首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
T Yagi 《Microbios》1992,70(283):93-102
The accumulation of glycerol and inorganic ions as it related to osmotic pressure, and the regulation of intracellular osmotic pressure in a salt-tolerant yeast, Zygosaccharomyces rouxii, were examined for several hours after salt stress. Intracellular contents of glycerol increased for up to 6 h in media supplemented with 1 M and 2 M NaCl and did not increase in medium containing 3 M NaCl. Intracellular contents of Na+ and Cl- reached a maximum value within 1 and 3 h, respectively, in all NaCl-containing media and increases were proportional to the concentration of NaCl in the medium. As glycerol was accumulated in cells, the intracellular contents of Na+ and Cl- gradually decreased in media containing 1 M and 2 M NaCl. After salt stress, cell volume decreased within 1 h and the original volume was re-established for 3 to 6 h in media with 1 M and 2 M NaCl but not in medium with 3 M NaCl. Intracellular concentrations of solutes, which were calculated from the total contents of glycerol and inorganic ions and the cell volume, became almost equivalent to the external osmotic pressure within 1 h after salt stress. Experiments using various inhibitors showed that a large amount of ATP was required not only for the synthesis and accumulation of glycerol but also for the exclusion of Na+ and Cl- from cells under salt-stressed conditions.  相似文献   

2.
Despite the clinical use of pentavalent antimonials for more than half a century, their metabolism in mammals and mechanisms of action and toxicity remain poorly understood. It has been proposed that the more active and toxic trivalent antimony form Sb(III) plays a critical role in their antileishmanial activity and toxicity. The aim of this work was to investigate the role of residual Sb(III) both in the antileishmanial/antitumoral activities of the pentavalent meglumine antimoniate and in the MRP1 (multidrug resistance-associated protein 1)-mediated resistance to this drug. Samples of meglumine antimoniate differing in their amount of residual Sb(III) (meglumine antimoniate synthesized either from SbCl5 or from KSb(OH)6 as well as commercially-available meglumine antimoniate) were evaluated in vitro and in vivo on Leishmania amazonensis infections, as well as for their cytotoxicity to normal and MRP1-overexpressing GLC4 cell lines. Although in vitro the two most effective drugs contained the highest levels of Sb(III), no correlation was found in vivo between the antileishmanial activity of meglumine antimoniate and its residual Sb(III) content, suggesting that residual Sb(III) contributes only marginally to the drug antileishmanial activity. On the other hand, the GLC4 cells growth inhibition data strongly suggests a marked contribution of residual Sb(III). Additionally, the potassium salt of antimoniate (non-complexed form of Sb(V)) was found to be more cytotoxic than meglumine antimoniate. Although MRP1-overexpressing GLC4 cells showed a marked resistance to trivalent antimonials, cross-resistance to meglumine antimoniate was observed only for the products that contained relatively high levels of Sb(III) (at least 0.03% by weight), suggesting that MRP1 mediates resistance to Sb(III) but not to Sb(V). In conclusion, our data strongly suggest that residual Sb(III) in pentavalent antimonial drugs does not contribute significantly to their antileishmanial activity, but is responsible for their cytotoxic activity against mammalian cells and the MRP1-mediated resistance to these drugs.  相似文献   

3.
Summary Pituitary glands from a teleost fish were incubated in the presence of the synthetic hypophysiotropic peptides, thyrotrophin-releasing hormone and somatostatin, in two media of different osmotic pressure.The effects on prolactin and growth hormone cells were detected by electron-microscopic morphometry with the aid of an image analyser. Thyrotrophin-releasing hormone caused changes in prolactin cell ultrastructure consistent with stimulated hormone release and, in the low osmotic pressure medium, appeared to increase synthetic activity. There was no effect on growth hormone cells. After somatostatin treatment, both synthesis and release in prolactin cells appeared to be inhibited, and there was an obvious inhibition of synthesis and release in growth hormone cells. The response of both cell types to somatostatin did not appear to be dependent on the osmotic pressure of the medium.  相似文献   

