首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In a three-year study, mite populations were monitored in two vineyards, each having two grape varieties with different leaf hair density. In both vineyards native phytoseiids were present: Amblyseius andersoni in one vineyard, and Phytoseius finitimus in the other. The economically important predators Kampimodromus aberrans and Typhlodromus pyri were released in both vineyards in order to study their efficacy in controlling tetranychids and eriophyids and their persistence during periods of prey scarcity. In both vineyards, relative abundances of the mite species, especially phytoseiids, were found to differ on different varieties in the same vineyard. In the first experiment, A. andersoni reached higher densities and was more persistent on the variety with slightly pubescent leaf under-surface (Merlot). Typhlodromus pyri and K. aberrans releases were successful and the mites became more abundant on the variety with pubescent leaf under-surface (Verduzzo). In the second experiment, P. finitimus was more abundant on a variety with pubescent leaf under-surface (Prosecco) than with glabrous leaf under-surface (Riesling). The most interesting results of the present study concerned the interactions between native and released predators. In the first vineyard, different results were obtained when releasing T. pyri on the two varieties. On the variety with pubescent leaves, A. andersoni was rapidly displaced by T. pyri, whereas the former species persisted on the other variety throughout the three-year study, apparently becoming dominant during the last season. In contrast to T. pyri, interactions between K. aberrans and A. andersoni in this vineyard did not depend on variety. The results of the experiments carried out in the second vineyard stressed the importance of interspecific competition for phytoseiid releases. Typhlodromus pyri colonization failed on both varieties. Kampimodromus aberrans releases appeared to be more successful on Riesling than on Prosecco, where P. finitimus was more abundant. At the end of the experiments, K. aberrans displaced P. finitimus on both varieties.  相似文献   

2.
The predatory miteTyphlodromus talbii Athias-Henriot occurs in European vineyards and is often associated with economically important species. Neither its role in vineyards nor the factors affecting its population dynamics and relationships with other phytoseiid species are well known. The development and the reproduction ofT. talbii were studied in the laboratory by rearing the predator on different kinds of food (Panonychus ulmi, Eotetranychus carpini, Colomerus vitis, Tydeus caudatus, Mesembryanthemum criniflorum pollen). Overwintered females reared on tydeids survived for long periods and laid eggs, but they died after a few days when spider mites or pollen were provided. Development occurred on all mite species but not on pollen. Developmental times on tydeids were shorter than on the other prey. Oviposition was recorded on tydeids and, to a lesser extent, on eriophyids but not on spider mites or pollen. Experiments on tydeids, which resulted as being the best food, were conducted at two temperatures (20° and 27°C). The highest temperature affected the duration of development and oviposition rates positively, but total fecundity was similar. Predators reared at 27°C consumed more prey than those reared at 20°C. The life table parameters of the species were evaluated onT. caudatus (at 20° and 27°C) and onC. vitis. The highest rm ofT. talbii was found for individuals reared onT. caudatus at 27°C (0.165). Lower values were obtained on the same prey at 20°C (0.089) or onC. vitis (0.030). The feeding habits ofT. talbii may explain why the species coexists with the generalistAmblyseius aberrans orTyphlodromus pyri.  相似文献   

3.
Generalist phytoseiids are often observed for long periods on plants in the absence of prey, feeding on alternative foods and reaching high population levels. The persistence of generalist predatory mites on plants with a scarcity or absence of prey is a requirement for successful biocontrol strategies of herbivore mites. The importance of pollen as an alternative food for the support of generalist predatory mite populations is widely recognized. However, on grape the presence of pollen is often limited and thus other food sources should contribute towards generalist predatory mite persistence on perennial plants. Previous field observations reported the relationships between the population increases of generalist phytoseiids with late-season spread of grape downy mildew (GDM) Plasmopara viticola. In this study, we test the hypothesis that GDM could be a suitable food source for the predatory mites Amblyseius andersoni and Typhlodromus pyri. In the laboratory we compared the development times, oviposition rates and life-table parameters of predatory mites feeding on pollen or GDM mycelium and spores. Grape downy mildew supported the survival, development and oviposition of T. pyri and A. andersoni. Life-table parameters showed that GDM was a less suitable food source than pollen for both phytoseiid species and that it was more favorable for A. andersoni than for T. pyri. Implications for predator–prey interactions and conservation biological control in vineyards are discussed.  相似文献   

