首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The hydrolysis of ATP catalyzed by purified (Na,K)-ATPase from pig kidney was more sensitive to Mg2+ inhibition when measured in the presence of saturating Na+ and K+ concentrations [(Na,K)-ATPase] than in the presence of Na+ alone, either at saturating [(Na,Na)-ATPase] or limiting [(Na,0)-ATPase] Na+ concentrations. This was observed at two extreme concentrations of ATP (3 mM where the low-affinity site is involved and 3 microM where only the catalytic site is relevant), although Mg2+ inhibition was higher at low ATP concentration. In the case of (Na,Na)-ATPase activity, inhibition was barely observed even at 10 mM free Mg2+ when ATP was 3 mM. When (Na,K)-ATPase activity was measured at different fixed K+ concentrations the apparent Ki for Mg2+ inhibition was lower at higher monovalent cation concentration. When K+ was replaced by its congeners (Rb+, NH+4, Li+), Mg2+ inhibition was more pronounced in those cases in which the dephosphorylating cation forms a tighter enzyme-cation complex after dephosphorylation. This effect was independent of the ATP concentration, although inhibition was more marked at lower ATP for all the dephosphorylating cations. The K0.5 for ATP activation at its low-affinity site, when measured in the presence of different dephosphorylating cations, increased following the sequence Rb+ greater than K+ greater than NH+4 greater than Li+ greater than none. The K0.5 values were lower with 0.05 mM than with 10 mM free Mg2+ but the order was not modified. The trypsin inactivation pattern of (Na,K)-ATPase indicated that Mg2+ kept the enzyme in an E1 state. Addition of K+ changed the inactivation into that observed with the E2 enzyme form. On the other hand, K+ kept the enzyme in an E2 state and addition of Mg2+ changed it to an E1 form. The K0.5 for KCl-induced E1-to-E2 transformation (observed by trypsin inactivation profile) in the presence of 3 mM MgCl2 was about 0.9 mM. These results concur with two mechanisms for free Mg2+ inhibition of (Na,K)-ATPase: "product" and dead-end. The first would result from Mg2+ interaction with the enzyme in the E2(K) occluded state whereas the second would be brought about by a Mg2+-enzyme complex with the enzyme in an E1 state.  相似文献   

2.
The effect of hypoxia and re-oxygenation on the mitochondrial complex F(O)F(1)-ATP synthase was investigated in the whiteleg shrimp Litopenaeus vannamei. A 660 kDa protein complex isolated from mitochondria of the shrimp muscle was identified as the ATP synthase complex. After 10h at hypoxia (1.5-2.0 mg oxygen/L), the concentration of L-lactate in plasma increased significantly, but the ATP amount and the concentration of ATPβ protein remained unaffected. Nevertheless, an increase of 70% in the ATPase activity was detected, suggesting that the enzyme may be regulated at a post-translational level. Thus, during hypoxia shrimp are able to maintain ATP amounts probably by using some other energy sources as phosphoarginine when an acute lack of energy occurs. During re-oxygenation, the ATPase activity decreased significantly and the ATP production continued via the electron transport chain and oxidative phosphorylation. The results obtained showed that shrimp faces hypoxia partially by hydrolyzing the ATP through the reaction catalyzed by the mitochondrial ATPase which increases its activity.  相似文献   

3.
We studied the ability of ATP to inhibit in vitro the degrading activity of insulin-degrading enzyme. The enzyme was purified from rat skeletal muscle by successive chromatographic steps. The last purification step showed two bands at 110 and 60 kDa in polyacrylamide gel. The enzyme was characterized by its insulin degradation activity, the substrate competition of unlabeled to labeled insulin, the profile of enzyme inhibitors, and the recognition by a specific antibody. One to 5 mM ATP induced a dose-dependent inhibition of insulin degradation (determined by trichloroacetic acid precipitation and insulin antibody binding). Inhibition by 3 mM adenosine 5'-diphosphate, adenosine 5'-monophosphate, guanosine 5'-triphosphate, pyrophosphate, beta-gamma-methyleneadenosine 5'-triphosphate, adenosine 5'-O-(3 thiotriphosphate), and dibutiryl cyclic adenosine 5'-monophosphate was 74%, 4%, 38%, 46%, 65%, 36%, and 0%, respectively, of that produced by 3 mM ATP. Kinetic analysis of ATP inhibition suggested an allosteric effect as the plot of 1/v (insulin degradation) versus ATP concentration was not linear and the Hill coefficient was more than 1 (1.51 and 2.44). The binding constant for allosteric inhibition was KiT = 1.5 x 10(-7) M showing a decrease of enzyme affinity induced by ATP. We conclude that ATP has an inhibitory effect on the insulin degradation activity of the enzyme.  相似文献   

