首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical imaging and fluorescent probes have significantly advanced research methodology in the field of cardiac electrophysiology in ways that could not have been accomplished by other approaches1. With the use of the calcium- and voltage-sensitive dyes, optical mapping allows measurement of transmembrane action potentials and calcium transients with high spatial resolution without the physical contact with the tissue. This makes measurements of the cardiac electrical activity possible under many conditions where the use of electrodes is inconvenient or impossible1. For example, optical recordings provide accurate morphological changes of membrane potential during and immediately after stimulation and defibrillation, while conventional electrode techniques suffer from stimulus-induced artifacts during and after stimuli due to electrode polarization1. The Langendorff-perfused rabbit heart is one of the most studied models of human heart physiology and pathophysiology. Many types of arrhythmias observed clinically could be recapitulated in the rabbit heart model. It was shown that wave patterns in the rabbit heart during ventricular arrhythmias, determined by effective size of the heart and the wavelength of reentry, are very similar to that in the human heart2. It was also shown that critical aspects of excitation-contraction (EC) coupling in rabbit myocardium, such as the relative contribution of sarcoplasmic reticulum (SR), is very similar to human EC coupling3. Here we present the basic procedures of optical mapping experiments in Langendorff-perfused rabbit hearts, including the Langendorff perfusion system setup, the optical mapping systems setup, the isolation and cannulation of the heart, perfusion and dye-staining of the heart, excitation-contraction uncoupling, and collection of optical signals. These methods could be also applied to the heart from species other than rabbit with adjustments to flow rates, optics, solutions, etc.Two optical mapping systems are described. The panoramic mapping system is used to map the entire epicardium of the rabbit heart4-7. This system provides a global view of the evolution of reentrant circuits during arrhythmogenesis and defibrillation, and has been used to study the mechanisms of arrhythmias and antiarrhythmia therapy8,9. The dual mapping system is used to map the action potential (AP) and calcium transient (CaT) simultaneously from the same field of view10-13. This approach has enhanced our understanding of the important role of calcium in the electrical alternans and the induction of arrhythmia14-16.  相似文献   

2.
Sarcoplasmic reticulum (SR) Ca2+ handling plays a key role in normal excitation-contraction coupling and aberrant SR Ca2+ handling is known to play a significant role in certain types of arrhythmia. Because arrhythmias are spatially distinct, emergent phenomena, they must be investigated at the tissue level. However, methods for directly probing SR Ca2+ in the intact heart remain limited. This article describes the protocol for dual optical mapping of transmembrane potential (Vm) and free intra-SR [Ca2+] ([Ca2+]SR) in the Langendorff-perfused rabbit heart. This approach takes advantage of the low-affinity Ca2+ indicator Fluo-5N, which has minimal fluorescence in the cytosol where intracellular [Ca2+] ([Ca2+]i) is relatively low but exhibits significant fluorescence in the SR lumen where [Ca2+]SR is in the millimolar range. In addition to revealing SR Ca2+ characteristics spatially across the epicardial surface of the heart, this approach has the distinct advantage of simultaneous monitoring of Vm, allowing for investigations into the bidirectional relationship between Vm and SR Ca2+ and the role of SR Ca2+ in arrhythmogenic phenomena.  相似文献   

