首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Oxygen is involved in cell signaling through oxygenases and oxidases and this applies especially for the vascular system. Nitric oxide (*NO) and epoxyarachidonic acids are P450-dependent monooxygenase products and prostacyclin is formed via cyclooxygenase and a heme-thiolate isomerase. The corresponding vasorelaxant mechanisms are counteracted by superoxide which not only traps *NO but through the resulting peroxynitrite blocks prostacyclin synthase by nitration of an active site tyrosine residue. In a model of septic shock, this leads to vessel constriction by activation of the thromboxane A2-prostaglandin endoperoxide H2 receptor. This sequence of events is part of endothelial dysfunction in which the activated vascular smooth muscle counteracts and regenerates vessel tone by cyclooxygenase-2-dependent prostacyclin synthesis. Peroxynitrite was found to activate cyclooxygenases by providing the peroxide tone at nanomolar concentrations. Such new insights into the control of vascular function have allowed us to postulate a concept of redox regulation in which a progressive increase of superoxide production by NADPH-oxidase, mitochondria, xanthine oxidase, and even uncoupled NO-synthase triggers a network of signals originating from an interaction of *NO with superoxide.  相似文献   

2.
The effect of ischemic preconditioning and superoxide dismutase (SOD) on endothelial glycocalyx and endothelium-dependent vasodilation in the postischemic isolated guinea-pig hearts was examined. Seven groups of hearts were used: group 1 underwent sham aerobic perfusion; group 2 was subjected to 40 min global ischemia without reperfusion; group 3, 40 min ischemia followed by 40 min reperfusion; group 4 was preconditioned with three cycles of 5 min global ischemia followed by 5 min of reperfusion (IPC), prior to 40 min ischemia; group 5 was subjected to IPC prior to standard ischemia/reperfusion; group 6 underwent standard ischemia/reperfusion and SOD infusion (150 U/ml) was begun 5 min before 40 min ischemia and continued during the initial 5 min of the reperfusion period; group 7 was subjected to 80 min aerobic perfusion with NO-synthase inhibitor, L-NAME, to produce a model of endothelial dysfunction independent from the ischemia/reperfusion. Coronary flow responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were used as measures of endothelium-dependent and endothelium-independent vascular function, respectively. Reduction in coronary flow caused by NO-synthase inhibitor, L-NAME, served as a measure of a basal endothelium-dependent vasodilator tone. After completion of each experimental protocol, the hearts were stained with ruthenium red or lanthanum chloride for electron microscopy evaluation of the endothelial glycocalyx. While ischemia led only to a slightly flocculent appearance of the glycocalyx, in ischemia/reperfused hearts the glycocalyx was disrupted, suggesting that it is the reperfusion injury which leads to the glycocalyx injury. Moreover, the coronary flow responses to ACh and L-NAME were impaired, while the responses to SNP were unchanged in the ischemia/reperfused hearts. The disruption of the glycocalyx and the deterioration of ACh and L-NAME responses was prevented by IPC. In addition, the alterations in the glycocalyx and the impairment of ACh responses were prevented by SOD. The glycocalyx appeared to be not changed in the hearts subjected to 80 min aerobic perfusion with L-NAME. In conclusion: (1) the impairment of the endothelium-dependent coronary vasodilation is paralleled by the endothelial glycocalyx disruption in the postischemic guinea-pig hearts; (2) both these changes are prevented by SOD, suggesting the role of free radicals in the mechanism of their development; (3) both changes are prevented by IPC. We hypothesize, therefore, that alterations in the glycocalyx contribute to the mechanism of the endothelial dysfunction in the postischemic hearts.  相似文献   

