首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Aquaporin-1 (AQP1) water channel plays a critical role for water reabsorption in the urinary concentrating mechanism. AQP1 expression in renal cells is upregulated by hypertonicity, but not urea, suggesting the requirement of an osmotic gradient. To investigate whether AQP1 expression is regulated by apical and/or basolateral hypertonicity, murine renal medullary mIMCD-K2 cells grown on permeable support were exposed to hypertonic medium. When the medium on the apical or basolateral membrane side was switched to hypertonic, the transcellular osmotic gradient was dissipated within 8h. Basolateral hypertonicity increased AQP1 expression more than apical hypertonicity. Comparable apical and basolateral hypertonicity without a transcellular hypertonic gradient, however, increased AQP1 expression. Cell surface biotinylation experiments revealed that hypertonicity promoted AQP1 trafficking to both plasma cell membranes. These results indicate that AQP1 expression is predominantly mediated by basolateral hypertonicity but a transcellular osmotic gradient is not necessary for its induction.  相似文献   

2.
In renal collecting ducts, vasopressin increases the expression of and redistributes aquaporin-2 (AQP2) water channels from intracellular vesicles to the apical membrane, leading to urine concentration. However, basolateral membrane expression of AQP2, in addition to AQP3 and AQP4, is often detected in inner medullary principal cells in vivo. Here, potential mechanisms that regulate apical versus basolateral targeting of AQP2 were examined. The lack of AQP2-4 association into heterotetramers and the complete apical expression of AQP2 when highly expressed in Madin-Darby canine kidney cells indicated that neither heterotetramerization of AQP2 with AQP3 and/or AQP4, nor high expression levels of AQP2 explained the basolateral AQP2 localization. However, long term hypertonicity, a feature of the inner medullary interstitium, resulted in an insertion of AQP2 into the basolateral membrane of Madin-Darby canine kidney cells after acute forskolin stimulation. Similarly, a marked insertion of AQP2 into the basolateral membrane of principal cells was observed in the distal inner medulla from normal rats and Brattleboro rats after acute vasopressin treatment of tissue slices that had been chronically treated with vasopressin to increase interstitial osmolality in the medulla, but not in tissues from vasopressin-deficient Brattleboro rats. These data reveal for the first time that chronic hypertonicity can program cells in vitro and in vivo to change the insertion of a protein into the basolateral membrane instead of the apical membrane.  相似文献   

3.
The unique phenotype of renal medullary cells allows them to survive and functionally adapt to changes of interstitial osmolality/tonicity. We investigated the effects of acute hypertonic challenge on AQP2 (aquaporin-2) water channel trafficking. In the absence of vasopressin, hypertonicity alone induced rapid (<10 min) plasma membrane accumulation of AQP2 in rat kidney collecting duct principal cells in situ, and in several kidney epithelial lines. Confocal microscopy revealed that AQP2 also accumulated in the trans-Golgi network (TGN) following hypertonic challenge. AQP2 mutants that mimic the Ser(256)-phosphorylated and -nonphosphorylated state accumulated at the cell surface and TGN, respectively. Hypertonicity did not induce a change in cytosolic cAMP concentration, but inhibition of either calmodulin or cAMP-dependent protein kinase A activity blunted the hypertonicity-induced increase of AQP2 cell surface expression. Hypertonicity increased p38, ERK1/2, and JNK MAPK activity. Inhibiting MAPK activity abolished hypertonicity-induced accumulation of AQP2 at the cell surface but did not affect either vasopressin-dependent AQP2 trafficking or hypertonicity-induced AQP2 accumulation in the TGN. Finally, increased AQP2 cell surface expression induced by hypertonicity largely resulted from a reduction in endocytosis but not from an increase in exocytosis. These data indicate that acute hypertonicity profoundly alters AQP2 trafficking and that hypertonicity-induced AQP2 accumulation at the cell surface depends on MAP kinase activity. This may have important implications on adaptational processes governing transcellular water flux and/or cell survival under extreme conditions of hypertonicity.  相似文献   