3.
Cardioprotection in females, as observed in the setting of heart failure, has been attributed to sex differences in intracellular calcium handling and its modulation by β-adrenergic signaling. However, further studies examining sex differences in β-adrenergic responsiveness have yielded inconsistent results and have mostly been limited to studies of contractility, ion channel function, or calcium handling alone. Given the close interaction of the action potential (AP) and intracellular calcium transient (CaT) through the process of excitation-contraction coupling, the need for studies exploring the relationship between agonist-induced AP and calcium handling changes in female and male hearts is evident. Thus, the aim of this study was to use optical mapping to examine sex differences in ventricular APs and CaTs measured simultaneously from Langendorff-perfused hearts isolated from naïve adult rabbits during β-adrenergic stimulation. The non-selective β-agonist isoproterenol (Iso) decreased AP duration (APD90), CaT duration (CaD80), and the decay constant of the CaT (τ) in a dose-dependent manner (1–316.2 nM), with a plateau at doses ≥31.6 nM. The Iso-induced changes in APD90 and τ (but not CaD80) were significantly smaller in female than male hearts. These sex differences were more significant at faster (5.5 Hz) than resting rates (3 Hz). Treatment with Iso led to the development of spontaneous calcium release (SCR) with a dose threshold of 31.6 nM. While SCR occurrence was similar in female (49%) and male (53%) hearts, the associated ectopic beats had a lower frequency of occurrence (16% versus 40%) and higher threshold (100 nM versus 31.6 nM) in female than male hearts (p<0.05). In conclusion, female hearts had a decreased capacity to respond to β-adrenergic stimulation, particularly under conditions of increased demand (i.e. faster pacing rates and “maximal” levels of Iso effects), however this reduced β-adrenergic responsiveness of female hearts was associated with reduced arrhythmic activity.  相似文献   

4.
Combining Voltage and Calcium Imaging from Neuronal Dendrites   总被引:2,自引:0,他引:2  
The ability to monitor membrane potential (V m) and calcium (Ca2+) transients at multiple locations on the same neuron can facilitate further progress in our understanding of neuronal function. Here we describe a method to combine V m and Ca2+ imaging using styryl voltage sensitive dyes and Fura type UV-excitable Ca2+ indicators. In all cases V m optical signals are linear with membrane potential changes, but the calibration of optical signals on an absolute scale is presently possible only in some neurons. The interpretation of Ca2+ optical signals depends on the indicator Ca2+ buffering capacity relative to the cell endogenous buffering capacity. In hippocampal CA1 pyramidal neurons, loaded with JPW-3028 and 300 μM Bis-Fura-2, V m optical signals cannot be calibrated and the physiological Ca2+ dynamics are compromised by the presence of the indicator. Nevertheless, at each individual site, relative changes in V m and Ca2+ fluorescence signals under different conditions can provide meaningful new information on local dendritic integration. In cerebellar Purkinje neurons, loaded with JPW-1114 and 1 mM Fura-FF, V m optical signals can be calibrated in terms of mV and Ca2+ optical signals quantitatively reveal the physiological changes in free Ca2+. Using these two examples, the method is explained in detail.  相似文献   

5.
Alternans, a condition in which there is a beat-to-beat alternation in the electromechanical response of a periodically stimulated cardiac cell, has been linked to the genesis of life-threatening ventricular arrhythmias. Optical mapping of membrane voltage (Vm) and intracellular calcium (Cai) on the surface of animal hearts reveals complex spatial patterns of alternans. In particular, spatially discordant alternans has been observed in which regions with a large-small-large action potential duration (APD) alternate out-of-phase adjacent to regions of small-large-small APD. However, the underlying mechanisms that lead to the initiation of discordant alternans and govern its spatiotemporal properties are not well understood. Using mathematical modeling, we show that dynamic changes in the spatial distribution of discordant alternans can be used to pinpoint the underlying mechanisms. Optical mapping of Vm and Cai in paced rabbit hearts revealed that spatially discordant alternans induced by rapid pacing exhibits properties consistent with a purely dynamical mechanism as shown in theoretical studies. Our results support the viewpoint that spatially discordant alternans in the heart can be formed via a dynamical pattern formation process which does not require tissue heterogeneity.  相似文献   

