首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
TGF-beta is implicated in the pathogenesis of fibrotic disorders. It has been shown that Smad3 promotes the human alpha2(I) collagen (COL1A2) gene expression by TGF-beta1 in human dermal fibroblasts. Here, we investigated the role of phosphatidylinositol 3-kinase (PI3K) in the COL1A2 gene expression in normal and scleroderma fibroblasts. In normal fibroblasts, the PI3K inhibitor, LY294002, significantly decreased the basal and the TGF-beta1-induced increased stability of COL1A2 mRNA. The TGF-beta1-induced COL1A2 promoter activity, but not the basal activity, was significantly attenuated by LY294002 or the dominant negative mutant of p85 subunit of PI3K, while the constitutive active mutant of p110 subunit of PI3K did not affect the basal or the TGF-beta1-induced COL1A2 promoter activity. LY294002 significantly decreased the phosphorylation of Smad3 induced by TGF-beta1. Furthermore, the transient overexpression of 2xFYVE, which induces the mislocalization of FYVE domain proteins, decreased the TGF-beta1-induced Smad3 phosphorylation to a similar extent to LY294002. In scleroderma fibroblasts, the blockade of PI3K significantly decreased the mRNA stability and the promoter activity of the COL1A2 gene. Furthermore, LY294002 and the transient overexpression of 2xFYVE completely diminished the constitutive phosphorylation of Smad3. These results indicate that 1) the basal activity of PI3K is necessary for the COL1A2 mRNA stabilization in normal and scleroderma fibroblasts, 2) there is an unidentified FYVE domain protein specifically interacting with Smad3, and 3) the basal activity of PI3K and the FYVE domain protein are indispensable for the efficient TGF-beta/Smad3 signaling in normal fibroblasts and for the establishment of the constitutive activation of TGF-beta/Smad3 signaling in scleroderma fibroblasts.  相似文献   

2.
3.
4.
5.
6.
Ovarian cancer is one of the most common cancers among women. Recent studies demonstrated that the gene encoding the p110alpha catalytic subunit of phosphatidylinositol 3-kinase (PI3K) is frequently amplified in ovarian cancer cells. PI3K is involved in multiple cellular functions, including proliferation, differentiation, antiapoptosis, tumorigenesis, and angiogenesis. In this study, we demonstrate that the inhibition of PI3K activity by LY-294002 inhibited ovarian cancer cell proliferation and induced G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins, including cyclin D1, cyclin-dependent kinase (CDK) 4, CDC25A, and retinoblastoma phosphorylation at Ser(780), Ser(795), and Ser(807/811). Expression of CDK6 and beta-actin was not affected by LY-294002. Expression of the cyclin kinase inhibitor p16(INK4a) was induced by the PI3K inhibitor, whereas steady-state levels of p21(CIP1/WAF1) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation of AKT and p70S6K1, but not extracellular regulated kinase 1/2. The G(1) cell cycle arrest induced by LY-294002 was restored by the expression of active forms of AKT and p70S6K1 in the cells. Our study shows that PI3K transmits a mitogenic signal through AKT and mammalian target of rapamycin (mTOR) to p70S6K1. The mTOR inhibitor rapamycin had similar inhibitory effects on G(1) cell cycle progression and on the expression of cyclin D1, CDK4, CDC25A, and retinoblastoma phosphorylation. These results indicate that PI3K mediates G(1) progression and cyclin expression through activation of an AKT/mTOR/p70S6K1 signaling pathway in the ovarian cancer cells.  相似文献   