4.
Epithelial renal collecting duct cells express multiple types of aquaporin (AQP) water channels in a polarized fashion. AQP2 is specifically targeted to the apical cell domain, whereas AQP3 and AQP4 are expressed on the basolateral membrane. It is crucial that these AQP variants are sorted to their proper polarized membrane domains, because correct AQP sorting enables efficient water transport. However, the molecular mechanisms involved in the polarized targeting and membrane trafficking of AQPs remain largely unknown. In the present study, we have examined the polarized trafficking and surface expression of AQP3 in Madin-Darby canine kidney type II (MDCKII) cells in an effort to identify the molecular determinants of polarized targeting specificity. When expressed in MDCKII cells, the majority of the exogenous wild-type AQP3 was found to be targeted to the basolateral membrane, consistent with its localization pattern in vivo. A potential sorting signal consisting of tyrosine- and dileucine-based motifs was subsequently identified in the AQP3 NH2 terminus. When mutations were introduced into this signaling region, the basolateral targeting of the resulting mutant AQP3 was disrupted and the mutant protein remained in the cytoplasm. AQP2-AQP3 chimeras were then generated in which the entire NH2 terminus of AQP2 was replaced with the AQP3 NH2 terminus. This chimeric protein was observed to be mislocalized constitutively in the basolateral membrane, and mutations in the AQP3 NH2-terminal sorting signal abolished this effect. On the basis of these results, we conclude that an NH2-terminal sorting signal mediates the basolateral targeting of AQP3. epithelial cells; protein sorting; Madin-Darby canine kidney cells; basolateral  相似文献   

5.
Apical plasma membrane accumulation of the water channel Aquaporin-2 (AQP2) in kidney collecting duct principal cells is critical for body water homeostasis. Posttranslational modification (PTM) of AQP2 is important for regulating AQP2 trafficking. The aim of this study was to determine the role of cholesterol in regulation of AQP2 PTM and in apical plasma membrane targeting of AQP2. Cholesterol depletion from the basolateral plasma membrane of a collecting duct cell line (mpkCCD14) using methyl-beta-cyclodextrin (MBCD) increased AQP2 ubiquitylation. Forskolin, cAMP or dDAVP-mediated AQP2 phosphorylation at Ser269 (pS269-AQP2) was prevented by cholesterol depletion from the basolateral membrane. None of these effects on pS269-AQP2 were observed when cholesterol was depleted from the apical side of cells, or when MBCD was applied subsequent to dDAVP stimulation. Basolateral, but not apical, MBCD application prevented cAMP-induced apical plasma membrane accumulation of AQP2. These studies indicate that manipulation of the cholesterol content of the basolateral plasma membrane interferes with AQP2 PTM and subsequently regulated apical plasma membrane targeting of AQP2.  相似文献   

6.
The role of AQP2,3 and intracellular calcium in vasopressin-induced increase in the water permeability of the basolateral cell membrane in microdissected rat kidney OMCD was studied. It was shown that increase in the water permeability of the basolateral membranes correlated with increase in the content of AQP2 and AQP3 in the membrane fraction isolated from outer kidney medulla. Preliminary loading of cells with BAPTA-AM which binds intracellular Ca2+ abolished the increase in the water permeability and prevented the rise of the AQP2 content in response to dDAVP. BAPTA was ineffective to block the enhancement of AQP2 content in membrane fraction in presence of dDAVP. These results suggest that the increase in intracellular calcium activity and the enhanced content of AQP2 in plasma membrane are important for the antidiuretic effect of dDAVP.  相似文献   

7.
The thick ascending limb of the loop of Henle (TAL) reabsorbs ~30% of filtered NaCl but is impermeable to water. The observation that little water traverses the TAL indicates an absence of water channels at the apical membrane. Yet TAL cells swell when peritubular osmolality decreases indicating that water channels must be present in the basolateral side. Consequently, we hypothesized that the water channel aquaporin-1 (AQP1) facilitates water flux across the basolateral membrane of TALs. Western blotting revealed AQP1 expression in microdissected rat and mouse TALs. Double immunofluorescence showed that 95 ± 2% of tubules positive for the TAL-specific marker Tamm-Horsfall protein were also positive for AQP1 (n = 6). RT-PCR was used to demonstrate presence of AQP1 mRNA and the TAL-specific marker NKCC2 in microdissected TALs. Cell surface biotinylation assays showed that 23 ± 3% of the total pool of AQP1 was present at the TAL basolateral membrane (n = 7). To assess the functional importance of AQP1 in the basolateral membrane, we measured the rate of cell swelling initiated by decreasing peritubular osmolality as an indicator of water flux in microdissected TALs. Water flux was decreased by ~50% in Aqp1 knockout mice compared with wild-types (4.0 ± 0.8 vs. 8.9 ± 1.7 fluorescent U/s, P < 0.02; n = 7). Furthermore, arginine vasopressin increased TAL AQP1 expression by 135 ± 17% (glycosylated) and 41 ± 11% (nonglycosylated; P < 0.01; n =5). We conclude that 1) the TAL expresses AQP1, 2) ~23% of the total pool of AQP1 is localized to the basolateral membrane, 3) AQP1 mediates a significant portion of basolateral water flux, and 4) AQP1 is upregulated in TALs of rats infused with dDAVP. AQP1 could play an important role in regulation of TAL cell volume during changes in interstitial osmolality, such as during a high-salt diet or water deprivation.  相似文献   