4.
Production of platelet-activating factor (PAF) during opsonized zymosan stimulation of human polymorphonuclear leukocytes is dependent on the concentration of extracellular albumin and on the presence of exogenous fatty acids. Fatty acid-free albumin caused a concentration-dependent increase in PAF synthesis up to 5% albumin concentrations (w/v) where the amount of PAF produced was three- to four-fold higher than in controls containing no albumin. The addition of free fatty acids, particularly arachidonic acid and palmitic acid, to 5% fatty acid-free albumin media caused a concentration-dependent decrease in PAF synthesis. A 50% inhibition of PAF synthesis was observed at an arachidonic acid concentration of 120 microM and at a palmitic acid concentration of 100 microM. The inhibition of PAF production by palmitic acid was also dependent on the concentration of extracellular albumin. In 0.5% fatty acid-free albumin media, a palmitic acid concentration of 40 microM produced a 50% inhibition in PAF synthesis. The addition of palmitic acid did not affect the release of endogenous arachidonic acid during stimulation. In contrast, the addition of stearic acid up to 120 microM in 5% fatty acid-free albumin media had no effect on PAF production. The different inhibitory effects of palmitic acid and stearic acid on PAF production may be related to differences in intracellular utilization of these two fatty acids during cell stimulation.  相似文献   

5.
Secretion of cortisol by the interrenal tissue of the trout Salmo gairdneri was studied in vitro by a perifusion method in relation to the effects of electrolyte concentrations in the medium. An increase in osmotic pressure (produced by adding mannitol or NaCl) induced an immediate, but brief augmentation in cortisol release. Suppression of Na+ had no effect while its reintroduction in the medium led to stimulation of hormone release. By contrast, a sharp peak was obtained whenever Cl- concentration was dropped (by 50 mM fractions). These opposite effects of Na+ and Cl- when they vary independently of each other is interpreted with regard to osmoregulation and acid-base regulation. Raising K+ even to high levels (up to 20 mM) produced no change. The absence of Ca2+ had no obvious effect while its addition induced an immediate peak of cortisol release. In addition, external Ca2+ proved necessary for the action of ACTH to occur. These results establish that cortisol release in trout may be directly affected by changes in electrolyte concentrations in the extracellular space.  相似文献   

6.
Summary The intracellular accumulation of ethanol in yeast and its potential effects on growth and fermentation have been topics of controversy for the past several years. The determination of intracellular ethanol based on the exclusion of [14C]sorbitol to estimate aqueous cell volume was used to examine the question of intracellular ethanol accumulation. An intracellular accumulation of ethanol inSaccharomyces cerevisiae was observed during the early stages of fermentation. However, as fermentation continued, the intracellular and extracellular concentrations of ethanol became similar. Increasing the osmotic pressure of the medium with glucose or sorbitol was observed to cause an increase in the intracellular ethanol concentration. Associated with this was a decrease in yeast growth and fermentation rates. In addition, increasing the osmotic pressure of the medium was observed to cause an increase in glycerol production. Supplementation of the media with excess peptone, yeast extract, magnesium sulfate and potassium phosphate was found to relieve the detrimental effects of high osmotic pressure. Under these conditions, though, no effect on the intracellular and extracellular ethanol distribution was observed. These results indicate that nutrient limitation, and not necessarily intracellular ethanol accumulation, plays a key role during yeast fermentations in media of high osmolarity.  相似文献   

7.
This paper reviews the passive mechanisms involved in the response of a yeast to changes in medium concentration and osmotic pressure. The results presented here were collected in our laboratory during the last decade and are experimentally based on the measurement of cell volume variations in response to changes in the medium composition. In the presence of isoosmotic concentration gradients of solutes between intracellular and extracellular media, mass transfers were found to be governed by the diffusion rate of the solutes through the cell membrane and were achieved within a few seconds. In the presence of osmotic gradients, mass transfers mainly consisting in a water flow were found to be rate limited by the mixing systems used to generate a change in the medium osmotic pressure. The use of ultra-rapid mixing systems allowed us to show that yeast cells respond to osmotic upshifts within a few milliseconds and to determine a very high hydraulic permeability for yeast membrane (Lp>6.10(-11) m x sec)-1) x Pa(-1)). This value suggested that yeast membrane may contain facilitators for water transfers between intra and extracellular media, i.e. aquaporins. Cell volume variation in response to osmotic gradients was only observed for osmotic gradients that exceeded the cell turgor pressure and the maximum cell volume decrease, observed during an hyperosmotic stress, corresponded to 60% of the initial yeast volume. These results showed that yeast membrane is highly permeable to water and that an important fraction of the intracellular content was rapidly transferred between intracellular and extracellular media in order to restore water balance after hyperosmotic stresses. Mechanisms implied in cell death resulting from these stresses are then discussed.  相似文献   

