首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 524 毫秒
1.
In order to study the quantitative relationship between fatty acid synthesis and pentose phosphate-cycle activity under different hormonal and dietary conditions affecting the extent of glucose uptake, cells isolated from rat epididymal adipose tissue were incubated in bicarbonate buffer containing [U-(14)C]-, [1-(14)C]- or [6-(14)C]-glucose. From the amount of glucose taken up, the production of lactate and pyruvate, and the incorporation of (14)C from differently labelled [(14)C]glucose into CO(2), fatty acids and glyceride glycerol, the rates of glucose metabolism via different pathways and the extent of lipogenesis under various experimental conditions were determined. The contribution of the pentose phosphate-cycle to glucose metabolism under normal conditions was calculated to be 8%. Starvation and re-feeding, and the presence of insulin, caused an enhancement of glucose uptake, pentose phosphate-cycle activity and fatty acid synthesis. Plots of both pentose phosphate-cycle activity and fatty acid synthesis versus glucose uptake revealed that the extent of glucose uptake, over a wide range, determines the rates of fatty acid synthesis and glucose metabolism via the pentose phosphate cycle. A balance of formation and production of nicotinamide nucleotides in the cytoplasm was established. The total amount of cytoplasmic NADH and NADPH formed was only in slight excess over the hydrogen equivalents required for the synthesis of fatty acids, glyceride glycerol and lactate. Except in cells from starved animals, the pentose phosphate cycle was found to provide only about 60% of the NADPH required for fatty acid synthesis. The results are discussed with respect to an overall control of the different metabolic and biosynthetic reactions in the fat-cells by the amount of glucose transported into the cell.  相似文献   

2.
The effects of insulin and of two lipolytic hormones (epinephrine and ACTH1) on the rate and pattern of glucose metabolism were compared during incubation of isolated fat cells, obtained from epididymal fat pads of rats of varying age and degrees of adiposity. Glucose metabolism and the intracellular free fatty acid levels were expressed on a per cell basis and in relation to adipocyte size. The data for total glucose metabolism show that, in contrast to the declining insulin effect observed with adipocyte enlargement, the stimulation of glucose uptake and metabolism by these lipolytic hormones was significantly greater in the larger fat cells from the older fatter rats than in the smaller ones from the younger leaner rats. Lipolytic hormones suppressed, whereas insulin enhanced, fatty acid synthesis; moreover the lipolytic hormones stiumlated glucose ce effect of epinephrine on the intracellular free fatty acid levels was greater in the small fat cells than in the large ones; this effect of epinephrine was markedly curtained by the presence of glucose in the incubation medium, making it unlikely that acceleration of glucose metabolism by the lipolytic stimulus was mediated by an elevation of the intracellular free fatty acid level. The present results show a markedly enhanced capacity of the large adipocytes to accelerate glucose metabolism in response to these liplytic hormones. Thus, in contrast to prevailing notions of declining hormonal responsiveness with expanding fat cell size in older and more obese animals, this study documents an instance of increased hormonal response in enlarged adipocytes and points to the need for a more comprehensive reevaluation of the various hormonal effects in adipocytes of different size.  相似文献   

3.
Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40–70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.  相似文献   

4.
Overexpression of the glucose-phosphorylating enzyme glucokinase (GK) or members of the family of glycogen-targeting subunits of protein phosphatase-1 increases hepatic glucose disposal and glycogen synthesis. This study was undertaken to evaluate the functional properties of a novel, truncated glycogen-targeting subunit derived from the skeletal muscle isoform G(M)/R(Gl) and to compare pathways of glycogen metabolism and their regulation in cells with overexpressed targeting subunits and GK. When overexpressed in hepatocytes, truncated G(M)/R(Gl) (G(M)DeltaC) was approximately twice as potent as full-length G(M)/R(Gl) in stimulation of glycogen synthesis, but clearly less potent than GK or two other native glycogen-targeting subunits, G(L) and PTG. We also found that cells with overexpressed G(M)DeltaC are unique in that glycogen was efficiently degraded in response to lowering of media glucose concentrations, stimulation with forskolin, or a combination of both maneuvers, whereas cells with overexpressed G(L), PTG, or GK exhibited impairment in one or both of these glycogenolytic signaling pathways. (2)H NMR analysis of purified glycogen revealed that hepatocytes with overexpressed GK synthesized a larger portion of their glycogen from triose phosphates and a smaller portion from tricarboxylic acid cycle intermediates than cells with overexpressed glycogen-targeting subunits. Additional evidence for activation of distinct pathways of glycogen synthesis by GK and targeting subunits is provided by the additive effect of co-overexpression of the two types of proteins upon glycogen synthesis and a much larger stimulation of glucose utilization, glucose transport, and lactate production elicited by GK. We conclude that overexpression of the novel targeting subunit G(M)DeltaC confers unique regulation of glycogen metabolism. Furthermore, targeting subunits and GK stimulate glycogen synthesis by distinct pathways.  相似文献   