8.
Aquaporin-1 (AQP1) is a water channel that is induced by hypertonicity. The present study was undertaken to clarify the osmoregulation mechanism of AQP1 in renal medullary cells. In cultured mouse medullary (mIMCD-3) cells, AQP1 expression was significantly induced by hypertonic treatment with impermeable solutes, whereas urea had no effect on AQP1 expression. This result indicates the requirement of a hypertonic gradient. Hypertonicity activated ERK, p38 kinase, and JNK in mIMCD-3 cells. Furthermore, all three MAPKs were phosphorylated by the upstream activation of MEK1/2, MKK3/6, and MKK4, respectively. The treatments with MEK inhibitor U0126, p38 kinase inhibitor SB203580, and JNK inhibitor SP600125 significantly attenuated hypertonicity-induced AQP1 expression in mIMCD-3 cells. In addition, hypertonicity-induced AQP1 expression was significantly reduced by both the dominant-negative mutants of JNK1- and JNK2-expressing mIMCD-3 cells. NaCl-inducible activity of AQP1 promoter, which contains a hypertonicity response element, was attenuated in the presence of U0126, SB203580, and SP600125 in a dose-dependent manner and was also significantly reduced by the dominant-negative mutants of JNK1 and JNK2. These data demonstrate that the activation of ERK, p38 kinase, and JNK pathways and the hypertonicity response element in the AQP1 promoter are involved in hypertonicity-induced AQP1 expression in mIMCD-3 cells.  相似文献   

9.
10.
Nucleotide sequences of cDNA were used to construct antibodies against an aquaporin (AQP) expressed in the clawed toad, Xenopus laevis, viz., Xenopus AQP3, a homolog of mammalian AQP3. Xenopus AQP3 was immunolocalized in the basolateral membrane of the principal cells of the ventral skin, the urinary bladder, the collecting duct and late distal tubule of the kidney, the absorptive epithelial cells of the large intestine, and the ciliated epithelial cells of the oviducts. Therefore, we designated this AQP as basolateral Xenopus AQP3 (AQP-x3BL). The intensity of labeling for AQP-x3BL differed between the ventral and dorsal skin, with the basolateral membrane of the principal cells in the ventral skin showing intense labeling, whereas that in the dorsal skin was lightly labeled. AQP-x3BL was also immunolocalized in the basolateral membrane of secretory cells in the small granular and mucous glands of the skin. As AQP-x5, a homolog of mammalian AQP5, is localized in the apical membrane of these same cells, this provides a pathway for fluid secretion by the glands. Although Hyla AQP-h2 is translocated from the cytoplasm to the apical membrane of the Hyla urinary bladder in response to arginine vasotocin (AVT), AQP-h2 immunoreactivity in Xenopus bladder remains in the cytoplasm and barely moves to the apical membrane, regardless of AVT stimulation. AQP-x3 is localized in the basolateral membrane, even though the AVT-stimulated AQP-h2 does not translocate to the apical membrane. These findings provide new insights into AQP function in aquatic anurans.  相似文献   

11.
Principal mechanism of the transepithelial water permeability increase in the kidney collecting ducts in response to vasopressin involves insertion of aquaporin 2 (AQP2) into the apical membrane. Previously we have shown that water permeability of the basolateral membrane also may be increased with stimulation of V2-receptors. It is known that inhibition of G(i)-proteins with pertussis toxin blocks redistribution of AQP2 into the apical membrane following the application of vasopressin or forskolin. The aim of the present study was to investigate potential involvement of G(i)-proteins in regulation of basolateral membrane water permeability. Effect of pertussis toxin on the ability of desmopressin to increase the basolateral membrane osmotic water permeability was investigated, and the expression of Galpha(i)2 and Galpha(i)3 genes under normal conditions and after 2 days of water deprivation were evaluated. We demonstrated that dehydration leds to a 30% increase of Galpha(i)3 mRNA content while the Galpha(i)2 mRNA level remains unchanged. In control experiments, basolateral membrane water permeability increased in response to desmopressin from 59.2 +/- 6.61 to 70.6 +/- 9.2 microm/s (p < 0.05, paired t-test). Pertussis toxin completely blocked this reaction (53.5 +/- 5.18 vs 50.1 +/- 6.50 microm/s, respectively). We conclude that G(i)-proteins participate in the mechanism of the basolateral membrane water permeability increase in response to stimulation of V2-receptors. Clarification of the G(i)-proteins role in this process requires further investigation, but most likely they are involved in regulation of aquaporin transport and insertion into the cell membrane.  相似文献   