6.
Prior P  Roth BJ 《Biophysical journal》2008,95(4):2097-2102
Optical mapping experiments allow investigators to view the effects of electrical currents on the transmembrane potential, Vm, as a shock is applied to the heart. One important consideration is whether the optical signal accurately represents Vm. We have combined the bidomain equations along with the photon diffusion equation to study the excitation and emission of photons during optical mapping of cardiac tissue. Our results show that this bidomain/diffusion model predicts an optical signal that is much smaller than Vm near a stimulating electrode, a result consistent with experimental observations. Yet, this model, which incorporates the effect of lateral averaging, also reveals an optical signal that overestimates Vm at distances >1 mm away from the electrode. Although Vm falls off with distance r from the electrode as exp(−r/λ)/r, the optical signal decays as a simple exponential, exp(−r/λ). Moreover, regions of hyperpolarization adjacent to a cathode are emphasized in the optical signal compared to the region of depolarization under the cathode. Imaging methods utilizing optical mapping techniques will need to account for these distortions to accurately reconstruct Vm.  相似文献   

7.
We describe a novel two‐photon (2P) laser scanning microscopy (2PLSM) protocol that provides ratiometric transmural measurements of membrane voltage (Vm) via Di‐4‐ANEPPS in intact mouse, rat and rabbit hearts with subcellular resolution. The same cells were then imaged with Fura‐2/AM for intracellular Ca2+ recordings. Action potentials (APs) were accurately characterized by 2PLSM vs. microelectrodes, albeit fast events (<1 ms) were sub‐optimally acquired by 2PLSM due to limited sampling frequencies (2.6 kHz). The slower Ca2+ transient (CaT) time course (>1ms) could be accurately described by 2PLSM. In conclusion, Vm ‐ and Ca2+‐sensitive dyes can be 2P excited within the cardiac muscle wall to provide AP and Ca2+ signals to ~400 µm. (© 2013 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

8.
The protective effects of sarpogrelate (SG), a 5-HT2A antagonist, were investigated in perfused guinea-pig Langendorff hearts subjected to ischemia and reperfusion. Changes in cellular levels of high phosphorous energy, NO and Ca2+ in the heart together with simultaneous recordings of left ventricular developed pressure (LVDP) were monitored using an nitric oxide (NO) electrode, fluorometry and 31P-NMR. The recovery of LVDP from ischemia by reperfusion was 30.1% in the control, while the treatment with SG (5×10-7 M) in pre- and post-ischemia hearts produced a gradual increase to 73.1 and 53.6%, respectively. At the final stage of ischemia, the intracellular concentration of Ca2+ ([Ca2+i) and release of NO increased with no twitching and remained at a high steady level. The addition of SG increased the transient NO signal (TNO) level at the end of ischemia compared with the control, but [Ca2+]i during ischemia decreased. Meanwhile, mitochondrial Ca2+ uptake on acidification or Ca2+ content changes of the perfusate was suppressed by pre-treatment with SG or the KATP channel opener diazoxide, but not the KATP channel blocker 5-HD. The myocardial NO elevated with 5-HT in normal Langendorff hearts was suppressed by the treatment with SG. Therefore, the existence of the 5HT2A receptor in a Langendorff heart was anticipated. By in vitro EPR, SG was found to directly quench the hydroxy radical. Thus, these findings suggested that the 5-HT2A receptor induced in ischemia–reperfusion plays an important role in the mitochondrial KATP channel of hearts in close relation with NO and active oxygen radicals.  相似文献   

9.
Recent optical mapping studies of cardiac tissue suggest that membrane voltage (Vm) and intracellular calcium concentrations (Ca) become dissociated during ventricular fibrillation (VF), generating a proarrhythmic substrate. However, experimental methods used in these studies may accentuate measured dissociation due to differences in fluorescent emission wavelengths of optical voltage/calcium (Vopt/Caopt) signals. Here, we simulate dual voltage-calcium optical mapping experiments using a monodomain-Luo-Rudy ventricular-tissue model coupled to a photon-diffusion model. Dissociation of both electrical, Vm/Ca, and optical, Vopt/Caopt, signals is quantified by calculating mutual information (MI) for VF and rapid pacing protocols. We find that photon scattering decreases MI of Vopt/Caopt signals by 23% compared to unscattered Vm/Ca signals during VF. Scattering effects are amplified by increasing wavelength separation between fluorescent voltage/calcium signals and respective measurement-location misalignment. In contrast, photon scattering does not affect MI during rapid pacing, but high calcium dye affinity can decrease MI by attenuating alternans in Caopt but not in Vopt. We conclude that some dissociation exists between voltage and calcium at the cellular level during VF, but MI differences are amplified by current optical mapping methods.  相似文献   