3.
Cardiac ischemia/reperfusion leads to coronary endothelial dysfunction, mediated by superoxide anion (O2-), but not hydroxyl radical (*OH). Ischemic preconditioning and mitochondrial ATP-dependent potassium channel opener (diazoxide) protect endothelium in the mechanism involving attenuation of O2- burst at reperfusion. We hypothesize that the endothelial protection involves upregulation of myocardial anty-O2- defense. Langendorff-perfused guinea-pig hearts were subjected to global ischemia/reperfusion (IR) or were preconditioned prior to IR with three cycles of ischemia/reperfusion (IPC) or infusion/washout of 0.5 microM diazoxide. Coronary flow responses to acetylcholine were measures of endothelium-dependent vascular function. Myocardial outflow of O2- and of *OH during reperfusion and myocardial activities of superoxide dismutase (SOD) and catalase were measured. IR impaired acetylcholine response and augmented cardiac O2- and *OH outflow. IPC, diazoxide, and SOD (150 IU/ml) attenuated O2- outflow, increased *OH outflow and protected endothelium. There were no differences in Cu/Zn-SOD, Mn-SOD and catalase activities between sham-perfused and IR hearts and only catalase activity was increased in the IPC hearts. We speculate that: (i) IPC and diazoxide endothelial protection involves activation of some SOD-like anti-O2- mechanism resulting in attenuation of O2- burst and increase in *OH burst, (ii) improved SOD activity might have not been detected because it was confined to a small, although functionally important, enzyme fraction, like that bound to the endothelial glycocalyx.  相似文献   

4.
The presented data demonstrate that hypothermic preconditioning prevents cardiomyocyte necrosis in response to ischemia-reperfusion, improves pump function of the heart during reperfusion period, and exerts an antiarrhythmic effect. The hypothermic preconditioning exerts more pronounced cardioprotective effect than ischemic preconditioning. The protective impact of hypothermic preconditioning depends upon 3-adrenergic receptor stimulation, an increase in cAMP levels, activation of protein kinase A and protein kinase C, AMP-activated protein kinase (AMPK) and mitochondrial permeability transition pore blocking. The hypothermic preconditioning had no effect on the phosphorylation of GSK-3J3 (glycogen synthase kinase-3beta) and Akt-kinase. The reactive oxygen species end endogenous catecholamines are triggers or mediators of hypothermic preconditioning of heart.  相似文献   

5.
Zhou FW  Li YJ  Lu R  Deng HW 《Life sciences》1999,64(13):1091-1097
This study was designed to explore the protective effect of ischemic preconditioning on reperfusion-induced coronary endothelial dysfunction, with a focus on the role of calcitonin gene-related peptide (CGRP) in this effect, in the isolated perfused rat heart. Thirty minutes of global ischemia and 30 min of reperfusion significantly decreased heart rate, left ventricular pressure, and its first derivative and impaired vasodilator responses to acetylcholine. Ischemia-reperfusion did not affect vasodilator responses to sodium nitroprusside. Preconditioning induced by three cycles of 5 min of ischemia and 5 min of reperfusion produced a significant improvement in cardiac function concomitantly with an amelioration of vasodilator responses to acetylcholine. The protective effects of ischemic preconditioning were abolished by CGRP(8-37) (10(-7) M) , the selective CGRP receptor antagonist. After pretreatment with capsaicin (50 mg x kg(-1), s.c.) to deplete endogenous CGRP, the preconditioning effect was absent. Pretreatment with exogenous CGRP (5 x 10(-9) M) for 5 min induced a preconditioning-like protection. The present study suggests that the cardioprotection of ischemic preconditioning is related to the preservation of the coronary endothelial cell, and that the protective effect of preconditioning is mediated by endogenous CGRP in the isolated perfused rat heart.  相似文献   

6.
Hepatic ischemia/reperfusion injury has immediate and deleterious effects on the outcome of patients after liver surgery. The precise mechanisms leading to the damage have not been completely elucidated. However, there is substantial evidence that the generation of oxygen free radicals and disturbances of the hepatic microcirculation are involved in this clinical syndrome. Microcirculatory dysfunction of the liver seems to be mediated by sinusoidal endothelial cell damage and by the imbalance of vasoconstrictor and vasodilator molecules, such as endothelin (ET), reactive oxygen species (ROS), and nitric oxide (NO). This may lead to no-reflow phenomenon with release of proinflammatory cytokines, sinusoidal plugging of neutrophils, oxidative stress, and as an ultimate consequence, hypoxic cell injury and parenchymal failure. An inducible potent endogenous mechanism against ischemia/reperfusion injury has been termed ischemic preconditioning. It has been suggested that preconditioning could inhibit the effects of different mediators involved in the microcirculatory dysfunction, including endothelin, tumor necrosis factor-alpha, and oxygen free radicals. In this review, we address the mechanisms of liver microcirculatory dysfunction and how ischemic preconditioning could help to provide new surgical and/or pharmacological strategies to protect the liver against reperfusion damage.  相似文献   