12.
13.
The role of aquaporins in cerebrospinal fluid (CSF) secretion was investigated in this study. Western analysis and immunocytochemistry were used to examine the expression of aquaporin 1 (AQP1) and aquaporin 4 (AQP4) in the rat choroid plexus epithelium. Western analyses were performed on a membrane fraction that was enriched in Na+/K+-ATPase and AE2, marker proteins for the apical and basolateral membranes of the choroid plexus epithelium, respectively. The AQP1 antibody detected peptides with molecular masses of 27 and 32 kDa in fourth and lateral ventricle choroid plexus. A single peptide of 29 kDa was identified by the AQP4 antibody in fourth and lateral ventricle choroid plexus. Immunocytochemistry demonstrated that AQP1 is expressed in the apical membrane of both lateral and fourth ventricle choroid plexus epithelial cells. The immunofluorescence signal with the AQP4 antibody was diffusely distributed throughout the cytoplasm, and there was no evidence for AQP4 expression in either the apical or basolateral membrane of the epithelial cells. The data suggest that AQP1 contributes to water transport across the apical membrane of the choroid plexus epithelium during CSF secretion. The route by which water crosses the basolateral membrane, however, remains to be determined.  相似文献   

14.
A new member of the aquaporin family (AQP10) has recently been identified in the human small intestine by molecular cloning and in situ hybridization. Ribonuclease protection assay and northern blotting have demonstrated that AQP10 is expressed in the human duodenum and jejunum. However, the subcellular distribution of the AQP10 protein and its plasma membrane polarization have not yet been established. The objective of this study was to determine the distribution of the AQP10 protein in the human ileum by immunohistochemistry and western blotting using a polyclonal antibody raised against a unique 17-amino acid peptide derived from the human AQP10 sequence. The distribution of the AQP1 and AQP3 proteins was also studied by immunohistochemical staining using affinity-purified polyclonal antibodies. Results revealed that the AQP10 protein is preferentially targeted to the apical membrane domain of absorptive intestinal epithelial cells, whereas AQP3 is located in the basolateral membrane of the cells and AQP1 expression is restricted to the mucosal microvascular endothelia. The presence of AQP10 in the apical membrane of intestinal villi suggests that this protein may represent an entry pathway for water and small solutes from the lumen across to the mucosal side.  相似文献   

15.
Aquaporins (AQPs) play fundamental roles in water and osmolyte homeostasis by facilitating water and small solute movement across plasma membranes of epithelial, endothelial, and other tissues. AQP proteins are abundantly expressed in the mammalian kidney, where they have been shown to play essential roles in fluid balance and urine concentration. Thus far, the majority of studies on renal AQPs have been carried out in laboratory rodents and sheep; no data have been published on the expression of AQPs in kidneys of equines or other large mammals. The aim of this comparative study was to determine the expression and nephron segment localization of AQP1-4 in Equus caballus by immunoblotting and immunohistochemistry with custom-designed rabbit polyclonal antisera. AQP1 was found in apical and basolateral membranes of the proximal convoluted tubules and thin descending limbs of the loop of Henle. AQP2 expression was specifically detected in apical membranes of cortical, medullary, and papillary collecting ducts. AQP3 was expressed in basolateral membranes of cortical, medullary, and papillary collecting ducts. Immunohistochemistry also confirmed AQP4 expression in basolateral membranes of cells lining the distal convoluted and connecting tubules. Western blots revealed high expression of AQP1-4 in the equine kidney. These observations confirm that AQPs are expressed in the equine kidney and are found in similar nephron locations to mouse, rat, and human kidney. Equine renal AQP proteins are likely to be involved in acute and chronic regulation of body fluid composition and may be implicated in water balance disorders brought about by colic and endotoxemia.  相似文献   