10.
Mouse embryos that lack the ability to produce the adrenergic hormones, norepinephrine (NE) and epinephrine (EPI), due to disruption of the dopamine beta-hydroxylase (Dbh?/-) gene inevitably perish from heart failure during mid-gestation. Since adrenergic stimulation is well-known to enhance calcium signaling in developing as well as adult myocardium, and impairments in calcium signaling are typically associated with heart failure, we hypothesized that adrenergic-deficient embryonic hearts would display deficiencies in cardiac calcium signaling relative to adrenergic-competent controls at a developmental stage immediately preceding the onset of heart failure, which first appears beginning or shortly after mouse embryonic day 10.5 (E10.5). To test this hypothesis, we used ratiometric fluorescent calcium imaging techniques to measure cytosolic calcium transients, [Ca2+]i in isolated E10.5 mouse hearts. Our results show that spontaneous [Ca2+]i oscillations were intact and robustly responded to a variety of stimuli including extracellular calcium (5?mM), caffeine (5?mM), and NE (100?nM) in a manner that was indistinguishable from controls. Further, we show similar patterns of distribution (via immunofluorescent histochemical staining) and activity (via patch-clamp recording techniques) for the major voltage-gated plasma membrane calcium channel responsible for the L-type calcium current, ICa,L, in adrenergic-deficient and control embryonic cardiac cells. These results demonstrate that despite the absence of vital adrenergic hormones that consistently leads to embryonic lethality in vivo, intracellular and extracellular calcium signaling remain essentially intact and functional in embryonic mouse hearts through E10.5. These findings suggest that adrenergic stimulation is not required for the development of intracellular calcium oscillations or extracellular calcium signaling through ICa,L and that aberrant calcium signaling does not likely contribute to the onset of heart failure in this model.  相似文献   

11.

Aims

Ischaemic heart disease is most prevalent in the ageing population and often exists with other comorbidities; however the majority of laboratory research uses young, healthy animal models. Several recent workshops and focus meetings have highlighted the importance of using clinically relevant models to help aid translation to realistic patient populations. We have previously shown that mice over-expressing the creatine transporter (CrT-OE) have elevated intracellular creatine levels and are protected against ischaemia-reperfusion injury. Here we test whether elevating intracellular creatine levels retains a cardioprotective effect in the presence of common comorbidities and whether it is additive to protection afforded by hypothermic cardioplegia.

Methods and Results

CrT-OE mice and wild-type controls were subjected to transverse aortic constriction for two weeks to induce compensated left ventricular hypertrophy (LVH). Hearts were retrogradely perfused in Langendorff mode for 15 minutes, followed by 20 minutes ischaemia and 30 minutes reperfusion. CrT-OE hearts exhibited significantly improved functional recovery (Rate pressure product) during reperfusion compared to WT littermates (76% of baseline vs. 59%, respectively, P = 0.02). Aged CrT-OE mouse hearts (78±5 weeks) also had enhanced recovery following 15 minutes ischaemia (104% of baseline vs. 67%, P = 0.0007). The cardioprotective effect of hypothermic high K+ cardioplegic arrest, as used during cardiac surgery and donor heart transplant, was further enhanced in prolonged ischaemia (90 minutes) in CrT-OE Langendorff perfused mouse hearts (76% of baseline vs. 55% of baseline as seen in WT hearts, P = 0.02).