5.
骨钙素,亦称γ-羧基骨蛋白、骨谷氨酸蛋白和骨依赖维生素K蛋白,是一种由非增殖期成骨细胞合成的分泌蛋白,经过翻译后加工生成羧化骨钙素而参与骨骼发育。既往研究认为它是骨形成和骨转化的标志。然而最新研究发现,未发生羧化修饰的骨钙素对糖代谢有一定的影响作用,可促进胰腺β细胞增殖和胰岛素分泌,减弱胰岛素抵抗。多项研究证实高血糖可影响骨钙素合成,骨钙素在糖尿病患者中降低,糖尿病患者因胰岛素分泌和作用缺陷对胰岛素受体作用减弱,影响成骨细胞摄取核酸、氨基酸、胶原纤维合成,使其合成分泌骨钙素减少。这些研究确立了骨钙素为一种可以影响糖代谢的重要激素,拓展了对骨骼功能影响的同时也为新型降血糖药物的开发提供了新靶点。本文针对骨钙素对糖代谢的影响做一综述。  相似文献   

6.
RNA biosynthesis in adipose tissue: effect of fasting   总被引:2,自引:0,他引:2  
RNA metabolism has been examined in intact adipose tissue and isolated fat cells from rats. The lipocyte contains three species of RNA with sedimentation rates corresponding to those of ribosomal and transfer RNA. The de novo biosynthesis of RNA by adipose tissue cells in vitro was demonstrated. The base ratios of the RNA formed indicate that it was synthesized from a DNA template. Actinomycin D administered in vivo and in vitro decreased total RNA synthesis with the most marked effect on the synthesis of the heavy RNA components. Actinomycin D or puromycin added in vitro was not toxic: they did not inhibit total fatty acid biosynthesis or glucose utilization by the fat pad nor did they inhibit the immediate stimulation of fatty acid biosynthesis and glucose uptake by the addition of insulin in vitro. Starvation for 48-72 hr significantly depressed the synthesis of the heavy RNA components as measured by in vitro uridine incorporation into the individual RNA classes. Refeeding the fasted rat with glucose repaired the defect in RNA biosynthesis before the biosynthesis of monoenoic fatty acid was completely restored. Actinomycin D administered at the time of refeeding prevented the repair of monoenoic fatty acid synthesis. It is concluded that RNA metabolism is intimately involved in the control of biosynthetic reactions in adipose tissue.  相似文献   

7.
As the main precursor for lactose synthesis, large amounts of glucose are required by lactating dairy cows. Milk yield greatly depends on mammary lactose synthesis due to its osmoregulatory property for mammary uptake of water. Thus, glucose availability to the mammary gland could be a potential regulator of milk production. In the present study, the effect of glucose availability on expression of the key genes involved in synthesis of milk fat, lactose and glucose metabolism in vitro was investigated. Bovine mammary epithelial cells (BMEC) were treated for 12 h with various concentrations of glucose (2.5, 5, 10 or 20 mmol/L). The higher concentrations of glucose (10–20 mmol/L) did not affect the mRNA expression of acetyl-CoA carboxylase, diacyl glycerol acyl transferase, glycerol-3 phosphate acyl transferase and α-lactalbumin, whereas fatty acid synthase, sterol regulatory element binding protein-1 and beta-1, 4-galactosyl transferase mRNA expression increased at 10 mmol/L and then decreased at 20 mmol/L. The content of lactose synthase increased with increasing concentration of glucose, with addition of highest value at 20 mmol/L of glucose. Moreover, the increased glucose concentration stimulated the activities of pyruvate kinase and glucose-6-phosphate dehydrogenase, and elevated the energy status of the BMEC. Therefore, it was deduced that after increasing glucose availability, the extra absorbed glucose was partitioned to entering the synthesis of milk fat and lactose by the regulation of the mRNA expression of key genes, promoting glucose metabolism by glycolysis and pentose phosphate pathway as well as energy status. These results indicated that the sufficient availability of glucose in BMEC may promote glucose metabolism, and affect the synthesis of milk composition.  相似文献   