16.
We screened human kidney-derived multipotent CD133+/CD24+ ARPCs for the possible expression of all 13 aquaporin isoforms cloned in humans. Interestingly, we found that ARPCs expressed both AQP5 mRNA and mature protein. This novel finding prompted us to investigate the presence of AQP5 in situ in kidney. We report here the novel finding that AQP5 is expressed in human, rat and mouse kidney at the apical membrane of type-B intercalated cells. AQP5 is expressed in the renal cortex and completely absent from the medulla. Immunocytochemical analysis using segment- and cell type-specific markers unambiguously indicated that AQP5 is expressed throughout the collecting system at the apical membrane of type-B intercalated cells, where it co-localizes with pendrin. No basolateral AQPs were detected in type-B intercalated cells, suggesting that AQP5 is unlikely to be involved in the net trans-epithelial water reabsorption occurring in the distal tubule. An intriguing hypothesis is that AQP5 may serve an osmosensor for the composition of the fluid coming from the thick ascending limb. Future studies will unravel the physiological role of AQP5 in the kidney.  相似文献   

17.
The role of aquaporins in cerebrospinal fluid (CSF) secretion was investigated in this study. Western analysis and immunocytochemistry were used to examine the expression of aquaporin 1 (AQP1) and aquaporin 4 (AQP4) in the rat choroid plexus epithelium. Western analyses were performed on a membrane fraction that was enriched in Na(+)/K(+)-ATPase and AE2, marker proteins for the apical and basolateral membranes of the choroid plexus epithelium, respectively. The AQP1 antibody detected peptides with molecular masses of 27 and 32 kDa in fourth and lateral ventricle choroid plexus. A single peptide of 29 kDa was identified by the AQP4 antibody in fourth and lateral ventricle choroid plexus. Immunocytochemistry demonstrated that AQP1 is expressed in the apical membrane of both lateral and fourth ventricle choroid plexus epithelial cells. The immunofluorescence signal with the AQP4 antibody was diffusely distributed throughout the cytoplasm, and there was no evidence for AQP4 expression in either the apical or basolateral membrane of the epithelial cells. The data suggest that AQP1 contributes to water transport across the apical membrane of the choroid plexus epithelium during CSF secretion. The route by which water crosses the basolateral membrane, however, remains to be determined.  相似文献   

18.
19.
In mammals, the regulation of water homeostasis is mediated by the aquaporin-1 (AQP1) water channel, which localizes to the basolateral and apical membranes of the early nephron segment, and AQP2, which is translocated from intracellular vesicles to the apical membrane of collecting duct cells after vasopressin stimulation. Because a similar localization and regulation are observed in transfected Madin-Darby Canine Kidney (MDCK) cells, we investigated which segments of AQP2 are important for its routing to forskolin-sensitive vesicles and the apical membrane through analysis of AQP1-AQP2 chimeras. AQP1 with the entire COOH tail of AQP2 was constitutively localized in the apical membrane, whereas chimeras with shorter COOH tail segments of AQP2 were localized in the apical and basolateral membrane. AQP1 with the NH2 tail of AQP2 was constitutively localized in both plasma membranes, whereas AQP1 with the NH2 and COOH tail of AQP2 was sorted to intracellular vesicles and translocated to the apical membrane with forskolin. These data indicate that region N220-S229 is essential for localization of AQP2 in the apical membrane and that the NH2 and COOH tail of AQP2 are essential for trafficking of AQP2 to intracellular vesicles and its shuttling to and from the apical membrane. routing signals; chimera; Madin-Darby canine kidney cells; regulated trafficking  相似文献   

20.
Aquaporin 4 (AQP4) is the predominant water channel in the brain. It is targeted to specific membrane domains of astrocytes and plays a crucial role in cerebral water balance in response to brain edema formation. AQP4 is also specifically expressed in the basolateral membranes of epithelial cells. However, the molecular mechanisms involved in its polarized targeting and membrane trafficking remain largely unknown. Here, we show that two independent C-terminal signals determine AQP4 basolateral membrane targeting in epithelial MDCK cells. One signal involves a tyrosine-based motif; the other is encoded by a di-leucine-like motif. We found that the tyrosine-based basolateral sorting signal also determines AQP4 clathrin-dependent endocytosis through direct interaction with the mu subunit of AP2 adaptor complex. Once endocytosed, a regulated switch in mu subunit interaction changes AP2 adaptor association to AP3. We found that the stress-induced kinase casein kinase (CK)II phosphorylates the Ser276 immediately preceding the tyrosine motif, increasing AQP4-mu 3A interaction and enhancing AQP4-lysosomal targeting and degradation. AQP4 phosphorylation by CKII may thus provide a mechanism that regulates AQP4 cell surface expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号