZ-induced DIA rats, and (ii) restoring the glucose levels to normal by insulin treatment in the DIA rats normalized the renal responses to ANF.  相似文献   

6.
Glomerular filtration rate, urine volume, sodium excretion and mean arterial pressure were measured in 10 rats with Cl4C induced cirrhosis presenting sodium retention and ascites, and in 10 control rats before and during the iv administration of the 28 aminoacid rat alpha-Atrial Natriuretic Peptide (alpha-ANP) (a bolus of 1 microgram followed by a constant infusion of 33 ng/min). alpha-ANP induced a similar increase in glomerular filtration rate and filtered sodium load in both groups of rats. In contrast, the increase in urine volume and sodium excretion produced by alpha-ANP was significantly lower in cirrhotic rats (from 13.8 +/- 1.9 to 37.9 +/- 9.1 microliters/min., and from 0.5 +/- 0.1 to 3.3 +/- 1.0 microEq/min) than in control animals (from 14.6 +/- 1.3 to 102.5 +/- 17.7 microliters/min., p less than 0.005; and from 1.0 +/- 0.3 to 14.1 +/- 3.2 microEq/min., p less than 0.001). The results indicate that in rats with experimental cirrhosis and ascites there are blunted diuretic and natriuretic responses to alpha-ANP, probably as a consequence of the exaggerated tubular sodium reabsorption present in these animals.  相似文献   

7.
Intracerebroventricular injection of kappa-opioid agonists produces diuresis, antinatriuresis, and a concurrent increase in renal sympathetic nerve activity (RSNA). The present study examined whether endogenous central kappa-opioid systems contribute to the renal excretory responses produced by the stress of an acute hypotonic saline volume expansion (HSVE). Cardiovascular, renal excretory, and RSNA responses were measured during control, acute HSVE (5% body weight, 0.45 M saline over 30 min), and recovery (70 min) in conscious rats pretreated intracerebroventricularly with vehicle or the kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI). In vehicle-pretreated rats, HSVE produced a marked increase in urine flow rate but only a low-magnitude and delayed natriuresis. RSNA was not significantly suppressed during the HSVE or recovery periods. In nor-BNI-treated rats, HSVE produced a pattern of diuresis similar to that observed in vehicle-treated rats. However, during the HSVE and recovery periods, RSNA was significantly decreased, and urinary sodium excretion increased in nor-BNI-treated animals. In other studies performed in chronic bilateral renal denervated rats, HSVE produced similar diuretic and blunted natriuretic responses in animals pretreated intracerebroventricularly with vehicle or nor-BNI. Thus removal of the renal nerves prevented nor-BNI from enhancing urinary sodium excretion during HSVE. These findings indicate that in conscious rats, endogenous central kappa-opioid systems are activated during hypotonic saline volume expansion to maximize urinary sodium retention by a renal sympathoexcitatory pathway that requires intact renal nerves.  相似文献   

8.
This study examined the effects of chronic blockade of the renal formation of epoxyeicosatrienoic acids and 20-hydroxyeicosatetraenoic acid with 1-aminobenzotriazole (ABT; 50 mg.kg(-1). day(-1) ip for 5 days) on pressure natriuresis and the inhibitory effects of elevations in renal perfusion pressure (RPP) on Na(+)-K(+)-ATPase activity and the distribution of the sodium/hydrogen exchanger (NHE)-3 in the proximal tubule of rats. In control rats (n = 15), sodium excretion rose from 2.3 +/- 0.4 to 19.4 +/- 1.8 microeq.min(-1).g kidney weight(-1) when RPP was increased from 114 +/- 1 to 156 +/- 2 mmHg. Fractional excretion of lithium rose from 28 +/- 3 to 43 +/- 3% of the filtered load. Chronic treatment of the rats with ABT for 5 days (n = 8) blunted the natriuretic response to elevations in RPP by 75% and attenuated the increase in fractional excretion of lithium by 45%. In vehicle-treated rats, renal Na(+)-K(+)-ATPase activity fell from 31 +/- 5 to 19 +/- 2 micromol P(i).mg protein(-1).h(-1) and NHE-3 protein was internalized from the brush border of the proximal tubule after an elevation in RPP. In contrast, Na(+)-K(+)-ATPase activity and the distribution of NHE-3 protein remained unaltered in rats treated with ABT. These results suggest that cytochrome P-450 metabolites of arachidonic acid contribute to pressure natriuresis by inhibiting Na(+)-K(+)-ATPase activity and promoting internalization of NHE-3 protein from the brush border of the proximal tubule.  相似文献   