4.
Human adenylate cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) has been studied in preparations of fat cell membranes ("ghosts"). As reported earlier, under ordinary assay conditions (1.0 mM ATP, 5 mM Mg2+, 30 degrees C, 10 min incubation) the enzyme was activated 6-fold by epinephrine in the presence of the GTP analog, 5'-guanylyl-imidodiphosphate [GMP-P(NH)P] (Cooper, B. et al. (1975) J. Clin. Invest. 56, 1350-1353). Basal activity was highest during the first 2 min of incubation then slowed and was linear for at least the next 18 min. Epinephrine, added alone, was often without effect. but sometimes maintained the initial high rate of basal activity. GMP-P(NH)P alone produced inhibition ("lag") of basal enzyme early in the incubation periods. Augmentation of epinephrine effect by GMP-P(NH)P, which also proceeded after a brief (2 min) lag period, was noted over a wide range of substrate (ATP) concentrations. GTP inhibited basal levels of the enzyme by about 50%. GTP also allowed expression of an epinephrine effect, but only in the sense that the hormone abolished the inhibition by GTP. Occasionally a slight stimulatory effect on epinephrine action was seen with GTP. At high Mg2+ concentration (greater than 10 mM) or elevated temperatures (greater than 30 degrees C) GMP-P(NH)P alone activated the enzyme. Maximal activity of human fat cell adenylate cyclase was seen at 50 mM Mg2+, 1.0 mM ATP, pH 8.2, and 37 degrees C in the presence of 10(-4) M GMP-P(NH)P; under these conditions addition of epinephrine did not further enhance activity. Human fat cell adenylate cyclase of adults was insensitive to ACTH and glucagon even in the presence of GMP-P(NH)P.  相似文献   

5.
The calcium ion dependence of calcium transport by isolated sarcoplasmic reticulum vesicles from rabbit skeletal muscle has been investigated by means of the Calcium-stat method, in which transport may be measured in the micromolar free calcium ion concentration range, in the absence of calcium buffers. At pH 7.2 and 20 degrees C, ATP, in the range 1 to 10 mM, decreased [Ca2+]0.5 from 2.0 microM to 0.3 microM and decreased Vmax of oxalate-supported transport from 0.5 to 1.3 mumol min-1 mg-1. Simultaneous measurements of transport and of ATPase activity in the range 0.8 to 10 microM free Ca2+ showed a ratio of 2.1 calcium ions translocated/molecule of ATP hydrolyzed. Transport, in the presence of 5 mM ATP, ceased when calcium ion concentration fell to 0.6 to 1.2 microM, whilst ATPase activity of 90 nmol of ATP hydrolyzed min-1 mg-1 persisted. The data obtained by the Calcium-stat method differed from those described previously using calcium buffers, in that they showed lower apparent affinities of the transport site for calcium ions, more marked sigmoidal behavior, an effect of ATP concentration on Ca2+ concentration dependence and lower ATPase activity in the absence of transport. The calcium complex of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (CaEGTA) had no effect when transport was stimulated maximally at saturating free Ca2+ concentrations. However, at calcium ion levels below [Ca2+]0.5, 70 microM CaEGTA stimulated transport to rates of 20 to 45% of Vmax. Half-maximal stimulation of transport occurred at 19 microM CaEGTA. CaEGTA, 50 microM, decreased [Ca2+]0.5, determined at 5 mM ATP, from 1.3 microM to 0.45 microM. It is proposed that a ternary complex, E . Ca2+ . EGTA4-, is formed as an intermediate species during CaEGTA-stimulated calcium transport by sarcoplasmic reticulum membranes and stimulates the calcium pump at limiting free Ca2+ ion concentration.  相似文献   

6.
7.
Thiamine pyrophosphatase and nucleoside diphosphatase have been studied histochemically in Raillietina (Raillietina) johri. Thiamine pyrophosphatase activity has been observed in the tegument, subtegumental muscle, subtegumental cells, medullary parenchyma, excretory canal and various reproductive structures like testes, ovary, vas deferens, spermatozoa and vitellaria. Eggs exhibit moderate enzyme activity. Various nucleoside diphosphates have been found to be hydrolyzed by thiamine pyrophosphatase. CaCl2, MgCl2 and MnCl2 each activated the enzyme at a final concentration of 6 mM whereas cysteine, reduced glutathione and PCMB inhibited the enzyme activity at a final concentration of 10 mM, 10 mM and 20 mM, respectively. KCN and NaF had no effect on the enzyme staining at concentration as high as 50 mM and 30 mM, respectively. Possible roles of the enzyme in the parasite have been discussed.  相似文献   