8.
Norepinephrine or increased extracellular K+ hyperpolarize the membrane of the earthworm somatic muscle fibre, whereas removal of Cl- from external solution or a hypotonic solution depolarize the membrane. The dependence of the membrane resting potential on the extracellular K+ is quite characteristic against the background of ouabain action. A preliminary membrane depolarisation by ouabain eliminates the above effects on the membrane resting potential. The data obtained suggest that the ouabain-sensitive active ion pump directly contributes to the membrane resting potential value. This hypothesis is discussed with respect to existence of active Cl- transport combined with Na+, K(+)-pump which presumably takes part in the intracellular osmotic pressure regulation in the earthworm somatic muscle.  相似文献   

9.
The symmetry of osmotic conductivity of the canine tracheal epithelial cells was examined in vitro. When an osmotic load of 100 mosM sucrose was added to the serosal bathing solution, no change in the transepithelial potential difference was observed in 15 tissue preparations. In contrast, when the same osmotic load was added to the mucosal bathing solution, there was a rapid decrease in the transepithelial potential difference of 3.9 +/- 0.5 mV (n = 23); ouabain (10(-4) M) eliminated this change. Tissues that had been exposed to the osmotic load added to either the mucosal or serosal side were compared with the control using light and electron microscopy. When the osmotic load was added to the mucosal fluid, there was no change in the nuclear-to-cytoplasmic area ratio of the cell types examined. However, when the same osmotic load was added to the serosal fluid, a marked increase in the nuclear-to-cytoplasmic area ratio of the ciliated cells was observed. This finding indicated cell shrinkage. Dilution potentials measured by substituting NaCl with mannitol also showed asymmetry. The morphological features are probably caused by differences in the osmotic conductivity (Lp) of the basolateral and apical cell membranes, with the Lp of the apical membrane being less than that of the basolateral membrane. The basis for osmotically induced potentials remained undetermined.  相似文献   

10.
An intracellular accumulation of ethanol in Saccharomyces cerevisiae was observed during the early stages of fermentation (3 h). However, after 12 h of fermentation, the intracellular and extracellular ethanol concentrations were similar. Increasing the osmotic pressure of the medium caused an increase in the ratio of intracellular to extracellular ethanol concentrations at 3 h of fermentation. As in the previous case, the intracellular and extracellular ethanol concentrations were similar after 12 h of fermentation. Increasing the osmotic pressure also caused a decrease in yeast cell growth and fermentation activities. However, nutrient supplementation of the medium increased the extent of growth and fermentation, resulting in complete glucose utilization, even though intracellular ethanol concentrations were unaltered. These results suggest that nutrient limitation is a major factor responsible for the decreased growth and fermentation activities observed in yeast cells at higher osmotic pressures.  相似文献   