7.
We sought to determine the mechanisms whereby brief administration of bradykinin (bradykinin preconditioning, BK-PC) before prolonged ischemia followed by reperfusion (I/R) prevents postischemic microvascular dysfunction. Intravital videomicroscopic approaches were used to quantify I/R-induced leukocyte/endothelial cell adhesive interactions and microvascular barrier disruption in single postcapillary venules of the rat mesentery. I/R increased the number of rolling, adherent, and emigrated leukocytes and enhanced venular albumin leakage, effects that were prevented by BK-PC. The anti-inflammatory effects of BK-PC were largely prevented by concomitant administration of a B(2)-receptor antagonist but not by coincident B(1) receptor blockade, nitric oxide (NO) synthase inhibition, or cyclooxygenase blockade. However, NO synthase blockade during reperfusion after prolonged ischemia was effective in attenuating the anti-inflammatory effects of BK-PC. Pan protein kinase C (PKC) inhibition antagonized the beneficial effects of BK-PC but only when administered during prolonged ischemia. In contrast, specific inhibition of the conventional PKC isotypes failed to alter the effectiveness of BK-PC. These results indicate that bradykinin can be used to pharmacologically precondition single mesenteric postcapillary venules to resist I/R-induced leukocyte recruitment and microvascular barrier dysfunction by a mechanism that involves B(2) receptor-dependent activation of nonconventional PKC isotypes and subsequent formation of NO.  相似文献   

8.
A number of works show that the mitogen-activated protein kinase (MAPK) signalling pathway responds actively in cerebral ischaemia and reperfusion. We undertook our present studies to clarify the role of mixed-lineage kinase 3 (MLK3), a MAPK kinase kinase (MAPKKK) in MAPK cascades, in global ischaemia and ischaemic tolerance. The mechanism concerning NMDA receptor-mediated Akt1 activation underlying ischaemic tolerance, was also investigated. Sprague-Dawley rats were subjected to 6 min of ischaemia and differing times of reperfusion. Our results showed MLK3 was activated in the hippocampal CA1 region with two peaks occurring at 30 min and 6 h, respectively. This activation returned to base level 3 days later. Both preconditioning with 3 min of sublethal ischaemia and NMDA pretreatment inhibited the 6-h peak of activation. However, pretreatment of ketamine before preconditioning reversed the inhibiting effect of preconditioning on MLK3 activation at 6 h of reperfusion. In the case of Akt1, however, preconditioning and NMDA pretreatment enhanced Akt1 activation at 10 min of reperfusion. Furthermore, ketamine pretreatment reversed preconditioning-induced increase of Akt1 activation. We also noted that pretreatment of LY294002 before preconditioning reversed both the inhibition of MLK3 activation at 6 h of reperfusion and the increase in Akt1 activation at 10 min of reperfusion. The above-mentioned results lead us to conclude that, in the hippocampal CA1 region, preconditioning inhibits MLK3 activation after lethal ischaemia and reperfusion and, furthermore, this effect is mediated by Akt1 activation through NMDA receptor stimulation.  相似文献   

9.
Rehni AK  Singh TG 《Cytokine》2012,60(1):83-89
The present study has been designed to investigate the potential role of CCR-2 chemokine receptor in ischemic preconditioning as well as postconditioning induced reversal of ischemia-reperfusion injury in mouse brain. Bilateral carotid artery occlusion of 17min followed by reperfusion for 24h was employed in present study to produce ischemia and reperfusion induced cerebral injury in mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was evaluated using elevated plus-maze test and Morris water maze test. Rota rod test was employed to assess motor incoordination. Bilateral carotid artery occlusion followed by reperfusion produced cerebral infarction and impaired memory and motor co-ordination. Three preceding episodes of bilateral carotid artery occlusion for 1min and reperfusion of 1min were employed to elicit ischemic preconditioning of brain, while three episodes of bilateral carotid artery occlusion for 10s and reperfusion of 10s immediately after the completion of were employed to elicit ischemic postconditioning of brain. Both prior ischemic preconditioning as well as ischemic postconditioning immediately after global cerebral ischemia prevented markedly ischemia-reperfusion-induced cerebral injury as measured in terms of infarct size, loss of memory and motor coordination. RS 102895, a selective CCR-2 chemokine receptor antagonist, attenuated the neuroprotective effect of both the ischemic preconditioning as well as postconditioning. It is concluded that the neuroprotective effect of both ischemic preconditioning as well as ischemic postconditioning may involve the activation of CCR-2 chemokine receptors.  相似文献   