7.
The phosphoinositide 3-kinase (PI3K) inhibitor LY-294002 decreased steady-state contraction in neonatal rat ventricular myocytes (NRVM). To determine whether the effect on steady-state contraction could be due to decreased intracellular Ca(2+) content, Ca(2+) content was assessed with fluorescent plate reader analysis by using the caffeine-releasable Ca(2+) stores as an index of sarcoplasmic reticulum (SR) Ca(2+) content. Caffeine-releasable Ca(2+) content was diminished in a dose-dependent manner with LY-294002, suggesting that the decrease in steady-state contraction was due to diminished intracellular Ca(2+) content. Activation of the L-type Ca(2+) channel by BAY K 8644 was attenuated by LY-294002, suggesting the effect of LY-294002 is to reduce Ca(2+) influx at this channel. To investigate whether additional proteins involved in excitation-contraction (EC) coupling are likewise regulated by PI3K activity, the effects of compounds acting at sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a), the ryanodine receptor, and the Na/Ca exchanger (NCX) were compared with LY-294002. Inhibition of SERCA2a by thapsigargin increased basal Ca(2+) levels in contrast to LY-294002, indicating that SERCA2a activity is sustained in the presence of LY-294002. Ryanodine decreased SR Ca(2+) content. The additive effect with coadministration of LY-294002 could be attributed to a decrease in Ca(2+) influx at the L-type Ca(2+) channel. The NCX inhibitor Ni(2+) was used to investigate whether the decrease in intracellular Ca(2+) content with LY-294002 could be due to inhibition of the NCX reverse-mode activity. The minimal effect of LY-294002 with Ni(2+) suggests that the primary effect of LY-294002 on EC coupling occurs through inhibition of PI3K-mediated L-type Ca(2+) channel activity.  相似文献   

8.
9.
Following a fibrogenic stimulus, the hepatic stellate cell (HSC) undergoes a complex activation process associated with increased cell proliferation and excess deposition of type I collagen. The focal adhesion kinase (FAK)-phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway is activated by platelet-derived growth factor (PDGF) in several cell types. We investigated the role of the FAK-PI3K-Akt pathway in HSC activation. Inhibition of FAK activity blocked HSC migration, cell attachment, and PDGF-induced PI3K and Akt activation. Both serum- and PDGF-induced Akt phosphorylation was inhibited by LY294002, an inhibitor of PI3K. A constitutively active form of Akt stimulated HSC proliferation in serum-starved HSCs, whereas LY294002 and dominant-negative forms of Akt and FAK inhibited PDGF-induced proliferation. Transforming growth factor-beta, an inhibitor of HSC proliferation, did not block PDGF-induced Akt phosphorylation, suggesting that transforming growth factor-beta mediates its antiproliferative effect downstream of Akt. Expression of type I collagen protein and alpha1(I) collagen mRNA was increased by Akt activation and inhibited when PI3K activity was blocked. Therefore, FAK is important for HSC migration, cell attachment, and PDGF-induced cell proliferation. PI3K is positioned downstream of FAK. Signals for HSC proliferation are transduced through FAK, PI3K, and Akt. Finally, expression of type I collagen is regulated by the PI3K-Akt signaling pathway.  相似文献   

10.
Tenascin-X (TNX) is an extracellular matrix glycoprotein. We previously demonstrated that TNX-null fibroblasts exhibit decreased cell-matrix and cell-cell adhesion. In this study, we used a differential display technique to determine the genes involved in this process. Differential display analysis of wild-type and TNX-null fibroblasts revealed that mRNA expression level of type VI collagen alpha3 is predominantly decreased in TNX-null fibroblasts. Expression levels of mRNAs of other subunits of type VI collagen, alpha2 and alpha3 chains, were also remarkably decreased in TNX-null fibroblasts. The protein level of alpha3 chain of type VI collagen was also reduced in TNX-null fibroblasts. However, the organization of type VI collagen in the extracellular matrix of TNX-null fibroblasts was similar to that of wild-type fibroblasts. Transient expression of TNX in Balb3T3 cells caused an increase in the level of mRNA of type VI collagen compared with that in vector control and increased the promoter activity of type VI collagen alpha1 subunit gene. In addition, the expression levels of type I collagen and other collagen fibril-associated molecules such as type XII and type XIV collagens, decorin, lumican and fibromodulin in wild-type and TNX-null fibroblasts were compared. It was found that the mRNA expression levels of type I collagen and collagen fibril-associated molecules other than decorin were decreased and that the expression level of decorin was increased in TNX-null fibroblasts. The results suggest the possibility that TNX mediates not only cell-cell and cell-matrix interactions but also fibrillogenesis via collagen fibril-associated molecules.  相似文献   