9.
Both dopamine (DA) and atrial natriuretic peptide (ANP) have been postulated to exert similar effects on the kidney, participating in the regulation of body fluid and sodium homeostasis. In the present study, experiments were performed in anesthetized and isotonic sodium chloride volume expanded rats. After acute volume expansion at 15 % of body weight during 30 min, glomerular filtration rate, urine output, sodium excretion, fractional sodium excretion, proximal and distal sodium excretion and blood pressure were measured. In additional groups we administered ANP or haloperidol or the combination of both to volume expanded animals. Blockade of DA receptors with haloperidol, attenuated diuretic and natriuretic responses to volume load. Proximal sodium excretion was not modified by haloperidol in all experimental groups of rats. Reduction in distal tubular excretion was induced by haloperidol in saline infusion expanded rat but not in ANP treated expanded animals. In conclusion, when exaggerated volume expansion is provoked, both DA and ANP exert renal tubular events, but ANP have a major central role in the regulation of renal sodium handling.  相似文献   

10.
在大鼠牵拉心房和急性扩张血容量所致的肾效应   总被引:1,自引:0,他引:1  
赵工  何瑞荣 《生理学报》1987,39(5):471-477
在28只麻醉大鼠,观察了牵拉心房和急性扩容时的肾效应。用5—7g的砝码牵拉大鼠右心房30min(n=6)时,尿量、尿钠和尿钾分别增加98%、127%和59%;牵拉左心房(n=4)所致的肾效应与牵拉右心房的基本相同。切断双侧迷走神经后,牵拉右心房的肾效应无明显改变。在切断迷走神经的大鼠,观察了双线结扎右心耳对急性扩容后肾效应的影响。急性扩容在假手术大鼠引起明显的利尿、钠尿和钾尿效应(P<0.01);而结扎右心耳的大鼠,钠尿效应约为假手术大鼠的一半,但尿量和尿钾排泄量与假手术组无明显异差。上述肾效应不受切断迷走神经的影响,因此不是通过容量感受性反射引起的。根据以上结果,我们推测,牵拉心房或急性扩容引起的尿量、尿铜和尿钾的增多,可能是心房钠尿因子释放增多所致,而结扎右心耳则导致释放入血流的心房钠尿因子减少。  相似文献   

11.
This paper describes and quantifies acute responses of the kidneys in correcting plasma volume, acid-base, and ion disturbances resulting from NaHCO(3) and KHCO(3) ingestion. Renal excretion of ions and water was studied in five men after ingestion of 3.57 mmol/kg body mass of sodium bicarbonate (NaHCO(3)) and, in a separate trial, potassium bicarbonate (KHCO(3)). Subjects had a Foley catheter inserted into the bladder and indwelling catheters placed into an antecubital vein and a brachial artery. Blood and urine were sampled in the 30-min period before, the 60-min period during, and the 210-min period after ingestion of the solutions. NaHCO(3) ingestion resulted in a rapid, transient diuresis and natriuresis. Cumulative urine output was 44 +/- 11% of ingested volume, resulting in a 555 +/- 119 ml increase in total body water at the end of the experiment. The cumulative increase (above basal levels) in renal Na(+) excretion accounted for 24 +/- 2% of ingested Na(+). In the KHCO(3) trial, arterial plasma K(+) concentration rapidly increased from 4.25 +/- 0.10 to a peak of 7.17 +/- 0.13 meq/l 140 min after the beginning of ingestion. This increase resulted in a pronounced, transient diuresis, with cumulative urine output at 270 min similar to the volume ingested, natriuresis, and a pronounced kaliuresis that was maintained until the end of the experiment. Cumulative (above basal) renal K(+) excretion at 270 min accounted for 26 +/- 5% of ingested K(+). The kidneys were important in mediating rapid corrections of substantial portions of the fluid and electrolyte disturbances resulting from ingestion of KHCO(3) and NaHCO(3) solutions.  相似文献   