11.
We used microelectrodes to determine whether the K/HCO3 cotransporter tentatively identified in the accompanying paper (Hogan, E. M., M. A. Cohen, and W. F. Boron. 1995. Journal of General Physiology. 106:821- 844) can mediate an increase in the intracellular pH (pHi) of squid giant axons. An 80-min period of internal dialysis increased pHi to 7.7, 8.0, or 8.3; the dialysis fluid was free of K+, Na+, and Cl-. Our standard artificial seawater (ASW), which also lacked Na+, K+, and Cl-, had a pH of 8.0. Halting dialysis unmasked a slow pHi decrease. Subsequently introducing an ASW containing 437 mM K+ and 0.5% CO2/12 mM HCO3- had two effects: (a) it caused membrane potential (Vm) to become very positive, and (b) it caused a rapid pHi decrease, because of CO2 influx, followed by a slower plateau-phase pHi increase, presumably because of inward cotransport of K+ and HCO3- ("base influx"). Only extracellular Rb+ substituted for K+ in producing the plateau-phase pHi increase in the presence of CO2/HCO3-. Mean fluxes with Na+, Li+, and Cs+ were not significantly different from zero, even though Vm shifts were comparable for all monovalent cations tested. Thus, unless K+ or Rb+ (but not Na+, Li+, or Cs+) somehow activates a conductive pathway for H+, HCO3-, or both, it is unlikely that passive transport of H+, HCO3-, or both makes the major contribution to the pHi increase in the presence of K+ (or Rb+) and CO2/HCO3-. Because exposing axons to an ASW containing 437 mM K+, but no CO2/HCO3-, produced at most a slow pHi increase, K-H exchange could not make a major contribution to base influx. Introducing an ASW containing CO2/HCO3-, but no K+ also failed to elicit base influx. Because we observed base influx when the ASW and DF were free of Na+ and Cl-, and because the disulfonic stilbene derivatives SITS and DIDS failed to block base influx, Na(+)-dependent Cl-HCO3 exchange also cannot account for the results. Rather, we suggest that the most straightforward explanation for the pHi increase we observed in the simultaneous presence of K+ and CO2/HCO3- is the coupled uptake of K+ and HCO3-.  相似文献   

12.
The modulation of ion channel activity by extracellular ions plays a central role in the control of heart function. Here, we show that the sinoatrial pacemaker current I(f) is strongly affected by the extracellular Cl- concentration. We investigated the molecular basis of the Cl- dependence in heterologously expressed hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that represent the molecular correlate of I(f). Currents carried by the two cardiac HCN channel isoforms (HCN2 and HCN4) showed the same strong Cl- dependence as the sinoatrial I(f) and decreased to about 10% in the absence of external Cl-. In contrast, the neuronal HCN1 current was reduced to only 50% under the same conditions. Depletion of Cl- did not affect the voltage dependence of activation or the ion selectivity of the channels, indicating that the reduction of I(f) was caused by a decrease of channel conductance. A series of chimeras between HCN1 and HCN2 was constructed to identify the structural determinants underlying the different Cl- dependence of HCN1 and HCN2. Exchange of the ion-conducting pore region was sufficient to switch the Cl- dependence from HCN1- to HCN2-type and vice versa. Replacement of a single alanine residue in the pore of HCN1 (Ala-352) by an arginine residue present in HCN2 at equivalent position (Arg-405) induced HCN2-type chloride sensitivity in HCN1. Our data indicate that Arg-405 is a key component of a domain that allosterically couples Cl- binding with channel activation.  相似文献   

13.
The effect of increasing external osmotic pressure on potassium fluxes in aged and fresh-cut discs of Daucus carota L. storage tissue was investigated. An increase of the external osmotic pressure by 5 bars of mannitol solution increased the rate of K+ net uptake of aged discs to 180% of their control rate. At 3°C and in 0.1 m M azide, in which a net efflux of potassium was observed, the mannitol treatment caused a reduction in the net efflux. In fresh-cut discs, in which the capability of net influx was rather low and a substantial net release of potassium was noted, the increase in the external osmotic pressure by mannitol caused a 70% inhibition in the net efflux. This effect was also observed at 3°C.
Measurements of separate fluxes confirmed the assumption that the mannitol treatment brought about two distinct effects on K+ fluxes: (a) raised the metabolically-dependent influx and (b) lowered the membrane permeability-dependent efflux. When a permeating solute (ethylene glycol) was used instead of mannitol, no effect on K+ flux was detectable. Reasons are given for relating the observed changes in K+ fluxes to the reduction in turgor pressure of the cells.  相似文献   