8.
Abnormal glucose metabolism may contribute to cancer progression. As a member of the CRK (v-crk sarcoma virus CT10 oncogene homologue) adapter protein family, CRKL (CRK-like) associated with the development and progression of various tumours. However, the exact role and underlying mechanism of CRKL on energy metabolism remain unknown. In this study, we investigated the effect of CRKL on glucose metabolism of hepatocarcinoma cells. CRKL and PI3K were found to be overexpressed in both hepatocarcinoma cells and tissues; meanwhile, CRKL up-regulation was positively correlated with PI3K up-regulation. Functional investigations revealed that CRKL overexpression promoted glucose uptake, lactate production and glycogen synthesis of hepatocarcinoma cells by up-regulating glucose transporters 1 (GLUT1), hexokinase II (HKII) expression and down-regulating glycogen synthase kinase 3β (GSK3β) expression. Mechanistically, CRKL promoted glucose metabolism of hepatocarcinoma cells via enhancing the CRKL-PI3K/Akt-GLUT1/HKII-glucose uptake, CRKL-PI3K/Akt-HKII-glucose-lactate production and CRKL-PI3K/Akt-Gsk3β-glycogen synthesis. We demonstrate CRKL facilitates HCC malignancy via enhancing glucose uptake, lactate production and glycogen synthesis through PI3K/Akt pathway. It provides interesting fundamental clues to CRKL-related carcinogenesis through glucose metabolism and offers novel therapeutic strategies for hepatocarcinoma.  相似文献   

9.
Pluripotent stem cells are known to display distinct metabolic phenotypes than their somatic counterparts. While accumulating studies are focused on the roles of glucose and amino acid metabolism in facilitating pluripotency, little is known regarding the role of lipid metabolism in regulation of stem cell activities. Here, we show that fatty acid (FA) synthesis activation is critical for stem cell pluripotency. Our initial observations demonstrated enhanced lipogenesis in pluripotent cells and during cellular reprogramming. Further analysis indicated that de novo FA synthesis controls cellular reprogramming and embryonic stem cell pluripotency through mitochondrial fission. Mechanistically, we found that de novo FA synthesis regulated by the lipogenic enzyme ACC1 leads to the enhanced mitochondrial fission via (i) consumption of AcCoA which affects acetylation‐mediated FIS1 ubiquitin–proteasome degradation and (ii) generation of lipid products that drive the mitochondrial dynamic equilibrium toward fission. Moreover, we demonstrated that the effect of Acc1 on cellular reprogramming via mitochondrial fission also exists in human iPSC induction. In summary, our study reveals a critical involvement of the FA synthesis pathway in promoting ESC pluripotency and iPSC formation via regulating mitochondrial fission.  相似文献   

10.
Glucagon is considered for mechanisms of its action on the carbon metabolism, its significance in the complex polyhormonal regulation of the glucose synthesis and metabolism being studied. Glucagon exerts its effect on cells through specific receptors arranged on the plasma membrane, while its effect on the carbohydrate metabolism is mediated, mainly, by cAMP-dependent phosphorylation os some proteins participating in regulation of carbohydrate synthesis and metabolism including the proteins controlling expression of many genes. The glucagon effect on the level and efficiency of the action of insulin and some other hormones is an important link in the glucagon action on the carbohydrate metabolism.  相似文献   