12.
Regulation of sodium excretion by renal interstitial hydrostatic pressure   总被引:1,自引:0,他引:1  
Renal interstitial hydrostatic pressure (RIHP) appears to play a crucial role in linking the renal circulation to the rate of tubular reabsorption of sodium and water. Various physiological and pharmacological maneuvers that increase RIHP are associated with increases in sodium excretion. Renal vasodilators that increase RIHP also increase sodium excretion, whereas the vasodilators that do not alter RIHP do not affect sodium excretion. Preventing increases in RIHP during intrarenal infusion of vasodilators markedly attenuates the normal increase in sodium and water excretion. Techniques that directly increase RIHP by renal interstitial volume expansion increase urinary excretion of sodium and water. RIHP may be an important mediator of renal perfusion pressure (RPP) natriuresis. Experimental evidence suggests that the proximal tubule of deep nephrons may be an important nephron site that is sensitive to changes in RPP.  相似文献   

13.
The responses to infusion of nitric oxide synthase substrate (L-arginine 3 mg.kg(-1).min(-1)) and to slow volume expansion (saline 35 ml/kg for 90 min) alone and in combination were investigated in separate experiments. L-Arginine left blood pressure and plasma ANG II unaffected but decreased heart rate (6 +/- 2 beats/min) and urine osmolality, increased glomerular filtration rate (GFR) transiently, and caused sustained increases in sodium excretion (fourfold) and urine flow (0.2 +/- 0.0 to 0.7 +/- 0.1 ml/min). Volume expansion increased arterial blood pressure (102 +/- 3 to 114 +/- 3 mmHg), elevated GFR persistently by 24%, and enhanced sodium excretion to a peak of 251 +/- 31 micromol/min, together with marked increases in urine flow, osmolar and free water clearances, whereas plasma ANG II decreased (8.1 +/- 1.7 to 1.6 +/- 0.3 pg/ml). Combined volume expansion and L-arginine infusion tended to increase arterial blood pressure and increased GFR by 31%, whereas peak sodium excretion was enhanced to 335 +/- 23 micromol/min at plasma ANG II levels of 3.0 +/- 1.1 pg/ml; urine flow and osmolar clearance were increased at constant free water clearance. In conclusion, L-arginine 1) increases sodium excretion, 2) decreases basal urine osmolality, 3) exaggerates the natriuretic response to volume expansion by an average of 50% without persistent changes in GFR, and 4) abolishes the increase in free water clearance normally occurring during volume expansion. Thus L-arginine is a natriuretic substance compatible with a role of nitric oxide in sodium homeostasis, possibly by offsetting/shifting the renal response to sodium excess.  相似文献   

14.
This study investigated the involvement of serotonergic mechanisms of the lateral parabrachial nucleus (LPBN) in the control of sodium (Na+) excretion, potassium (K+) excretion, and urinary volume in unanesthetized rats subjected to acute isotonic blood volume expansion (0.15 M NaCl, 2 ml/100 g of body wt over 1 min) or control rats. Plasma oxytocin (OT), vasopressin (VP), and atrial natriuretic peptide (ANP) levels were also determined in the same protocol. Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used. In rats treated with vehicle in the LPBN, blood volume expansion increased urinary volume, Na+ and K+ excretion, and also plasma ANP and OT. Bilateral injections of serotonergic receptor antagonist methysergide (1 or 4 microg/200 etal) into the LPBN reduced the effects of blood volume expansion on increased Na+ and K+ excretion and urinary volume, while LPBN injections of serotonergic 5-HT(2a)/HT(2c) receptor agonist, 2.5-dimetoxi-4-iodoamphetamine hydrobromide (DOI; 1 or 5 microg/200 etal) enhanced the effects of blood volume expansion on Na+ and K+ excretion and urinary volume. Methysergide (4 microg) into the LPBN decreased the effects of blood volume expansion on plasma ANP and OT, while DOI (5 microg) increased them. The present results suggest the involvement of LPBN serotonergic mechanisms in the regulation of urinary sodium, potassium and water excretion, and hormonal responses to acute isotonic blood volume expansion.  相似文献   