14.
An intracellular accumulation of ethanol in Saccharomyces cerevisiae was observed during the early stages of fermentation (3 h). However, after 12 h of fermentation, the intracellular and extracellular ethanol concentrations were similar. Increasing the osmotic pressure of the medium caused an increase in the ratio of intracellular to extracellular ethanol concentrations at 3 h of fermentation. As in the previous case, the intracellular and extracellular ethanol concentrations were similar after 12 h of fermentation. Increasing the osmotic pressure also caused a decrease in yeast cell growth and fermentation activities. However, nutrient supplementation of the medium increased the extent of growth and fermentation, resulting in complete glucose utilization, even though intracellular ethanol concentrations were unaltered. These results suggest that nutrient limitation is a major factor responsible for the decreased growth and fermentation activities observed in yeast cells at higher osmotic pressures.  相似文献   

15.
Aquaporin-5 (AQP5) is a water channel protein expressed in lung, salivary gland, and lacrimal gland epithelia. Each of these sites may experience fluctuations in surface liquid osmolarity; however, osmotic regulation of AQP5 expression has not been reported. This study demonstrates that AQP5 is induced by hypertonic stress and that induction requires activation of extracellular signal-regulated kinase (ERK). Incubation of mouse lung epithelial cells (MLE-15) in hypertonic medium produced a dose-dependent increase in AQP5 expression; AQP5 protein peaked by 24 h and returned to baseline levels within hours of returning cells to isotonic medium. AQP5 induction was observed only with relatively impermeable solutes, suggesting an osmotic pressure gradient is required for induction. ERK was selectively activated in MLE-15 cells by hypertonic stress, and inhibition of ERK activation with two distinct mitogen-activated extracellular regulated kinase kinase (MEK) inhibitors, U0126 and PD98059, blocked AQP5 induction. AQP5 induction was also observed in the lung, salivary, and lacrimal glands of hyperosmolar rats, suggesting potential physiologic relevance for osmotic regulation of AQP5 expression. This report provides the first example of hypertonic induction of an extrarenal aquaporin, as well as the first association between mitogen-activated protein kinase signaling and aquaporin expression.  相似文献   

16.
Both stimulation of purinergic receptors by ATP and activation of the cystic fibrosis transmembrane conductance regulator (CFTR) inhibit amiloride-sensitive Na+ transport and activate Cl- secretion. These changes in ion transport may well affect cell volume. We therefore examined whether cell shrinkage or cell swelling do affect amiloride-sensitive Na+ transport in epithelial tissues or Xenopus oocytes and whether osmotic stress interferes with regulation of Na+ transport by ATP or CFTR. Stimulation of purinergic receptors by ATP/UTP or activation of CFTR by IBMX and forskolin inhibited amiloride-sensitive transport in mouse trachea and colon, respectively, by a mechanism that was Cl- dependent. When exposed to a hypertonic but not hypotonic bath solution, amiloride-sensitive Na+ transport was inhibited in mouse trachea and colon, independent of the extracellular Cl- concentration. Both inhibition of Na+ transport by hypertonic bath solution and ATP were additive. When coexpressed in Xenopus oocytes, activation of CFTR by IBMX and forskolin inhibited the epithelial Na+ channel (ENaC) in a Cl- dependent fashion. However, both hypertonic and hypotonic bath solutions showed only minor effects on amiloride-sensitive conductance, independent of the bath Cl- concentration. Moreover, CFTR-induced inhibition of ENaC could be detected in oocytes even after exposure to hypertonic or hypotonic bath solutions. We conclude that amiloride-sensitive Na+ absorption in mouse airways and colon is inhibited by cell shrinkage by a mechanism that does not interfere with purinergic and CFTR-mediated inhibition of ENaC.  相似文献   