11.
We have investigated the role of arachidonic acid (AA) metabolism in natural killer (NK) cell activity. Human nonadherent (NA) peripheral blood lymphocytes were used as effector cells against 51Cr-labeled K562 target cells. Synthesis of leukotriene C4 (LTC4) is dependent on glutathione S-transferase (GST). We have chosen to study three putative GST inhibitors, namely, ethacrynic acid (ET), caffeic acid (CA), and ferulic acid (FA), with regard to NK activity and with regard to their effect on AA metabolism. The GST inhibitors inhibited NK lysis when added directly to the NK assay. The GST inhibitors inhibited LTC4 synthesis as induced by calcium ionophore A23187 in a dose-dependent manner similar to their inhibition of NK activity. However, only ET was selective, for it had little effect on LTB4, 5-hydroxyeicosatetraenoic acid, and prostaglandin E2 synthesis. LTC4 synthesis was associated with the NK-enriched fractions obtained from discontinuous Percoll gradients. NK-specific anti-Leu-11b antibody and C treatment could abrogate NK activity and LTC4 synthesis. ET was also inhibitory when NA cells were cultured at 37 degrees C for 18 hr. In this case, LTC4 could reverse the inhibitory effect of ET. Our data suggest that LTC4 plays an important role in NK activity.  相似文献   

12.
Stearoyl-CoA desaturase enzyme 1 (SCD1) is a lipogenic enzyme that is upregulated in obesity, insulin resistance, and cancer. Since glucose is a substrate for both de novo fatty acid synthesis and deoxyribose synthesis, we hypothesized that SCD1 affects these multiple synthetic pathways through changes in glucose utilization. This study determined glucose utilization for fatty acid synthesis and cell proliferation in 3T3-L1 preadipocytes during SCD1 inhibition. The effects of SCD1 on cellular metabolism as mediated by its monounstaurated fatty acid products (palmitoleate and oleate) were also observed. 3T3-L1 preadipocytes underwent differentiation induction in conjunction with one of the following treatments for 4 days: (A) no treatment, (B) SCD1 inhibitor CGX0290, (C) CGX0290 + palmitoleate, or (D) CGX0290 + oleate. All cells received medium with 50 % [U13C]-glucose. Cells were harvested on day 7 for studies of fatty acid metabolism, tricarboxylic acid (TCA) cycle activities, and deoxyribose synthesis. CGX0290 decreased fatty acid desaturation, glucose utilization for fatty acid synthesis (acetyl-CoA enrichment), and de novo synthesis. CGX0290 treatment also led to decreased cell density through increased cell death. Further analysis showed that deoxyribose new synthesis and oxidative pentose phosphate pathway activity were unchanged, while non-oxidative transketolase pathway activity was stimulated. Palmitoleate and oleate supplementation each partially ameliorated the effects of CGX0290. In 3T3-L1 cells, SCD1 promotes glucose utilization for fatty acid synthesis. In cell proliferation, SCD1 may promote cell survival, but does not impact the oxidative pathway of deoxyribose production. These effects may be mediated through the production of palmitoleate and oleate.  相似文献   

13.
Pancreatic beta cells are hyper-responsive to amino acids but have decreased glucose sensitivity after deletion of the sulfonylurea receptor 1 (SUR1) both in man and mouse. It was hypothesized that these defects are the consequence of impaired integration of amino acid, glucose, and energy metabolism in beta cells. We used gas chromatography-mass spectrometry methodology to study intermediary metabolism of SUR1 knock-out (SUR1(-/-)) and control mouse islets with d-[U-(13)C]glucose as substrate and related the results to insulin secretion. The levels and isotope labeling of alanine, aspartate, glutamate, glutamine, and gamma-aminobutyric acid (GABA) served as indicators of intermediary metabolism. We found that the GABA shunt of SUR1(-/-) islets is blocked by about 75% and showed that this defect is due to decreased glutamate decarboxylase synthesis, probably caused by elevated free intracellular calcium. Glutaminolysis stimulated by the leucine analogue d,l-beta-2-amino-2-norbornane-carboxylic acid was, however, enhanced in SUR1(-/-) and glyburide-treated SUR1(+/+) islets. Glucose oxidation and pyruvate cycling was increased in SUR1(-/-) islets at low glucose but was the same as in controls at high glucose. Malic enzyme isoforms 1, 2, and 3, involved in pyruvate cycling, were all expressed in islets. High glucose lowered aspartate and stimulated glutamine synthesis similarly in controls and SUR1(-/-) islets. The data suggest that the interruption of the GABA shunt and the lack of glucose regulation of pyruvate cycling may cause the glucose insensitivity of the SUR1(-/-) islets but that enhanced basal pyruvate cycling, lowered GABA shunt flux, and enhanced glutaminolytic capacity may sensitize the beta cells to amino acid stimulation.  相似文献   