10.
AimsThis study aims to investigate the role of peripheral δ2 opioid receptors in cardiac tolerance to ischemia/reperfusion injury and to examine the contribution of PKC, TK, KATP channels and the autonomic nervous system in δ2 cardioprotection.Main methodsDeltorphin II and various inhibitors were administered in vivo prior to coronary artery occlusion and reperfusion in a rat model. The animals were monitored for the development of arrhythmias, infarct development and the effects of selected inhibitors.Key findingsPretreatment with peripheral and δ2 specific opioid receptor (OR) antagonists completely abolished the cardioprotective effects of deltorphin II. In contrast, the selective δ1 OR antagonist 7-benzylidenenaltrexone (BNTX) had no effect. The protein kinase C (PKC) inhibitor chelerythrine and the NO-synthase inhibitor L-NAME (N-nitro-l-arginine methyl ester) also reversed both deltorphin II effects. The nonselective ATP-sensitive K+ (KATP) channel inhibitor glibenclamide and the selective mitochondrial KATP channel inhibitor 5-hydroxydecanoic acid only abolished the infarct-sparing effect of deltorphin II. Inhibition of tyrosine kinase (TK) with genistein, the ganglion blocker hexamethonium and the depletion of endogenous catecholamine storage with guanethidine reversed the antiarrhythmic action of deltorphin II but did not change its infarct-sparing action.SignificanceThe cardioprotective mechanism of deltorphin II is mediated via stimulation of peripheral δ2 opioid receptors. PKC and NOS are involved in both its infarct-sparing and antiarrhythmic effects. Infarct-sparing is dependent upon mitochondrial KATP channel activation while the antiarrhythmic effect is dependent upon TK activation. Endogenous catecholamine depletion reduced antiarrhythmic effects but did not alter the infarct-sparing effect of deltorphin II.  相似文献   

11.
R Lu  Y J Li  H W Deng 《Regulatory peptides》1999,82(1-3):53-57
Previous studies have suggested that calcitonin gene-related peptide (CGRP) may play an important role in the mediation of ischemic preconditioning. In the present study, we examined the release of CGRP during ischemic preconditioning and the effect of preconditioning frequency on this effect in the isolated rat heart. Thirty minutes of global ischemia and 40 min of reperfusion caused a significant cardiac dysfunction and an increase in the release of creatine kinase (CK) during reperfusion. Preconditioning with one, two or three cycles of 5-min ischemia and 5-min reperfusion caused a marked improvement of cardiac function and a decrease in the release of CK, and there was no difference in the degree of improvement among groups. The protective effects of ischemic preconditioning were abolished by the CGRP receptor antagonist CGRP(8-37). A single preconditioning cycle induced a significant increase in the release of CGRP in the coronary effluent. In the hearts treated with two or three preconditioning cycles, the level of CGRP was highest in the first cycle, and was gradually decreased with increasing number of cycles of preconditioning. These results suggest that the protective effects of ischemic preconditioning are mediated by endogenous CGRP in the isolated rat heart.  相似文献   

12.
Pharmacological preconditioning limits myocardial infarct size after ischemia/reperfusion. Dexmedetomidine is an α(2)-adrenergic receptor agonist used in anesthesia that may have cardioprotective properties against ischemia/reperfusion injury. We investigate whether dexmedetomidine administration activates cardiac survival kinases and induces cardioprotection against regional ischemia/reperfusion injury. In in vivo and ex vivo models, rat hearts were subjected to 30 min of regional ischemia followed by 120 min of reperfusion with dexmedetomidine before ischemia. The α(2)-adrenergic receptor antagonist yohimbine was also given before ischemia, alone or with dexmedetomidine. Erk1/2, Akt and eNOS phosphorylations were determined before ischemia/reperfusion. Cardioprotection after regional ischemia/reperfusion was assessed from infarct size measurement and ventricular function recovery. Localization of α(2)-adrenergic receptors in cardiac tissue was also assessed. Dexmedetomidine preconditioning increased levels of phosphorylated Erk1/2, Akt and eNOS forms before ischemia/reperfusion; being significantly reversed by yohimbine in both models. Dexmedetomidine preconditioning (in vivo model) and peri-insult protection (ex vivo model) significantly reduced myocardial infarction size, improved functional recovery and yohimbine abolished dexmedetomidine-induced cardioprotection in both models. The phosphatidylinositol 3-kinase inhibitor LY-294002 reversed myocardial infarction size reduction induced by dexmedetomidine preconditioning. The three isotypes of α(2)-adrenergic receptors were detected in the whole cardiac tissue whereas only the subtypes 2A and 2C were observed in isolated rat adult cardiomyocytes. These results show that dexmedetomidine preconditioning and dexmedetomidine peri-insult administration produce cardioprotection against regional ischemia/reperfusion injury, which is mediated by the activation of pro-survival kinases after cardiac α(2)-adrenergic receptor stimulation.  相似文献   