4.
Population growth and persistence of Euseius finlandicus (Oudemans), Typhlodromus pyri Scheuten and Kampimodromus aberrans (Oudemans) (Acari: Phytoseiidae) were studied in single-species and two-species systems on apple seedlings primarily infested by Panonychus ulmi Koch (Acari: Tetranychidae) in an environmentally controlled greenhouse. During the experiment, the seedlings developed natural infestations by Tetranychus urticae Koch (Acari: Tetranychidae), Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), and powdery mildew. Several weeks after the start of the experiment a condition of diminishing prey availability was created by use of hexythiazox treatments. Without heterospecific competitors, T. pyri attained a higher population level than E. finlandicus or K. aberrans when similar amounts of food (spider mites) were available to each. Population growth of T. pyri was decisively favoured by the presence of T. urticae. In the single-species systems each predatory species persisted to the end of the experiment in spite of diminishing prey. In two-species systems with T. pyri/E. finlandicus and T. pyri/K. aberrans that were started with the same number of individuals of each species, only T. pyri was left at the end of the experiment. Typhlodromus pyri became more numerous than the other species when prey was abundant (which was in accordance with the results of the single-species groups) and finally displaced E. finlandicus and K. aberrans towards the end of the experiment. The following factors may have contributed to the dominance of T. pyri: (1) the ability of adult females to survive longer without food than those of E. finlandicus and K. aberrans, (2) the ability to complete juvenile development and to sustain reproduction with phytoseiid prey and (3) an advantage in foraging behaviour over K. aberrans and E. finlandicus at low spider mite levels. Euseius finlandicus predominated in the two-species system E. finlandicus/K. aberrans, but both species persisted to the end of the experiment.  相似文献   

5.
In several perennial cropping systems, generalist or omnivorous species represent important biocontrol agents. They can persist on plants by feeding on alternative foods when prey is scarce and potentially limit pest outbreaks. Among beneficials characterised by a wide food range, those belonging to the acarine family Phytoseiidae represent important biocontrol agents. Generalist predatory mites can develop and reproduce using various food sources as alternatives to their tetranychid prey. The presence of alternative food sources can also induce switching feeding behaviour of generalist predators from prey to alternative foods. We evaluated in the laboratory the role of the grape powdery mildew (GPM) for the survival, development and reproduction of Amblyseius andersoni and Typhlodromus pyri , two important beneficial phytoseiid mites, in European and North-American vineyards. We also compared life-history parameters obtained when feeding on GPM with those obtained feeding on tetranychids mite prey or cattail pollen. Results indicated that GPM is an adequate food source for generalist mite survival and development. Results suggest that GPM can sustain mite populations in the absence of higher quality food sources. Based on optimal foraging theory, comparison of life-history parameters on GPM and mite prey suggests that the disruption of phytophagous mite control by these predatory mites in the presence of GPM appears unlikely. Implications for biological control in vineyards are discussed.  相似文献   

6.
In a series of experiments, the interspecific predation and cannibalism on immatures by the adult females of Euseius finlandicus, Kampimodromus aberrans and Typhlodromus pyri were examined under laboratory conditions. The three species showed differing tendencies to prey on each other's motile immature stages. Euseius finlandicus females consumed more larvae and protonymphs than the females of T. pyri and K. aberrans. In cages without free water E. finlandicus ate a range of 6.51 larvae or 5.31 protonymphs of T. pyri and 5.27 larvae or 5.95 protonymphs of K. aberrans per female per day. Kampimodromus aberrans and T. pyri females exhibited a greater tendency to prey on heterospecifics than on conspecifics. When feeding on phytoseiid immatures and without free water, T. pyri females survived longer and laid more eggs than the females of E. finlandicus and K. aberrans. Adult females of E. finlandicus and T. pyri having free water and preying on heterospecific protonymphs were able to maintain egg laying during the whole experimental period of 12 days. The females of all three species had difficulties in piercing phytoseiid eggs, and the number of sucked eggs per female per day was low. Kampimodromus aberrans females ate 0.48 eggs of T. pyri daily, which was the highest recorded number. The great tendency to interspecific predation on motile immature phytoseiids by the females of E. finlandicus is discussed with regard to the dominance of this species on deciduous trees and bushes in Austria.  相似文献   