Conclusions

These observations in clinically relevant models further support the development of modulators of intracellular creatine content as a translatable strategy for cardiac protection against ischaemia-reperfusion injury.  相似文献   

12.
Glyburide, also known as glibenclamide, was shown to have positive inotropic effect in human and animal hearts. The objectives of the present study was to investigate the effects of glyburide on developed left ventricular pressure (DLVP), coronary flow (CF), and heart rate (HR), in isolated rabbit heart as well as its effects on myocardial contractility and L-type calcium current, iCa, in guinea pig myocytes. Rabbit hearts were mounted on Langendorff apparatus and perfused with an oxygenated Krebs for 30 min until reaching steady state to be followed by 20 min of experimental perfusion divided into 5 min of control perfusion and 15 min of perfusion with Glyburide (10 M). Ventricular myocytes were isolated by enzymatic dispersion technique and superfused in an oxygenated Tyrode solution. Cells were voltage-clamped at holding potential –40 mV to inactivate Na+ current and a step depolarizations, 200 msec duration, to 0 mV was applied to elicit iCa. The contractions of the myocytes were measured by optical methods. Glyburide significantly increased DLVP by 30% and CF by 36% but had no effect on HR. Glyburide increased cell contractility by 7 ± 6, 18 ± 7, 28 ± 9 and 54 ± 15% for 0.1, 1, 10 and 100 M respectively, p < 0.001. Meanwhile it depressed iCa by 9 ± 6 and 19 ± 8% for 1 and 10 M respectively. In conclusion, glyburide increased contractility of guinea pig single myocytes and of isolated rabbit heart, as indicated by increased developed left ventricular pressure while it depressed iCa. It is hypothesized that an elevation in intracellular calcium, which caused increased myocardial contractility, could be attributed to an increase in intracellular Na+ that could increase intracellular calcium via Na+/Ca2+ exchange.  相似文献   

13.
Cardiovascular disease is a leading cause of death and disability worldwide. Although genetically modified mouse models offer great potential for robust research in vivo, in vitro studies using isolated cardiomyocytes also provide an important approach for investigating the mechanisms underlying cardiovascular disease pathogenesis and drug actions. Currently, isolation of mouse adult cardiomyocytes often relies on aortic retrograde intubation under a stereoscopic microscope, which poses considerable technical barriers and requires extensive training. Although a simplified, Langendorff-free method has been used to isolate viable cardiomyocytes from the adult mouse heart, the system requires enzymatic digestions and continuous manual technical operation. This study established an optimized approach that allows isolation of adult mouse cardiomyocytes and epicardial activation mapping of mouse hearts using a Langendorff device. We used retrograde puncture through the abdominal aorta in vivo and enzymatic digestion on the Langendorff perfusion device to isolate adult mouse cardiomyocytes without using a microscope. The yields of isolated cardiomyocytes were amenable to patch clamp techniques. Furthermore, this approach allowed epicardial activation mapping. We used a novel, simplified method to isolate viable cardiomyocytes from adult mouse hearts and to map epicardial activation. This novel approach could be beneficial in more extensive research in the cardiac field.  相似文献   

14.
Mitochondrial damage is the main source of cellular injury upon ischemia-reperfusion, and calcium loading has been implicated in this phenomenon. The use of optical probes for calcium monitoring of the intact heart is hampered by internal filter effects of intracellular hemoproteins, endogenous fluorescence, and their sensitivity to pH. We describe here a method for measurement of intracellular free calcium in isolated myoglobin-deficient perfused mouse hearts under conditions of large intracellular pH fluctuations by simultaneous fluorescence monitoring of the calcium-probe Fura-2 and the pH probe BCECF through dual wavelength excitation of both probes. In myoglobin-containing mouse heart endogenous chromophores interfere with Fura-2 fluorometry. It is shown that a paradoxical decrease in Fura-2 fluorescence occurs during ischemia in isolated mouse hearts. Simultaneous recording of BCECF fluorescence (calibrated against pH measurement with phosphorus NMR) and data reduction based on continual recalculation of the apparent dissociation constant of the calcium-probe complex revealed that a marked increase in intracellular free calcium occurs, and that the Fura-2 fluorescence decrease was caused by an increase in dissociation constant due to intracellular acidification. Intracellular free calcium rose almost linearly during a 20-min period of ischemia and returned to basal values rapidly upon the commencement of perfusion.  相似文献   