13.
This study represents results of investigation carried out to determine the endothelium-protective effect of early and late phases of brain ischemic preconditioning as well as local and remote adaptation. The experiments were performed on adult male rats. Prolonged 30-min four vessels brain ischemia followed by 120-min reperfusion on carotid arteries, was performed (control group). Early and late local ischemic preconditioning was due to both 5-min ischemia and 30-min and 48 h reperfusion respectively on carotid arteries. Remote ischemic preconditioning was caused by 30-min ischemia and also by 15-min and 48 h reperfusion, respectively (early and late phases of adaptation) on femoral artery before prolonged brain ischemia described above. To estimate the role of nitric oxide in ischemic adaptation, mechanisms involved both nonselective blocker of NO-synthesis (N omega-nitro-L-arginine) in the time of early adaptation phase and the relatively selective iNOS inhibitor S-methylisothiourea sulfate, given before sustained brain ischemia, on the late preconditioning. Registration of brain blood flow was made by ultrasonic high-frequency Doppler device. Degree of brain edema was studied and evaluation of desquamated endothelial cells in blood was carried out. Early and late phases of local ischemic preconditioning were found to improve the brain blood flow and level of circulatory endothelial cells as well as to reduce degree of edema. The endothelium-protective effect of remote ischemic preconditioning has been proved in this study only on the late phase. Nitric oxygen was found to be important endothelium-protective factor in ischemic preconditioning.  相似文献   

14.
In this study we used an in vitro model of delayed preconditioning to investigate activation of mitogen-activated protein kinases (MAPKs) and their potential role in protection. Neonatal rat cardiomyocytes were preconditioned using a buffer containing glycolytic inhibitors and low pH (minimal metabolic preconditioning; MMPC) consisting of modified Krebs buffer, 10 mM 2-deoxyglucose, and 20 mM lactate, pH 6.8, for 2 h followed by 24 h of simulated reperfusion before lethal simulated ischemia (LSI). MAPK activation during the MMPC protocol was determined using phospho-specific antisera and the effect on protection determined following LSI. Rapid, transient phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 MAPK was observed during each of the MMPC, reperfusion, and LSI phases; an effect blocked by MAPK inhibitors PD-98059 and SB-203580, respectively, but not by the protein kinase C (PKC) inhibitor Ro31-8220. However, although MMPC was blocked by Ro31-8220, treatment with the MAPK inhibitors during the preconditioning protocol did not block delayed protection conferred by MMPC. Thus the data suggest that, in this model of delayed preconditioning, protection appears to be PKC dependent but independent of ERK1/2 or p38 MAPK activation.  相似文献   

15.
mitoKATP通道参与心肌缺血预处理保护作用的机制   总被引:1,自引:0,他引:1  
目的:探讨血管紧张素转换酶抑制剂(ACEI)和阈下缺血预处理联合预处理诱导的心肌保护作用中mi-toKatp通道激动后的作用机制:方法:采用离体大鼠心脏Langendorff灌流模型,观察心脏电脱耦联发生时间、细胞膜Na^+/K^+-ATPase和Ca^2+/Mg^2+-ATPase活性的改变:结果:单独使用卡托普利、或给予大鼠心脏2min缺血/10min复灌作为阈下缺血预处理,均不能改善长时间缺血/复灌引起的心脏收缩功能下降?而卡托普利和阂下缺血预处理联合使用可增高心脏收缩功能。mitoKatp通道特异性阻断剂5-HD可取消这一联合预处理的作用一联合预处理可引起缺血后电脱耦联发生时间延长,缺血心肌细胞膜Na^+/K^+-ATPase和Ca^2+/Mg^2+-ATPase活性增高;5-HD可取消此作用结论:mitoKatp通道参与了联合预处理延迟缺血引起的细胞间脱耦联和促进细胞膜离子通道稳定性维持的作用。  相似文献   