8.
The activity of the membrane bound adenylyl cyclase (AC), the effects of nucleotides, Mg2+-cations and its responsiveness to isoproterenol and prostaglandin E1 (PGE1) were examined in a transplantable rat Leydig cell tumor (H-540). Both isoproterenol and PGE1 caused activation of the AC in Leydig cell tumors. The degree of activation by PGE1 (4-5-fold) was approximately twice that of isoproterenol (2-3-fold). The addition of both AC agonists simultaneously was not additive indicating that they activate AC of the same cell. Increasing concentrations of ATP (0.025-2.0 X 10 mM) caused a concentration dependent increase in both the basal and hormone stimulated AC activity, and the activation by isoproterenol and PGE1 (relative response) revealed a slight but significant increase with increasing ATP concentrations. Lineweaver-Burke analysis of these data indicated an apparent Km for ATP (Mg X ATP) of 0.16 mM. Free magnesium did not influence the apparent Km of the AC for ATP. Increasing concentrations of free Mg2+ (0.24-13.2 mM) also caused a concentration dependent increasing activation of AC activity up to a concentration of approx 6 mM in excess of Mg2+-binding ingredients. Higher concentrations of free Mg2+ (13.1 mM) caused a small but significant decrease in both basal and agonist stimulated AC activity. In contrast to other reports, activation by isoproterenol and PGE1 was in general not influenced by the concentration of Mg2+. Both GTP and GMP-P(NH)P stimulated basal and hormone stimulated AC activity (Kact 1 microM), but with different kinetics. In the presence of GTP, AC activity was almost constant for 90 min. In the presence of GMP-P(NH)P, AC activity was much higher, but constant AC activity occurred after a certain lag time (7-10 min), which was reduced by PGE1 and isoproterenol. In conclusion, cAMP production in Leydig cell tumors is stimulated by both PGE1 and isoproterenol. The AC activity and activation by these agonists are regulated by Mg2+ and nucleotides in a slightly different manner from most other cells. The association between AC activation and stimulation of steroid production by Leydig cell tumors remains to be investigated.  相似文献   

9.
The substrate kinetics and the role of free Mg(2+) and free ATP were studied in membrane-bound F(1)-ATPase from crayfish (Orconectes virilis) gills. It was shown that the MgATP complex was the true substrate for the ATPase activity with a K(m) value of 0.327 mM. In the absence of bicarbonate, the maximum azide-sensitive activities in the presence and absence (<18 microM) of free ATP were 0.878 and 0.520 micromol P(i)/mg protein/min, respectively, while the maximum bicarbonate-stimulated activity in absence of free ATP was 1.486 micromol P(i)/mg protein/min. Free ATP was a competitive inhibitor (K(i)=0.77 mM) and free Mg(2+) was a mixed inhibitor (K(i)=0.81 mM, K(i)'=5.89 mM). However, free ATP also acted as an activator. Lineweaver-Burk plots for MgATP hydrolysis at high free Mg(2+) concentrations exhibited an apparent negative cooperativity, which was not the case for high free ATP levels. These results suggest that, although free ATP inhibited the enzyme by binding to catalytic sites, it stimulated ATPase activity by binding to non-catalytic sites and promoted the dissociation of inhibitory MgADP from the catalytic site.  相似文献   

10.
1. Skeletal muscle mitochondrial NAD(P)-dependent malic enzyme [EC 1.1.1. 39, L-malate:NAD+ oxidoreductase (decarboxylating)] from herring could use both coenzymes, NAD and NADP, in a similar manner. 2. The coenzyme preference of mitochondrial NAD(P)-dependent malic enzyme was probed using dual wavelength spectroscopy and pairing the natural coenzymes, NAD or NADP with their respective thionicotinamide analogues, s-NADP or s-NAD, that have absorbance maxima in reduced forms at 400 nm. 3. s-NAD and s-NADP were found to be good alternate substrates for NAD(P)-dependent malic enzyme, the apparent Km values for the thioderivatives were similar to those of the corresponding natural coenzymes. 4. ATP produced greater inhibition of the NAD or s-NAD linked reactions than of the NADP or s-NADP-linked reactions of skeletal muscle mitochondrial NAD(P)-dependent malic enzyme. 5. At 5 mM malate concentration and in the presence of 2 mM ATP the NADP-linked reaction is favoured and the activity ratios, V(s-NADP)/V(NAD) or V(NADP)/V(s-NAD), are 6 and 26, respectively.  相似文献   