14.
Carbohydrate metabolism of hepatocytes from starved Japanese quail   总被引:1,自引:0,他引:1  
Hepatocytes were isolated from livers of mature male and female starved Japanese quail (Coturnix coturnix japonica). The hepatocytes take up lactate and dihydroxyacetone extensively, and have a very high rate of glucose synthesis from these substrates. Fructose uptake and incorporation into glucose is much less. Pyruvate and alanine are taken up extensively, but form little glucose. There is negligible lipogenesis in cells of starved quail. Alanine increases up to 10-fold incorporation of 3HOH and 14C from several substrates into fatty acids, but it remains insignificant as compared to lipogenesis by cells of fed quail. There is little utilization of glucose, even in the presence of alanine, in marked contrast to hepatocytes from fed quail. However, glucose is phosphorylated at high rates, but most of the glucose 6-phosphate is recycled to glucose. There is a marked difference in the metabolism of polyols between the sexes. Glycerol, xylitol, and sorbitol are converted nearly quantitatively into glucose by hepatocytes of starved female quail. In cells of starved males, the uptake of polyols is higher, but conversion to glucose less efficient. In cells of starved male quail, alanine markedly stimulates the uptake of glycerol and xylitol and their conversion to glucose, but has no effect on sorbitol metabolism. In cells of female quail, alanine is without a significant effect on polyol metabolism.  相似文献   

15.
Transient Repression of the lac Operon   总被引:20,自引:9,他引:11       下载免费PDF全文
Severe transient repression of constitutive or induced beta-galactosidase synthesis occurs upon the addition of glucose to cells of Escherichia coli growing on glycerol, succinic acid, or lactic acid. Only mutants particularily well adapted to growth on glucose exhibit this phenomenon when transferred to a glucose-containing medium. No change in ribonucleic acid (RNA) metabolism was observed during transient repression. We could show that transient repression is pleiotropic, affecting all products of the lac operon. It occurs in a mutant insensitive to catabolite repression. It is established much more rapidly than catabolite repression, and is elicited by glucose analogues that are phosphorylated but not further catabolized by the cell. Thus, transient repression is not a consequence of the exclusion of inducer from the cell, does not require catabolism of the added compound, and does not involve a gross change in RNA metabolism. We conclude that transient repression is distinct from catabolite repression.  相似文献   

16.
The overabundance of dietary fats and simple carbohydrates contributes significantly to obesity and metabolic disorders associated with obesity. The liver balances glucose and lipid distribution, and disruption of this balance plays a key role in these metabolic syndromes. We investigated (1) how hepatocytes balance glucose and fatty acid metabolism when one or both nutrients are supplied in abundance and (2) whether rat hepatoma cells (McA-RH7777) reflect nutrient partitioning in a similar manner as compared with primary hepatocytes. Increasing media palmitate concentration increased fatty acid uptake, triglyceride synthesis and beta-oxidation. However, hepatoma cells had a 2-fold higher fatty acid uptake and a 2-fold lower fatty acid oxidation as compared with primary hepatocytes. McA-RH7777 cells did not synthesize significant amounts of glycogen and preferentially metabolized the glucose into lipids or into oxidation. In primary hepatocytes, the glucose was mostly spared from oxidation and instead partitioned into both de novo glycogen and lipid synthesis. Overall, lipid production was rapidly induced in response to either glucose or fatty acid excess and this may be one of the earliest indicators of metabolic syndrome development associated with nutrient excess.  相似文献   

17.
The metabolism of lactate in isolated cells from early neonatal rat brain has been studied. In these circumstances, lactate was mainly oxidized to CO2, although a significant portion was incorporated into lipids (78% sterols, 4% phosphatidylcholine, 2% phosphatidylethanolamine, and 1% phosphatidylserine). The rate of lactate incorporation into CO2 and lipids was higher than those found for glucose and 3-hydroxybutyrate. Lactate strongly inhibited glucose oxidation through the pyruvate dehydrogenase-catalyzed reaction and the tricarboxylic acid cycle while scarcely affecting glucose utilization by the pentose phosphate pathway. Lipogenesis from glucose was strongly inhibited by lactate without relevant changes in the rate of glycerol phosphate synthesis. These results suggest that lactate inhibits glucose utilization at the level of the pyruvate dehydrogenase-catalyzed reaction, which may be a mechanism to spare glucose for glycerol and NADPH synthesis. The effect of 3-hydroxybutyrate inhibiting lactate utilization only at high concentrations of 3-hydroxybutyrate suggests that before ketogenesis becomes active, lactate may be the major fuel for the neonatal brain. (-)-Hydroxycitrate and aminooxyacetate markedly inhibited lipogenesis from lactate, suggesting that the transfer of lactate carbons through the mitochondrial membrane is accomplished by the translocation of both citrate and N-acetylaspartate.  相似文献   