15.
Mitochondrial damage is the main source of cellular injury upon ischemia–reperfusion, and calcium loading has been implicated in this phenomenon. The use of optical probes for calcium monitoring of the intact heart is hampered by internal filter effects of intracellular hemoproteins, endogenous fluorescence, and their sensitivity to pH.We describe here a method for measurement of intracellular free calcium in isolated myoglobin-deficient perfused mouse hearts under conditions of large intracellular pH fluctuations by simultaneous fluorescence monitoring of the calcium-probe Fura-2 and the pH probe BCECF through dual wavelength excitation of both probes. In myoglobin-containing mouse heart endogenous chromophores interfere with Fura-2 fluorometry.It is shown that a paradoxical decrease in Fura-2 fluorescence occurs during ischemia in isolated mouse hearts. Simultaneous recording of BCECF fluorescence (calibrated against pH measurement with phosphorus NMR) and data reduction based on continual recalculation of the apparent dissociation constant of the calcium-probe complex revealed that a marked increase in intracellular free calcium occurs, and that the Fura-2 fluorescence decrease was caused by an increase in dissociation constant due to intracellular acidification. Intracellular free calcium rose almost linearly during a 20-min period of ischemia and returned to basal values rapidly upon the commencement of perfusion.  相似文献   

16.
17.
It was the aim of this study to evaluate the effects of hyperthyroidism on heart function and cardiac energy metabolism of spontaneously hypertensive (SHR) rats. Hyperthyroidism was induced by daily injections of T3 (0.2 mg/kg s.c.) for 14 days. The hearts were then isolated and perfused in the Langendorff mode. ATP, phosphocreatine (PCr), and inorganic phosphate (Pi) were measured continuously by means of31P-nuclear magnetic resonance (NMR) spectroscopy. Work load was altered by varying stepwise the Ca++ concentration in the perfusion fluid from 0.5 to 1.0, 1.5, and 2.0 mM, respectively. At every elevation of the Ca++ concentration, the increase in left ventricular developed pressure (LVDP) was higher in the hyperthyroid SHR than in the untreated SHR hearts. The ATP and PCr concentrations were lower in the hyperthyroid SHR compared to the untreated SHR hearts throughout the perfusion period. PCr decreased at every Ca++ elevation in both the untreated and hyperthyroid SHR hearts. The PCr/ATP ratio was not altered at any Ca++ concentration neither in the untreated SHR nor in the hyperthyroid SHR hearts. The Ca++-induced stepwise elevation in LVDP was higher at any given PCr/Pi ratio in the hyperthyroid SHR than in the untreated SHR hearts. Thus, the Ca++-inducible contractile reserve was greater in the hyperthyroid SHR heart.  相似文献   

18.

Background

Multiple studies suggest creatine mediates anti-oxidant activity in addition to its established role in cellular energy metabolism. The functional significance for the heart has yet to be established, but antioxidant activity could contribute to the cardioprotective effect of creatine in ischaemia/reperfusion injury.

Objectives

To determine whether intracellular creatine levels influence responses to acute reactive oxygen species (ROS) exposure in the intact beating heart. We hypothesised that mice with elevated creatine due to over-expression of the creatine transporter (CrT-OE) would be relatively protected, while mice with creatine-deficiency (GAMT KO) would fare worse.