7.
A natural increase of phytoseiid mite populations (Kampimodromus aberrans, Typhlodromus pyri and Phytoseius plumifer) was observed in vineyards in Languedoc, Burgundy and Corsica under integrated pest management strategies. The aim of the present study was to characterize the mechanisms of this colonization in space and time in Languedoc. The abundance of phytoseiid mites in the vegetation close to three grape fields was determined twice a year (May and July). Aerial (funnels with water) and soil (felt strip) traps were placed in and around grape fields, in order to assess the colonization potential provided by aerial dispersal and ambulatory locomotion. The populations of phytoseiid mites in the crops were studied twice a month in order to gain information on the make up of the dispersal populations. The species K. aberrans was found in largest quantities in the traps, in the natural vegetation and in the crops. Predatory mite dispersal occurred essentially by aerial dispersal and was dependent on the wind intensity and wind direction. Identical sex ratios were observed in migrant populations and in populations present in the grape fields, woody areas and hedges. A large proportion of immatures was found to move by aerial dispersal. The colonization potential (rapidity, intensity and regularity) was directly associated with the abundance of the phytoseiids and the proximity of natural vegetation. A deep, dense and tall woody area containing suitable host plants for predatory mites constituted the most stable source of phytoseiid mites. Natural colonization of vineyards provides considerable phytoseiid mite potential that could be managed in an agricultural landscape.  相似文献   

8.
The ‘Mikulov’ strain of the predatory mite Typhlodromus pyri Scheuten from south Moravian vineyards was released on cultivated strawberries infested with the two-spotted spider mite, Tetranychus urticae Koch. The strawberries were grown in field plantations and under glass. Typhlodromus pyri on vine shoots were successfully introduced into the field strawberry plantation but they produced no demonstrable control of the spider mites and they eventually declined in density with their prey. In contrast, T. pyri gave good control of spider mites in the glasshouse despite the occurrence of low humidity and water stress of the plants.  相似文献   

9.
The predation preference of singly caged adult females and nymphs of Typhlodromus pyri and Kampimodromus aberrans for con- or heterospecific immature stages as prey was tested in the laboratory. Both polyphagous predatory mite species have been previously shown to interact directly through predation on each other. The present study demonstrated that the adult females of T. pyri and K. aberrans are able to discriminate between con- and heterospecific larvae and protonymphs and that they prefer to prey upon heterospecifics when given the choice. Hunger did not reduce the propensity of the females to prefer heterospecifics over conspecifics. For proto-and deutonymphs the trends followed the results obtained with the adult females, but the preference for heterospecifics was not distinct enough to be significant. In competitive situations reciprocal predation may be a crucial mechanism in the interaction of polyphagous phytoseiid species and may contribute significantly to population persistence. The results are discussed with regard to possible associations between the ability to discriminate con- and heterospecifics and the type of feeding specialization (generalists versus specialists).  相似文献   

10.
Juvenile survival and development in Euseius finlandicus (Oudemans), Typhlodromus pyri Scheuten and Kampimodromus aberrans (Oudemans) feeding on con- and heterospecific phytoseiid immatures were investigated in the laboratory at 25 ± 1 °C and 65 ± 5% RH. More than 50% of T. pyri protonymphs preying on larvae of K. aberrans or E. finlandicus reached the adult stage. The mean developmental time of T. pyri from the protonymphal stage to adulthood was 6.3 days when feeding on K. aberrans and 7.5 days when feeding on E. finlandicus. The majority (approximately 90%) of K. aberrans protonymphs feeding on larvae of T. pyri or E. finlandicus died before reaching the deutonymphal stage; in both cases only one individual completed juvenile development. Euseius finlandicus larvae require food to reach the subsequent life stage, in contrast to larvae of T. pyri and K. aberrans, which usually do not feed at all: 10% of E. finlandicus immatures feeding on larvae of K. aberrans or T. pyri completed juvenile development (mean developmental time from larva to adult 7.0 and 6.7 days, respectively). Cannibalizing immatures of T. pyri and K. aberrans were able to reach adulthood, whereas those of E. finlandicus were not. Unfed immatures of T. pyri lived longer than the corresponding stages of E. finlandicus and K. aberrans. The present study indicates that phytoseiid immatures are suitable prey for developing stages of polyphagous phytoseiids. Since E. finlandicus, T. pyri and K. aberrans partly inhabit the same plant species, their immatures can be regarded as potential prey for competitive phytoseiids in times of food scarcity.  相似文献   