11.
The enzymatic properties of purified preparations of chicken liver and chicken skeletal muscle fructose bisphosphatases (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) were compared. Both enzymes have an absolute requirement for Mg2+ or Mn2+. The apparent Km for MgCl2 at pH 7.5 was 0.5 mM for the muscle enzyme and 5 mM for the liver enzyme. Fructose bisphosphate inhibited both enzymes. At pH 7.5, the inhibitor constants (Ki) were 0.18 and 1.3 mM for muscle and liver fructose bisphosphatases, respectively. The muscle enzyme was considerably more sensitive to AMP inhibition than the liver enzyme. At pH 7.5 and in the presence of 1 mM MgCl2, 50% inhibition of muscle and liver fructose bisphosphatases occurred at AMP concentrations of 7 X 10(-9) and 1 X 10(-6) M, respectively. EDTA activated both enzymes. The degree of activation was time and concentration dependent. The degree of EDTA activation of both enzymes decreased with increasing MgCl2 concentration. Ca2+ was a potent inhibitor of both liver (Ki, 1 X 10(-4) M) and muscle (Ki, 1 X 10(-5) M) fructose bisphosphatase. This inhibition was reversed by the presence of EDTA. Ca2+ appears to be a competitive inhibitor with regard to Mg2+. There is, however, a positive homeotropic interaction among Mg2+ sites of both enzymes in the presence of Ca2+.  相似文献   

12.
The kinetics of binding and hydrolysis of ATP by bovine cardiac myosin subfragment 1 has been reinvestigated. More than 90% of the total fluorescence amplitude associated with ATP hydrolysis occurs with an apparent second-order rate constant of 8.1 X 10(5) M-1 S-1 and a limiting rate constant of approximately 140 S-1 (100 mM KCl, 50 mM 1,3-bis-[tris(hydroxymethyl)methylamino]-propane, 10 mM MgCl2, pH 7.0, 20 degrees C); the remaining 10% occurs more slowly (approximately 1 S-1). The observed rate constants are independent of subfragment 1 concentration under pseudo first-order conditions for ATP with respect to protein. The fraction of protein which hydrolyzes ATP rapidly is not a function of the nucleotide or protein concentration and appears to be constant irrespective of ionic strength or temperature within the range studied (50-100 mM KCl, pH 7.0, 15-20 degrees C). These data are compared to that obtained previously using subfragment 1 prepared by a different method which showed ATP-dependent aggregation of two protein species.  相似文献   

13.
A new PLA2 Bj-V from Bothrops jararacussu (14039.49 Da determined by MALDI-TOF mass spectrometry) was isolated in only one chromatographic step by HPLC ion-exchange and its purity was confirmed by reverse phase. Amino acid analysis showed a high content of hydrophobic and basic amino acids as well as 14 half-cysteine residues. The N-terminal sequence (DLWQFGQMIL KETGKIPFPY YGAYGCYCGW GGRGGKPKDG TDRCCYVHD...) showed a high degree of homology with basic D49 PLA2 myotoxins from other Bothrops venoms. Bj V showed discrete sigmoidal enzymatic behavior, with maximal activity at pH 8.4 and 35-40 degrees C. Full PLA2 activity required Ca2+ (10 mM) and there was little catalytic activity in the presence of 1 mM Ca2+. The addition of Mn2+ or Mg2+ (10 mM) in the presence of low (1 mM) Ca2+ slightly increased the enzyme activity, whereas Zn2+ and Cu2+ (10 mM) diminished the activity. The substitution of Ca2+ for Mg2+ or Cu2+ also reduced the enzymatic activity. Bj V had PLA2 activity and produced cytotoxicity in murine C2C12 skeletal muscle myoblasts and myotubes. The isolation of these isoforms Bj-IV [1] and Bj-V (described herein) found in a fraction previously described as homogeneous shows us the importance of optimization in purification techniques in order to better understand their biological behavior.  相似文献   