Methods and Results

CrT-OE mice were pre-selected for creatine levels 20–100% above wild-type using in vivo 1HMRS. Hearts were perfused in isovolumic Langendorff mode and cardiac function monitored throughout. After 20 min equilibration, hearts were perfused with either H2O2 0.5 µM (30 min), or the anti-neoplastic drug doxorubicin 15 µM (100 min). Protein carbonylation, creatine kinase isoenzyme activities and phospho-PKCδ expression were quantified in perfused hearts as markers of oxidative damage and apoptotic signalling. Wild-type hearts responded to ROS challenge with a profound decline in contractile function that was ameliorated by co-administration of catalase or dexrazoxane as positive controls. In contrast, the functional deterioration in CrT-OE and GAMT KO hearts was indistinguishable from wild-type controls, as was the extent of oxidative damage and apoptosis. Exogenous creatine supplementation also failed to protect hearts from doxorubicin-induced dysfunction.

Conclusions

Intracellular creatine levels do not influence the response to acute ROS challenge in the intact beating heart, arguing against creatine exerting (patho-)physiologically relevant anti-oxidant activity.  相似文献   

19.
Isolated guinea pig hearts were perfused, by the Langendorff technique, with 30, 15, 7.5, and 1.5 μM Zn2+ in Chenoweth solution. Contractile force, coronary flow, and heart rate were recorded by means of Narco IV Physiograph. Calcium inhibitor (Verapamil 1 μM) and anion inhibitor (DIDS: 0.1, 1, and 5 μM) were used subsequently in the perfusing solutions in order to distinguish some of the possible mechanisms that Zn2+ uses to exert its action on cardiac myocytes. Isomolar to zinc concentration of Pb (II) and Co (II) were used to elucidate whether zinc effects on heart are specific for this metal. All hearts were used to estimate their zinc and calcium content by means of AAS (Atomic Absorption Spectrometry). Our findings suggest that the higher the Zn2+ concentration, the more toxic effects on heart are expressed by rapid reversible contractile force reduction and reversible specific changes of heart rate and flow. Zinc 1.5 μM in the perfusing solution benefits heart performance, but not significantly. Furthermore, the metal exerts specific effects on guinea pig heart, and it is rather possible that these effects on cardiac myocytes are held through cell membrane receptors.  相似文献   

20.

Background

Many methods have been used to assess mitochondrial function. Technetium-99m sestamibi (99mTc-MIBI), a lipophilic cation, is rapidly incorporated into myocardial cells by diffusion and mainly localizes to the mitochondria. The purpose of this study was to investigate whether measurement of 99mTc-MIBI signals in animal models could be used as a tool to quantify mitochondrial membrane potential at the organ level.

Methods and Results

We analyzed 99mTc-MIBI signals in Sprague-Dawley (SD) rat hearts perfused with carbonyl cyanide m-chlorophenylhydrazone (CCCP), a mitochondrial uncoupler known to reduce the mitochondrial membrane potential. 99mTc-MIBI signals could be used to detect changes in the mitochondrial membrane potential with sensitivity comparable to that obtained by two-photon laser microscopy with the cationic probe tetramethylrhodamine ethyl ester (TMRE). We also measured 99mTc-MIBI signals in the hearts of SD rats administered CCCP (4 mg/kg intraperitoneally) or vehicle. 99mTc-MIBI signals decreased in rat hearts administered CCCP, and the ATP content, as measured by 31P magnetic resonance spectroscopy, decreased simultaneously. Next, we administered 99mTc-MIBI to Dahl salt-sensitive rats fed a high-salt diet, which leads to hypertension and heart failure. The 99mTc-MIBI signal per heart tissue weight was inversely correlated with heart weight, cardiac function, and the expression of atrial natriuretic factor, a marker of heart failure, and positively correlated with the accumulation of labeled fatty acid analog. The 99mTc-MIBI signal per liver tissue weight was lower than that per heart tissue weight.

Conclusion

Measurement of 99mTc-MIBI signals can be an effective tool for semiquantitative investigation of cardiac mitochondrial membrane potential in the SD rat model by using a chemical to decrease the mitochondrial membrane potential. The 99mTc-MIBI signal per heart tissue weight was inversely correlated with the severity of heart failure in the Dahl rat model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号