15.
Acute volume expansion (VE) produces a suppression of renal sympathetic nerve discharge (RSND) resulting in diuresis and natriuresis. Recently, we have demonstrated that the endogenous nitric oxide (NO) system within the paraventricular nucleus (PVN) produces a decrease in RSND. We hypothesized that endogenous NO in the PVN is involved in the suppression of RSND leading to diuretic and natriuretic responses to acute VE. To test this hypothesis, we first measured the VE-induced increase in renal sodium excretion and urine flow with and without blockade of NO, with microinjection of NG-monomethyl-L-arginine (L-NMMA; 200 pmol in 200 nl), within the PVN of Inactin-anesthetized male Sprague-Dawley rats. Acute VE produced significant increases in urine flow and sodium excretion, which were diminished in rats treated with L-NMMA within the PVN. This effect of NO blockade within the PVN on VE-induced diuresis and natriuresis was abolished by renal denervation. Consistent with these data, acute VE induced a decrease in RSND (52% of the baseline level), which was significantly blunted by prior administration of L-NMMA into the PVN (28% of the baseline level) induced by a comparable level of acute VE. Using the push-pull perfusion technique, we found that acute VE induced a significant increase in NOx concentration in the perfusate from the PVN region. Taken together, these results suggest that acute VE induces an increase in NO production within the PVN that leads to renal sympathoinhibition, resulting in diuresis and natriuresis. We conclude that NO within the PVN plays an important role in regulation of sodium and water excretions in the volume reflex via modulating renal sympathetic outflow.  相似文献   

16.
Renal parathyroid hormone (PTH) action is often studied at high doses (100 microg PTH/kg) that lower mean arterial pressure significantly, albeit transiently, complicating interpretation of studies. Little is known about the effect of acute hypotension on proximal tubule Na(+) transporters. This study aimed to determine the effects of acute hypotension, induced by aortic clamp or by high-dose PTH (100 microg PTH/kg), on renal hemodynamics and proximal tubule Na/H exchanger isoform 3 (NHE3) and type IIa Na-P(i) cotransporter protein (NaPi2) distribution. Subcellular distribution was analyzed in renal cortical membranes fractionated on sorbitol density gradients. Aortic clamp-induced acute hypotension (from 100 +/- 3 to 78 +/- 2 mmHg) provoked a 62% decrease in urine output and a significant decrease in volume flow from the proximal tubule detected as a 66% decrease in endogenous lithium clearance. There was, however, no significant change in glomerular filtration rate (GFR) or subcellular distribution of NHE3 and NaPi2. In contrast, high-dose PTH rapidly (<2 min) decreased arterial blood pressure to 51 +/- 3 mmHg, decreased urine output, and shifted NHE3 and NaPi2 out of the low-density membranes enriched in apical markers. PTH at much lower doses (<1.4 microg.kg(-1).h(-1)) did not change blood pressure and was diuretic. In conclusion, acute hypotension per se increases proximal tubule Na(+) reabsorption without changing NHE3 or NaPi2 subcellular distribution, indicating that trafficking of transporters to the surface is not the likely mechanism; in comparison, hypotension secondary to high-dose PTH blocks the primary diuretic effect of PTH but does not inhibit the PTH-stimulated redistribution of NHE3 and NaPi2 to the base of the microvilli.  相似文献   