16.
Angiotensin‐converting enzyme inhibitors (ACE‐I) display vasoprotective activity and represent the cornerstone in the treatment of cardiovascular diseases. In this study, we tested whether Fourier transform infrared (FTIR)‐based analysis of blood plasma is sensitive to detect vasoprotective effects of treatment with perindopril including reversal of endothelial dysfunction in diabetes. For this purpose, plasma samples were collected from untreated db/db mice, db/db mice treated with 2 or 10 mg/kg perindopril and db+ mice. The effect of perindopril on endothelial function was examined in ex vivo aortic rings; 10 mg/kg but not 2 mg/kg of perindopril reversed endothelial dysfunction. In plasma of db/db mice, the balance between conformations of plasma proteins was noted, and treatment with perindopril at a high dose but not at a low dose reversed this effect. This was revealed by amide II/amide I ratio attributed to increased β‐sheet formation. Spectral markers at 3010, 1520/1238 cm?1, representative for unsaturation degree of lipids and phosphorylation of tyrosine, respectively, were also affected by perindopril treatment. In conclusion, although metabolic abnormalities associated with type 2 diabetes mellitus such as hypertriglyceridemia and hyperglycemia strongly affected spectral FTIR profile of diabetic plasma, we identified FTIR features that seem to be associated with the vasoprotective activity of ACE‐I.   相似文献   

17.
Although pentoxifylline (PTXF), a phosphodiesterase inhibitor, has been reported to exert beneficial effects in cardiac bypass surgery, its effect and mechanisms against ischemia-reperfusion (I/R) injury in heart are poorly understood. Because I/R is known to increase the level of tumor necrosis factor (TNF)-alpha in myocardium and PTXF has been shown to depress the production of TNF-alpha in failing heart, this study examined the hypothesis that PTXF may attenuate cardiac dysfunction and reduce TNF-alpha content in I/R heart. For this purpose, isolated rat hearts were subjected to global ischemia for 30 min followed by reperfusion for 2-30 min. Although cardiac dysfunction due to ischemia was not affected, the recovery of heart function upon reperfusion was markedly improved by PTXF treatment. This cardioprotective effect of PTXF was dose dependent; maximal effect was seen at a concentration of 125 microM. TNF-alpha, nuclear factor-kappaB (NF-kappaB), and phosphorylated NF-kappaB contents were decreased in ischemic heart but were markedly increased within 2 min of starting reperfusion. The ratio of cytosolic-to-homogenate NF-kappaB was decreased, whereas the ratio of particulate-to-homogenate NF-kappaB was increased in I/R hearts. These changes in TNF-alpha and NF-kappaB protein contents as well as in NF-kappaB redistribution due to I/R were significantly attenuated by PTXF treatment. The results of this study indicate that the cardioprotective effects of PTXF against I/R injury may be due to reductions in the activation of NF-kappaB and the production of TNF-alpha content.  相似文献   

18.
Wang RM  Yang F  Zhang YX 《Life sciences》2006,79(19):1839-1846
Accumulating evidence implicates activation (phosphorylation) of mitogen-activated protein kinases (MAPK) during nonlethal ischemic preconditioning in the protection of hippocampal CA1 neuron against subsequent ischemic events. In this paper, we undertook to identify the role of extracellular signal regulated kinase (ERK) 5 in cerebral ischemic preconditioning (CIP). Three minutes of ischemia was induced as preconditioning stimulus. Three days later, 6 min of ischemia was induced. The levels of ERK5 protein expression and its activation were detected with or without the CIP in hippocampal CA1 and the dentate gyrus (DG) regions. Our results showed that ERK5 was activated selectively in hippocampal CA1 region with, but not without, the ischemic preconditioning. Notably, during the later phase of reperfusion, the rise in ERK5 activation was strong and persistent with a peak occurring at the third day. The activation peak was effectively prevented and ERK5 protein expression was significantly decreased by intracerebroventricular infusion of ERK5 antisense oligonucleotide (every 24 h for 3 days before the preconditioning), but not by sense oligonucleotide or vehicle. Subsequently, the CA1 neuronal loss was largely elevated. Moreover, both MK801 (10 microM), an antagonist of NMDA receptor, and EGTA (100 mM, but neither 50 nor 150 mM), an extracellular Ca2+ chelator, not only effectively inhibited the ERK5 activation but also markedly abolished CIP-induced survival of the CA1 neurons. These results suggested that activation of the ERK5 pathway by CIP was at least partly dependent on moderate Ca2+ influx via NMDA receptor, which might contribute to ischemic tolerance in hippocampal CA1 region of rats.  相似文献   