18.
Rapidly metabolizable compounds such as glucose or glycerol were not utilized byBacillus megaterium in the absence of manganese when grown in the supplemented nutrient broth medium. Under these conditions, growth ceased at low cell titre, 3-phosphoglyceric acid accumulated inside the cells and normal sporulation process was arrested. Addition of manganese to the medium caused disappearance of 3-phosphoglyceric acid, growth resumed and normal sporulation was observed. Synthesis of 3-phosphoglyceric acid occurred only in the mother cell compartments and it was transported for accumulation inside the forespores ofBacillus megaterium when grown in supplemented nutrient broth medium. Incubation of forespores in the presence of glucose or glycerol had no effect on 3-phosphoglyceric acid synthesis/accumulation, but it was completely utilized when forespores were incubated with manganese plus ionophore (X 537A). No other metal(s) could substitute for manganese suggesting that manganese plays crucial role in 3-phosphoglyceric acid metabolism  相似文献   

19.
(1) Glucose stimulates the incorporation of amino acids into protein in lung cells isolated by digestion of the lung stroma with collagenase. This effect reflects mainly an increase in protein synthesis since no effect of glucose had been found to the uptake of amino acid precursors and, although glucose decreases the rate of intracellular proteolysis by 15%, this effect cannot account for the increased incorporation of radioactivity into proteins. Furthermore, glucose did not induce any significant change in the intracellular content of valine. (2) For glucose to act on protein synthesis, it must be glycolyzed since its stereoisomer, L-glucose, which is not metabolized by lung cells, has no effect. (3) The mechanism of glucose action does not seem to be related simply to variations of cellular ATP content or energy charge. The following arguments seem to support this conclusion: (i) glucose does not bring about significant variations in the concentration of reactants of the adenylate system; (ii) the increase in protein synthesis induced by glucose in energy-depleted cells correlates with a rise in ATP content and energy charge; however, adenosine, which increases ATP levels in a form quantitatively similar to glucose, is unable to affect protein synthesis: (iii) glucose also accelerates the incorporation of amino acids into proteins in adenosine-treated lung cells in which the ATP concentration was almost double that of the control and the energy charge was considerably elevated, ruling out the possibility that a rise in the steady-state concentration of ATP and/or energy charge alone could be responsible for the acceleration of protein synthesis. (4) It can be concluded that the effect of glucose in increasing protein synthesis in lung cells is dependent on some signal arising from its breakdown and not to variations in the concentration of reactants or energy charge of the adenylate system.  相似文献   

20.
Metabolic patterns and insulin responsiveness of enlarging fat cells   总被引:7,自引:0,他引:7  
The rate and pattern of glucose metabolism, basal lipolysis, and intracellular concentration of free fatty acids were determined in isolated epididymal fat cell preparations (mean volume 30-800 pl) from rats on the basis of fat cell number and in relation to the cell volume. The effects of increasing glucose concentrations in the medium and of insulin on the cellular metabolic activities were compared. Expanding fat cell volume correlated positively and significantly (P < 0.001) with the synthesis of glyceride glycerol from glucose (correlation coefficient, r = 0.919), with rates of basal lipolysis (r = 0.663), and with intracellular free fatty acid accumulation (r = 0.796); it correlated negatively and significantly with glucose conversion to glyceride fatty acids (r = -0.814, P < 0.01). The differences in patterns of glucose metabolism and basal lipolysis between small (<100 pl) and large (>400 pl) fat cells were not modified by insulin or by increments in glucose concentration. The results indicate that the reduced capacity of the large fat cells to respond to insulin cannot be attributed solely to a limited capacity of the cells to take up and metabolize increasing amounts of glucose. The acquired unresponsiveness of the large cells to insulin may result from an alteration in the mechanism of action of insulin and may be related to an intracellular metabolic derangement with increased basal lipolysis, free fatty acid accumulation, and accelerated glyceride synthesis resulting from the accumulation of triglyceride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号