17.
Nifedipine, a calcium antagonist, has diuretic and natriuretic properties. However, the molecular mechanisms by which these effects are produced are poorly understood. We examined kidney abundance of aquaporins (AQP1, AQP2, and AQP3) and major sodium transporters [type 3 Na/H exchanger (NHE-3); type 2 Na-Pi cotransporter (NaPi-2); Na-K-ATPase; type 1 bumetanide-sensitive cotransporter (BSC-1); and thiazide-sensitive Na-Cl cotransporter (TSC)] as well as inner medullary abundance of AQP2, phosphorylated-AQP2 (p-AQP2), AQP3, and calcium-sensing receptor (CaR). Rats treated with nifedipine orally (700 mg/kg) for 19 days had a significant increase in urine output, whereas urinary osmolality and solute-free water reabsorption were markedly reduced. Consistent with this, immunoblotting revealed a significant decrease in the abundance of whole kidney AQP2 (47 +/- 7% of control rats, P < 0.05) and in inner medullary AQP2 (60 +/- 7%) as well as in p-AQP2 abundance (17 +/- 6%) in nifedipine-treated rats. In contrast, whole kidney AQP3 abundance was significantly increased (219 +/- 28%). Of potential importance in modulating AQP2 levels, the abundance of CaR in the inner medulla was significantly increased (295 +/- 25%) in nifedipine-treated rats. Nifedipine treatment was also associated with increased urinary sodium excretion. Consistent with this, semiquantitative immunoblotting revealed significant reductions in the abundance of proximal tubule Na(+) transporters: NHE-3 (3 +/- 1%), NaPi-2 (53 +/- 12%), and Na-K-ATPase (74 +/- 5%). In contrast, the abundance of the distal tubule Na-Cl cotransporter (TSC) was markedly increased (240 +/- 29%), whereas BSC-1 in the thick ascending limb was not altered. In conclusion, 1) increased urine output and reduced urinary concentration in nifedipine-treated-rats may, in part, be due to downregulation of AQP2 and p-AQP2 levels; 2) CaR might be involved in the regulation of water reabsorption in the inner medulla collecting duct; 3) reduced expression of proximal tubule Na(+) transporters (NHE-3, NaPi-2, and Na, K-ATPase) may be involved in the increased urinary sodium excretion; and 4) increase in TSC expression may occur as a compensatory mechanism.  相似文献   

18.
Diuretic and uricosuric properties have traditionally been attributed to corn silk, stigma/style of Zea mays L. Although the diuretic effect was confirmed, studies of the plant's effects on renal function or solute excretion were lacking. Thus, we studied the effects of corn silk aqueous extract on the urinary excretion of water, Na+, K+, and uric acid. Glomerular and proximal tubular function and Na+ tubular handling were also studied. Conscious, unrestrained adult male rats were housed in individual metabolic cages (IMC) with continuous urine collection for 5 and 3 h, following two protocols. The effects of 25, 50, 200, 350, and 500 mg/kg body wt. corn silk extract on urine volume plus Na+ and K+ excretions were studied in water-loaded conscious rats (2.5 ml/100 g body wt.) in the IMC for 5 h (Protocol 1). Kaliuresis was observed with doses of 350 (100.42 +/- 22.32-120.28 +/- 19.70 microEq/5 h/100 g body wt.; n = 13) and 500 mg/kg body wt. (94.97+/- 29.30-134.32 +/- 39.98 microEq/5h/100 g body wt.; n = 12; p<0.01), and the latter dose resulted in diuresis as well (1.98 +/- 0.44-2.41 +/- 0.41 ml/5 h/100 g body wt.; n = 12; p<0.05). The effects of a 500 mg/kg body wt. dose of corn silk extract on urine volume, Na+, K+ and uric acid excretions, and glomerular and proximal tubular function, were measured respectively by creatinine (Cler) and Li+ (ClLi) clearances and Na+ tubular handling, in water-loaded rats (5 ml/100 g body wt.) in the IMC for 3 h (Protocol 2). Clcr (294.6 +/- 73.2, n = 12, to 241.7 +/- 48.0 microl/ min/100 g body wt.; n = 13; p<0.05) and the Na+ filtered load (41.9 +/- 10.3, n = 12, to 34.3 +/- .8, n = 13, p<0.05) decreased and ClLi and Na+ excretion were unchanged, while K+ excretion (0.1044 +/- 0.0458, n=12, to 0.2289 +/- 0.0583 microEq/min/100 body wt.; n = 13; p<0.001) increased. For Na+ tubular handling, the fractional proximal tubular reabsorption (91.5 +/- 3.5, n = 12, to 87.5 +/- 3.4%; n = 13; p<0.01) decreased, and both fractional distal reabsorptions--I and II--increased (96.5 +/- 1.5, n = 12, to 97.8 +/- 0.9%; n = 13; p<0.01; and 8.2 +/- 3.5, n = 12, to 12.2 +/- 3.4%, n = 13, p<0.01, respectively). To summarize, in water-loaded conscious rats (2.5 ml/100 body wt.), corn silk aqueous extract is diuretic at a dose of 500 mg/kg body wt. and kaliuretic at doses of 350 and 500 mg/kg body wt. In water-loaded conscious rats (5.0 ml/100 g body wt.), corn silk aqueous extract is kaliuretic at a dose of 500 mg/kg body wt., but glomerular filtration and filtered load decrease without affecting proximal tubular function, Na+, or uric acid excretion.  相似文献   