11.
Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/Akt) is thought to serve as an oncogenic signaling pathway which can be activated by Ras. The role of PI3K/Akt in Ras-mediated transformation of intestinal epithelial cells is currently not clear. Here we demonstrate that inducible expression of oncogenic Ha-Ras results in activation of PKB/Akt in rat intestinal epithelial cells (RIE-iHa-Ras), which was blocked by treatment with inhibitors of PI3K activity. The PI3K inhibitor, LY-294002, partially reversed the morphological transformation induced by Ha-Ras and resulted in a modest stimulation of apoptosis. The most pronounced phenotypic alteration following inhibition of PI3K was induction of G(1) phase cell cycle arrest. LY-294002 blocked the Ha-Ras-induced expression of cyclin D1, cyclin-dependent kinase (CDK) 2, and increased the levels of p27(kip). Both LY-294002 and wortmannin significantly reduced anchorage-independent growth of RIE-iHa-Ras cells. Forced expression of both the constitutively active forms of Raf (DeltaRaf-22W or Raf BXB) and Akt (Akt-myr) resulted in transformation of RIE cells that was not achieved by transfection with either the Raf mutant construct or Akt-myr alone. These findings delineate an important role for PI3K/Akt in Ras-mediated transformation of intestinal epithelial cells.  相似文献   

12.
13.
Phosphatidylinositol 3-kinase (PI3K) is required for smooth muscle cell (SMC) proliferation. This study reports that inhibitors of PI3K also prevent SMC migration and block neointimal hyperplasia in an organ culture model of restenosis. Inhibition of neointimal formation by LY-294002 was concentration and time dependent, with 10 muM yielding the maximal effect. Continuous exposure for at least the first 4-7 days of culture was essential for significant inhibition. To assess the role of matrix metalloproteinases (MMPs) in this process, we monitored MMP secretion by injured vessels in culture. Treatment with LY-294002 selectively reduced active MMP-2 in media samples according to zymography and Western blot analysis without concomitant changes in latent MMP-2. Parallel results with wortmannin indicate that MMP-2 activation is PI3K dependent. Previous research has shown a role for both furin and membrane-type 1 (MT1)-MMP (MMP-14) in the activation of MMP-2. The furin inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethylketone did not prevent MMP-2 activation after balloon angioplasty. In contrast, balloon angioplasty induced a significant increase in the levels of MT1-MMP, which was suppressed by LY-294002. No change in MT1-MMP mRNA was observed with LY-294002, because equivalent amounts of this mRNA were present in both injured and noninjured vessels. These results implicate PI3K-dependent regulation of MT1-MMP protein synthesis and subsequent activation of latent MMP-2 as critical events in neointimal hyperplasia after vascular injury.  相似文献   

14.
15.
16.
In addition to their role as oncogenes, Ras GTPases are key regulators of cell function. There is a proven relationship between the signaling pathways of transforming growth factor-β1 (TGF- β1) and Ras GTPases. Each of the Ras isoforms (H, N and K) exhibits specific modulatory activity on different cellular pathways. Our purpose has been to study some of the mechanisms involved in the development of renal fibrosis, assessing the individual role of N-Ras in basal and TGF-β1-mediated extracellular matrix (ECM) synthesis, proliferation, and migration in immortalized N-Ras deficient fibroblasts (N-ras?/?). Compared to normal counterparts, fibroblasts deficient for N-Ras exhibited higher basal activity levels of phosphatidylinositol-3-kinase (PI3K)/Akt and MEK/Erk, accompanied by upregulated collagen synthesis and diminished proliferation and migration rates. We found that the absence of N-Ras did not affect TGF-β1-induced proliferation and migration, which required PI3K/Akt but not Erk1/2 activation. Similar effector pathway dependence was found for fibronectin and collagen type I expression.Our results indicate that N-Ras might contribute to renal fibrosis through the down-regulation of ECM synthesis and up-regulation proliferation and migration modulating Akt activation. N-Ras also regulates TGF-β1-induced collagen I and fibronectin expression through Erk-independent pathways.  相似文献   