11.
Laboratory bioassays were conducted to evaluate the effects of six vineyard pesticides on Typhlodromus pyri Scheuten (Acari: Phytoseiidae), a key predator of the mite Calepitrimerus vitis Nalepa (Acari: Eriophyoidae), in Pacific coastal vineyards. Materials tested were whey powder, 25% boscalid + 13% pyraclostrobin (Pristine), 40% myclobutanil (Rally), micronized sulfur (92% WP), 75% ethylene bisdithiocarbamate (mancozeb; Manzate), and 91.2% paraffinic oil (JMS Stylet), all applied at three concentrations. Pesticide dilutions were directly sprayed onto T. pyri adult females and juveniles, and each treatment was assessed to determine effects on direct mortality and fecundity. Five of the six pesticides tested resulted in < 50% mortality to adult and juvenile T. pyri for all concentrations 7 d after treatment. Paraffinic oil treatments displayed direct mortality > 50% for adult and juvenile assays and resulted in significantly higher mortality. Sublethal effects were more pronounced than acute pesticide toxicity, particularly in juvenile mite bioassays. Significant decreases in fecundity were detected in the sulfur and mancozeb treatments compared with the control in juvenile tests. The relative percentage of fecundity reduction for juvenile mites was highest when applying mancozeb (> 70%), sulfur (> 25%), or myclobutanil (> 20%). Adult mites displayed the greatest reductions in fecundity from applications of paraffinic oil (> 20%) or mancozeb (> 15%) treatments. Boscalid (+ pyraclostrobin) and whey displayed the least effect on fecundity across all bioassays. These results can be used to develop management guidelines in vineyard pest management practices to help conserve and enhance predatory mite populations.  相似文献   

12.
Typhlodromus pyri Scheuten (Acari: Phytoseiidae) is the most important predator of Panonychus ulmi (Koch) (Acari: Tetranychidae) in orchards and vineyards. It was recently found that adult T. pyri females cause microscopic scars on apple leaves. The present laboratory experiments were carried out to confirm the production of scars on apple leaves and to assess if females cause scars on fruits as well. Scar production on apple leaves and/or fruits was investigated under various nutritional conditions: no food, pollen of Scots pine (Pinus sylvsestris L.) only, nymphs of P. ulmi only, and pollen + prey. Both on leaves and fruits, either offered alone or in combination, feeding scars were produced under all nutritional conditions, but mostly in the 'no food' treatment. The predators consumed significantly more P. ulmi nymphs when offered alone than when offered in combination with pollen. T. pyri laid eggs under all nutritional conditions, but mostly in the 'pollen + prey' treatment and least when no food was offered. T. pyri females caused scars on both leaves and fruits when offered simultaneously, but more on leaves than on fruits. The scars were also bigger on leaves than on fruits in all experiments. T. pyri survived and reproduced on plant material in the absence of other food sources. Whether the scars produced on leaves and fruits harm the quality of fruits or the yield of apple cannot be concluded from the present experiments.  相似文献   

13.
A shake-and-wash technique for monitoring the predatory phytoseiid mitesTyphlodromus pyri, Amblyseius finlandicus, and their prey,Panonychus ulmi, Tetranychus urticae andAculus schlechtendali in commercial apple orchards was developed. The removal and recovery of mites from leaves, shoots and spurs is based on agitating the plant material by hand in alcohol and subsequently removing the mites using a separating funnel. The mites are quickly killed and easily washed off the plant material, and are thus well preserved for further study. The technique is more efficient than directly counting the mites on plant material under a dissection microscope and can be easily employed both in the laboratory and in the field.  相似文献   

14.
The beneficial mite Typhlodromus pyri is a key predator of grapevine rust mite Calepitrimerus vitis in Pacific coastal vineyards. Rust mite feeding has been associated with damage such as stunted, deformed shoot growth and reductions in fruit yield. The life history traits of T. pyri were assessed at seven constant temperatures (12.5, 15, 17.5, 20, 25, 30 and 35 °C) to determine population parameters providing data to better predict biological control of C. vitis populations by T. pyri in vineyards. Successful development from the egg to adult stage was observed at temperatures ranging from 15 to 30 °C. Constant exposure to 12.5 and 35 °C resulted in 100 % mortality in immature T. pyri. Developmental times, fecundity and longevity were highest at 25 °C. The estimated minimum and maximum developmental thresholds were 7.24 and 42.56 °C, respectively. Intrinsic rate of increase (r ( m )) was positive from 15 to 30 °C indicating population growth within this range of temperatures. Net reproductive rate and intrinsic rate of increase were greatest at 25 °C. These developmental parameters can be used to estimate population growth, determine seasonal phenology and aid in conservation management of T. pyri. Results presented in this study will aid in evaluating the effectiveness of T. pyri as a key biological control agent of C. vitis during different periods of the growing season in Pacific Northwest vineyards.  相似文献   

15.
We looked at the effect of the presence of pollen (Typha latifolia) on the functional response of Typhlodromus pyri (Phytoseiidae) to Panonychus ulmi (Tetranychidae) in the laboratory. We found that pollen significantly reduced the predation rate but that the magnitude of the effect was not large. Over the lower range of prey densities the effect appeared to be due to a decrease in search efficiency.  相似文献   