14.
1. The alkaline proteinase showing pH optimum 8.0 from white croaker (Sciaena schlegeli) skeletal muscle was purified electrophoretically homogeneously (2000-fold) using a combination of DEAE-cellulose chromatography, hydroxylapatite chromatography and Ultrogel AcA 34 gel filtration. 2. It was stable for 1 hr at 50 degrees C. The molecular weight of the enzyme was estimated to be 430,000 by gel filtration, with the enzyme composed of four kinds of subunits, the chain molecular weights of which were 45,000, 48,000, 51,000 and 57,000. 3. From the effects of inhibitors, the enzyme was identified as cysteine proteinase. ATP and Cu2+ inhibited the activity 50% at 10 mM and 70% at 0.1 mM, respectively. 4. Thus the enzyme was characterized as a high molecular weight, heat-stable, alkaline cysteine proteinase (HAP). 5. The enzyme showed hardly any activity below 50 degrees C but considerable activity at around 60 degrees C against myofibrils, digesting myosin heavy chain, actin and tropomyosin. With the addition of 5 M urea the enzyme hydrolyzed myofibrils well at around 30 degrees C.  相似文献   

15.
Adenylate kinase isozyme 1 (AK1) catalyzes thiamin triphosphate (TTP) formation from thiamin diphosphate (TDP) and ADP. The properties of the TTP-synthesizing activity of purified AK1 from porcine skeletal muscle were studied. The activity was found to require TDP, ADP, and Mg2+, and ATP was only 14.4% as active as ADP. Thiamin monophosphate (TMP) and thiamin were not utilized as substrates. ADP was specific as a phosphate donor; and CDP, UDP, and GDP supported TTP formation at rates less than 1% of that with ADP. Optimal pH and temperature for the TTP-synthesizing activity were 10.0 and 37 degrees C, respectively. The activity showed saturation kinetics for both substrates, and the Km values for TDP and ADP were calculated to be 0.83 mM and 43 microM, respectively. The enzyme catalyzed the reverse reaction (TTP + AMP----TDP + ADP) and stoichiometry between TTP and TDP was demonstrated in the forward and reverse reactions.  相似文献   

16.
In the present report the enzymatic properties of an ATP diphosphohydrolase (apyrase, EC 3.6.1.5) in Trichomonas vaginalis were determined. The enzyme hydrolyses purine and pyrimidine nucleoside 5'-di- and 5'-triphosphates in an optimum pH range of 6.0--8.0. It is Ca(2+)-dependent and is insensitive to classical ATPase inhibitors, such as ouabain (1 mM), N-ethylmaleimide (0.1 mM), orthovanadate (0.1 mM) and sodium azide (5 mM). A significant inhibition of ADP hydrolysis (37%) was observed in the presence of 20 mM sodium azide, an inhibitor of ATP diphosphohydrolase. Levamisole, a specific inhibitor of alkaline phosphatase, and P(1), P(5)-di (adenosine 5'-) pentaphosphate, a specific inhibitor of adenylate kinase, did not inhibit the enzyme activity. The enzyme has apparent K(m) (Michaelis Constant) values of 49.2+/-2.8 and 49.9+/-10.4 microM and V(max) (maximum velocity) values of 49.4+/-7.1 and 48.3+/-6.9 nmol of inorganic phosphate x min(-1) x mg of protein(-1) for ATP and ADP, respectively. The parallel behaviour of ATPase and ADPase activities and the competition plot suggest that ATP and ADP hydrolysis occur at the same active site. The presence of an ATP diphosphohydrolase activity in T. vaginalis may be important for the modulation of nucleotide concentration in the extracellular space, protecting the parasite from the cytolytic effects of the nucleotides, mainly ATP.  相似文献   