17.
The regulation of intracellular pH (pHi) in a renal epithelial cell line, LLC-PK1/Cl4, during re-acidification from an alkaline load was studied by 31P-NMR. Intracellular alkalinization was induced by 10 mM ammonium glucuronate or by preloading with and subsequent removal of 20% CO2; the rate of re-acidification was found to be 0.047 pH units/min and 0.053 pH units/min, respectively. This rate of re-acidification was inhibited by 83% if Cl- was removed from the extracellular medium. A similar inhibition was found in the presence of 1 mM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid (SITS) (76% inhibition) and 1 mM bumetanide (81% inhibition). No change in recovery was found after removing sodium from the extracellular medium, indicating that LLC-PK1/Cl4 cells recover from an intracellular alkaline load by a Cl-/HCO3- exchanger, which is SITS- and bumetanide-sensitive and has no requirement for sodium. In addition, the steady-state pHi in Cl4 cells was monitored by 31P-NMR. Removal of Cl- from the extracellular medium introduced an increase in pHi by 0.33 pH units, whereas 1 mM SITS and 1 mM bumetanide caused an increase in pHi by 0.14 or 0.13 pH units. In the presence of 1 mM amiloride, an inhibitor of the Na+/H+ exchanger, the steady-state pHi did not change significantly. These results indicate that at pHo 7.4 the steady-state intracellular pH of LLC-PK1/Cl4 cells strongly depends on the activity of the Cl-/HCO3- exchanger. Under the same conditions the activity of the Na+/H+ exchanger seems to be negligible.  相似文献   

18.
The 1H spin-echo NMR signal amplitudes and intensities of low molecular weight solutes in the cytoplasm and extracellular fluid of suspensions of human erythrocytes were shown to depend on the osmotic pressure of the media. At low osmotic pressure (220 mosM/kg) freeze-thaw lysis of the cells resulted in signal enhancement which was greatest for extracellular molecules, but both intra- and extracellular species were almost equally enhanced at 580 mosM/kg. This effect is due to field gradients formed at cell boundaries as a result of differences in magnetic susceptibility between the medium and the cytoplasm. T2 values measured using the Carr-Purcell-Meiboom-Gill pulse sequence, with tau = 0.0003 s, depended little on cell volume and absolute changes in volume magnetic susceptibility were also small. The mean field gradients, calculated from data obtained on cell suspensions at different osmotic pressures, were in the range 0.25-1.98 G/cm and 0.89-2.09 G/cm for intra- and extracellular compartments, respectively. The maintenance of isotonicity of the extracellular fluid during metabolic studies of cell suspensions is important in order to avoid artefacts in the determination of metabolite concentrations when using the spin-echo technique. Conversely it may be possible to perform transport measurements using spin-echo NMR to monitor the cell volume changes which occur during the transmembrane migration of molecules.  相似文献   

19.
20.
Chloride channels activated by osmotic stress in T lymphocytes   总被引:17,自引:5,他引:12  
We have used whole-cell and perforated-patch recording techniques to characterize volume-sensitive Cl- channels in T and B lymphocytes. Positive transmembrane osmotic pressure (intracellular osmolality > extracellular osmolality) triggers the slow induction of a Cl- conductance. Membrane stretch caused by cellular swelling may underlie the activation mechanism, as moderate suction applied to the pipette interior can reversibly oppose the induction of Cl- current by an osmotic stimulus. Intracellular ATP is required for sustaining the Cl- current. With ATP-free internal solutions, the inducibility of Cl- current declines within minutes of whole-cell recording, while in whole- cell recordings with ATP or in perforated-patch experiments, the current can be activated for at least 30 min. The channels are anion selective with a permeability sequence of I- > SCN- > NO3-, Br- > Cl- > MeSO3- > acetate, propionate > ascorbate > aspartate and gluconate. GCl does not show voltage- and time-dependent gating behavior at potentials between -100 and +100 mV, but exhibits moderate outward rectification in symmetrical Cl- solutions. Fluctuation analysis indicates a unitary chord conductance of approximately 2 pS at -80 mV in the presence of symmetrical 160 mM Cl-. The relationship of mean current to current variance during the osmotic activation of Cl- current implies that each cell contains on the order of 10(4) activatable Cl- channels, making it the most abundant ion channel in lymphocytes yet described. The current is blocked in a voltage-dependent manner by DIDS and SITS (Ki = 17 and 89 microM, respectively, at +40 mV), the degree of blockade increasing with membrane depolarization. The biophysical and pharmacological properties of this Cl- channel are consistent with a role in triggering volume regulation in lymphocytes exposed to hyposmotic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号