16.
A technique has been developed for the rapid determination of some species of prey consumed by mites and insects. The method detects prey enzymes within the gut of a predator by polyacrylamide gradient gel electrophoresis and subsequent staining for esterase activity. It is sufficiently sensitive to detect fruit tree red spider mite (Panonychus ulmi) esterases within the gut of a single predacious mite (Typhlodromus pyri) for at least 31 h after feeding. The method has been used to demonstrate feeding relationships among a range of insect and mite predator and prey species in the laboratory and in the field.  相似文献   

17.
Abstract:  Prey consumption by Typhlodromus pyri Scheuten was studied in the presence and absence of apple powdery mildew, Podosphaera leucotricha (Ell. and Everh.) under constant laboratory conditions. Eggs of Tetranychus urticae Koch were offered to predatory mites as a prey. Seven densities ranging from five to 100 T. urticae eggs per arena were used. Mildew conidia (approximately 0.5 mg) were added to half of the arenas by brushing them from infected apple leaves. A single adult female of T. pyri was introduced onto each arena and number of prey eggs consumed was counted 12 h later when the predator was offered new T. urticae eggs again and the procedure was repeated once. Data showed that predators consumed in both experimental periods nearly all prey in experiments with densities up to 40 eggs per arena and no mildew. However, the number of eggs consumed decreased more than twofold when mildew conidia were supplied, even at high prey densities. Differences in predation rate between treatments with and without mildew were highly significant. The results thus indicate that availability of mildew as an alternative food can reduce prey suppression by T. pyri . Possible implications of these findings in biological control of spider mites by generalist predatory mites are discussed.  相似文献   

18.
The phytoseiid mites Metaseiulus occidentalis (Nesbitt) and Typhlodromus pyri Schueten are used together and alone as biological control agents against tetranychid pest mites of apple. Their effectiveness as control agents may be impacted by intraguild predation. The effects of prey species and prey density on the rates of inter- and intraspecific predation and oviposition by these two predators were investigated through a series of experiments. Adult female predators were given prey as mixed populations of phytoseiid larvae and larvae of a more preferred species, the spider mite, Tetranychus urticae Koch, at different densities and ratios. Typhlodromus pyri, more of a generalist predator, showed higher rates of predation and cannibalism on phytoseiid immatures at most prey densities and ratios. Manly preference indices indicated that T. pyri switched to feed on phytoseiid larvae at higher prey levels and ratios of T. urticae than M. occidentalis. This greater ability to use phytoseiid larvae as prey may help stabilize T. pyri populations when more preferred prey is unavailable. This may, in part, explain the observed persistence of T. pyri populations when M. occidentalis populations were decreasing in orchard test plots.  相似文献   

19.
The effect of the provision of pollen on the impact of pesticides on the predatory mite Kampimodromus aberrans was assessed at individual and population levels. In the laboratory we evaluated the influence of pollen amount and pollen application frequency on lethal and sub-lethal effects of chlorpyrifos and spinosad. In a potted plant experiment, the effects of pesticides and pollen were assessed on predatory mite population abundance. In the laboratory, survival and fecundity of predatory mites were reduced by insecticides, and spinosad was more toxic than chlorpyrifos. In the same experiment, high pollen application frequency alleviated the sub-lethal effect induced by chlorpyrifos. On potted plants, pollen applications reduced the impact of chlorpyrifos on K. aberrans, whereas without pollen applications the impact of spinosad and chlorpyrifos on the predatory mite population was similar. Results obtained here highlight that the provision of fresh pollen is of particular importance for predatory mites when pesticides are applied.  相似文献   

20.
This study reports (1) a faunistic survey of phytoseiid mites observed inside a vine plot and in neighbouring vegetation (other vine plots and uncultivated areas) and (2) dispersal of phytoseiid mites into the plot studied. These data aim to raise some hypotheses concerning natural colonisation of a vineyard by predatory mites. The study was carried out over 3 years (1999, 2000 and 2001) in an experimental plot planted with two cultivars (Grenache and Syrah) and with Sorbus domestica in a framework of agroforestry investigations. Phytoseiid mites were collected in both cultivated and uncultivated areas surrounding the experimental plot, and their dispersal into the plot studied using “aerial” traps. Densities remained quite low compared to previous studies. The main species encountered in the uncultivated areas and in the traps was Typhlodromus phialatus. Despite the low numbers of phytoseiid mites trapped, densities of phytoseiid mites into the vine field increased during 3 years. Typhlodromus phialatus, the species mainly found in the neighbouring uncultivated areas, was rarely found in vineyards. Another morphologically close species was predominant on vines: Typhlodromus exhilaratus. However, Kampimodromus aberrans the main phytoseiid mite species in vineyards of Southern France was not found in the present survey. Hypotheses for this colonisation process are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号