19.
We tested the hypothesis that renal tubular Na(+) reabsorption increased during the first 24 h of exercise-induced plasma volume expansion. Renal function was assessed 1 day after no-exercise control (C) or intermittent cycle ergometer exercise (Ex, 85% of peak O(2) uptake) for 2 h before and 3 h after saline loading (12.5 ml/kg over 30 min) in seven subjects. Ex reduced renal blood flow (p-aminohippurate clearance) compared with C (0.83 +/- 0.12 vs. 1.49 +/- 0.24 l/min, P < 0.05) but did not influence glomerular filtration rates (97 +/- 10 ml/min, inulin clearance). Fractional tubular reabsorption of Na(+) in the proximal tubules was higher in Ex than in C (P < 0.05). Saline loading decreased fractional tubular reabsorption of Na(+) from 99.1 +/- 0.1 to 98.7 +/- 0.1% (P < 0.05) in C but not in Ex (99.3 +/- 0.1 to 99.4 +/- 0.1%). Saline loading reduced plasma renin activity and plasma arginine vasopressin levels in C and Ex, although the magnitude of decrease was greater in C (P < 0.05). These results indicate that, during the acute phase of exercise-induced plasma volume expansion, increased tubular Na(+) reabsorption is directed primarily to the proximal tubules and is associated with a decrease in renal blood flow. In addition, saline infusion caused a smaller reduction in fluid-regulating hormones in Ex. The attenuated volume-regulatory response acts to preserve distal tubular Na(+) reabsorption during saline infusion 24 h after exercise.  相似文献   

20.
Omapatrilat (OMP) is a novel mixed inhibitor of angiotensin-converting enzyme (ACE) and neutral endopeptidase 24.11 (NEP), the enzyme that metabolizes natriuretic peptides. Congestive heart failure (CHF) is characterized by excessive sodium retention, attributed to both an excessive effect of angiotensin II and diminished responsiveness to natriuretic peptides. In this study, we examined the acute and chronic renal and cardiac effects of OMP in rats with compensated [urinary sodium excretion (UNaV) > 1,200 microeq/day] and decompensated (UNaV < 100 microeq/day) CHF, induced by a surgical aortocaval fistula (ACF). Bolus injection of OMP (10 mg/kg) to sham controls produced significant diuretic and natriuretic responses [UNaV increased from 0.67 +/- 0.19 to 3.27 +/- 1.35 microeq/min, P < 0.05; fractional sodium excretion (FENa) increased from 0.23 +/- 0.06 to 0.95 +/- 0.34%, P < 0.01] despite a significant decline in blood pressure (BP). Rats with compensated CHF displayed blunted diuresis and natriuresis to this dose of OMP but a significant decrease in BP. However, in rats with decompensated CHF, OMP induced significant natriuresis (FENa increased from 0.18 +/- 0.15 to 0.82 +/- 0.26%, P < 0.05) despite a further decrease in BP (from 90 +/- 9 to 71 +/- 6 mmHg, P < 0.01). Two weeks after ACF, the heart/body weight ratio was significantly greater in rats with CHF than controls (0.51 +/- 0.026 vs. 0.30 +/- 0.004%, P < 0.0001), and UNaV was significantly lower. Immediate or late (1 or 6 days after ACF) OMP treatment in the drinking water (140 mg/l) reduced cardiac hypertrophy to 0.41-0.43% (P < 0.01) and induced natriuresis. These results suggest that OMP improves both sodium balance and cardiac remodeling and might be advantageous to ACE inhibitors for the treatment of decompensated CHF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号