19.
The paradigm of postconditioning to protect the heart   总被引:3,自引:0,他引:3  
Ischaemic preconditioning limits the damage induced by subsequent ischaemia/reperfusion (I/R). However, preconditioning is of little practical use as the onset of an infarction is usually unpredictable. Recently, it has been shown that the heart can be protected against the extension of I/R injury if brief (10-30 sec.) coronary occlusions are performed just at the beginning of the reperfusion. This procedure has been called postconditioning (PostC). It can also be elicited at a distant organ, termed remote PostC, by intermittent pacing (dyssynchrony-induced PostC) and by pharmacological interventions, that is pharmacological PostC. In particular, brief applications of intermittent bradykinin or diazoxide at the beginning of reperfusion reproduce PostC protection. PostC reduces the reperfusion-induced injury, blunts oxidant-mediated damages and attenuates the local inflammatory response to reperfusion. PostC induces a reduction of infarct size, apoptosis, endothelial dysfunction and activation, neutrophil adherence and arrhythmias. Whether it reduces stunning is not clear yet. Similar to preconditioning, PostC triggers signalling pathways and activates effectors implicated in other cardioprotective manoeuvres. Adenosine and bradykinin are involved in PostC triggering. PostC triggers survival kinases (RISK), including Akappat and extracellular signal-regulated kinase (ERK). Nitric oxide, via nitric oxide synthase and non-enzymatic production, cyclic guanosine monophosphate (cGMP) and protein kinases G (PKG) participate in PostC. PostC-induced protection also involves an early redox-sensitive mechanism, and mitochondrial adenosine-5' -triphosphate (ATP)-sensitive K(+) and PKC activation. Protective pathways activated by PostC appear to converge on mitochondrial permeability transition pores, which are inhibited by acidosis and glycogen synthase kinase-3beta (GSK-3beta). In conclusion, the first minutes of reperfusion represent a window of opportunity for triggering the aforementioned mediators which will in concert lead to protection against reperfusion injury. Pharmacological PostC and possibly remote PostC may have a promising future in clinical scenario.  相似文献   

20.
Ischemic preconditioning (IP) is a cardioprotective mechanism against myocellular death and cardiac dysfunction resulting from reperfusion of the ischemic heart. At present, the precise list of mediators involved in IP and the pathways of their mechanisms of action are not completely known. The aim of the present study was to investigate the role of platelet-activating factor (PAF), a phospholipid mediator that is known to be released by the ischemic-reperfused heart, as a possible endogenous agent involved in IP. Experiments were performed on Langendorff-perfused rat hearts undergoing 30 min of ischemia followed by 2 h of reperfusion. Treatment with a low concentration of PAF (2 x 10(-11) M) before ischemia reduced the extension of infarct size and improved the recovery of left ventricular developed pressure during reperfusion. The cardioprotective effect of PAF was comparable to that observed in hearts in which IP was induced by three brief (3 min) periods of ischemia separated by 5-min reperfusion intervals. The PAF receptor antagonist WEB-2170 (1 x 10(-9) M) abrogated the cardioprotective effect induced by both PAF and IP. The protein kinase C (PKC) inhibitor chelerythrine (5 x 10(-6) M) or the phosphoinositide 3-kinase (PI3K) inhibitor LY-294002 (5 x 10(-5) M) also reduced the cardioprotective effect of PAF. Western blot analysis revealed that following IP treatment or PAF infusion, the phosphorylation of PKC-epsilon and Akt (the downstream target of PI3K) was higher than that in control hearts. The present data indicate that exogenous applications of low quantities of PAF induce a cardioprotective effect through PI3K and PKC activation, similar to that afforded by IP. Moreover, the study suggests that endogenous release of PAF, induced by brief periods of ischemia and reperfusion, may participate to the triggering of the IP of the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号