17.
Secretory phospholipase A(2) (sPLA(2)), abundantly expressed in various cells including fibroblasts, is able to promote proliferation and migration. Degradation of collagenous extracellular matrix by matrix metalloproteinase (MMP) plays a role in the pathogenesis of various destructive disorders, such as rheumatoid arthritis, tumor invasion, and metastasis. Here we show that group IB PLA(2) increased pro-MMP-2 activation in NIH3T3 fibroblasts. MMP-2 activity was stimulated by group IB PLA(2) in a dose- and time-dependent manner. Consistent with MMP-2 activation, sPLA(2) decreased expression of type IV collagen. These effects are due to the reduction of tissue inhibitor of metalloproteinase-2 (TIMP-2) and the activation of the membrane type1-MMP (MT1-MMP). The decrease of TIMP-2 levels in conditioned media and the increase of MT1-MMP levels in plasma membrane were observed. In addition, treatment of cells with decanoyl Arg-Val-Lys-Arg-chloromethyl ketone, an inhibitor of pro-MT1-MMP, suppressed sPLA(2)-mediated MMP-2 activation, whereas treatment with bafilomycin A1, an inhibitor of H(+)-ATPase, sustained MMP-2 activation by sPLA(2). The involvement of phosphatidylinositol 3-kinase (PI3K) and Akt in the regulation of MMP-2 activity was further suggested by the findings that PI3K and Akt were phosphorylated by sPLA(2). Expression of p85alpha and Akt mutants, or pretreatment of cells with LY294002, a PI3K inhibitor, attenuated sPLA(2)-induced MMP-2 activation and migration. Taken together, these results suggest that sPLA(2) increases the pro-MMP-2 activation and migration of fibroblasts via the PI3K and Akt-dependent pathway. Because MMP-2 is an important factor directly involved in the control of cell migration and the turnover of extracellular matrix, our study may provide a mechanism for sPLA(2)-promoted fibroblasts migration.  相似文献   

18.
19.
The phosphatidylinositol 3-kinase (PI3K) signaling pathway has inherent oncogenic potential. It is up-regulated in diverse human cancers by either a gain of function in PI3K itself or in its downstream target Akt or by a loss of function in the negative regulator PTEN. However, the complete consequences of this up-regulation are not known. Here we show that insulin and epidermal growth factor or an inactivating mutation in the tumor suppressor PTEN specifically increase the protein levels of hypoxia-inducible factor (HIF) 1alpha but not of HIF-1beta in human cancer cell lines. This specific elevation of HIF-1alpha protein expression requires PI3K signaling. In the prostate carcinoma-derived cell lines PC-3 and DU145, insulin- and epidermal growth factor-induced expression of HIF-1alpha was inhibited by the PI3K-specific inhibitors LY294002 and wortmannin in a dose-dependent manner. HIF-1beta expression was not affected by these inhibitors. Introduction of wild-type PTEN into the PTEN-negative PC-3 cell line specifically inhibited the expression of HIF-1alpha but not that of HIF-1beta. In contrast to the HIF-1alpha protein, the level of HIF-1alpha mRNA was not significantly affected by PI3K signaling. Vascular endothelial growth factor reporter gene activity was induced by insulin in PC-3 cells and was inhibited by the PI3K inhibitor LY294002 and by the coexpression of a HIF-1 dominant negative construct. Vascular endothelial growth factor reporter gene activity was also inhibited by expression of a dominant negative PI3K construct and by the tumor suppressor PTEN.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号