17.
Sugar transport via the phosphoenolpyruvate (PEP) phosphotransferase system involves PEP-dependent phosphorylation of the general phosphotransferase system protein, HPr, at histidine 15. However, gram-positive bacteria can also carry out ATP-dependent phosphorylation of HPr at serine 46 by means of (Ser)HPr kinase. In this study, we demonstrate that (Ser)HPr kinase in crude preparations of Streptococcus mutans Ingbritt and Streptococcus salivarius ATCC 25975 is membrane associated, with pH optima of 7.0 and 7.5, respectively. The latter organism possessed 7- to 27-fold-higher activity than S. mutans NCTC 10449, GS-5, and Ingbritt strains. The enzyme in S. salivarius was activated by fructose-1,6-bisphosphate (FBP) twofold with 0.05 mM ATP, but this intermediate was slightly inhibitory with 1.0 mM ATP at FBP concentrations up to 10 mM. Similar inhibition was observed with the enzyme from S. mutans Ingbritt. A variety of other glycolytic intermediates had no effect on kinase activity under these conditions. The activity and regulation of (Ser)HPr kinase were assessed in vivo by monitoring P-(Ser)-HPr formation in steady-state cells of S. mutans Ingbritt grown in continuous culture with limiting glucose (10 and 50 mM) and with excess glucose (100 and 200 mM). All four forms of HPr [free HPr, P approximately (His)-HPr, P-(Ser)-HPr, and P approximately (His)-P-(Ser)-HPr] could be detected in the cells; however, significant differences in the intracellular levels of the forms were apparent during growth at different glucose concentrations. The total HPr pool increased with increasing concentrations of glucose in the medium, with significant increases in the P-(Ser)-HPr and P approximately HHis)-P-(Ser)-HPr concentrations. For example, while total PEP-dependent phosphorylation [P approximately(His)-HPr plus P approximately (His)-P-(Ser)-HPr] varied only from 21.5 to 52.5 microgram mg of cell protein (-1) in cells grown at the four glucose concentrations, the total ATP-dependent phosphorylation [P-(Ser)-HPr plus P approximately (His)-P-(Ser)-HPr] increased 12-fold from the 10 mM glucose-grown cells (9.1 microgram mg of cell protein (-1) to 106 and 105 microgram mg(-1) in the 100 and 200 mM glucose-grown cultures, respectively. (Ser)HPr kinase activity in membrane preparations of the cells varied little between the 10, 50, and 100 mM glucose-grown cells but increased threefold in the 200 mM glucose-grown cells. The intracellular levels of ATP, glucose-6-phosphate, and FBP increased with external glucose concentration, with the level of FBP being 3.8-fold higher for cells grown with 200 mM glucose than for those grown with 10 mM glucose. However, the variation in the intracellular levels of FBP, particularly between cells grown with 100 and 200 mM glucose, did not correlate with the extent of P-(Ser)-HPr formation, suggesting that the activity of (Ser)HPr kinase is not critically dependent on the availability of intracellular FBP.  相似文献   

18.
1. The adenylate cyclase in Trypanosoma brucei is located in the plasma membrane. 2. A partial kinetic analysis of the properties of the enzyme revealed a Km for ATP of 1.75 mM and a Km for Mg2+ of 4mM. 3. At low concentrations, Mg2+ activated the enzyme directly in addition to its effect of lowering the concentration of inhibitory free ATP species. 4. At high concentrations, Mg2+ inhibited the enzyme. Furthermore, the enzyme was inhibited at any Mg2+ concentration if the concentration of ATP exceeded that of Mg2+. 5. The opposing effects of Mg2+ at low and high concentrations would be consistent with more than one binding site for Mg2+ on the enzyme. 6. A study of the patterns of product inhibition revealed little or no effect of 3':5'-cyclic AMP, but a profound inhibition by pyrophosphate, which was competitive with respect to ATP (Ki 0.135 mM). This result suggests that the substrate-binding domain on T. brucei adenylate cyclase interacts mainly with the triphosphate portion of the ATP molecule. 7. The enzyme activity was unaffected by the usual mammalian enzyme effectors glucagon, adrenaline, adenosine, GTP and guanyl-5'-yl imidodiphosphate. 8. The enzyme was not activated by fluoride, instead a powerful inhibition was found. The enzyme was also inhibited by relatively high concentrations of Ca2+ (1 mM).  相似文献   

19.
Specific effects of spermine on Na+,K+-adenosine triphosphatase   总被引:2,自引:0,他引:2  
Specific effects of spermine on Na+,K+-ATPase were observed using an enzyme partially purified from rabbit kidney microsomes by extraction with deoxycholate. 1. Spermine competed with K+ for K+-dependent, ouabain-sensitive nitrophenylphosphatase. The K1 for spermine was 0.075 mm in the presence of 1 mM Mg2+ and 5 mM p-nitrophenylphosphate at pH 7.5. 2. spermine activated Na+,K+-ATPase over limited concentration ranges of K+ and Na+ in the presence of 0.05 mM ATP. The spermine concentration required for half maximal activation was 0.055 mM in the presence of 1 mM K+, 10 mM Na+, 1 mM Mg2+, and 0.05 mM ATP. 3. The activation of Na+,K4-ATPase was not due to substitution of spermine for K+, Na+, or Mg2+. 4. When the concentration of K+ or Na+ was extremely low, or in excess, spermine did not activate Na+,K+-ATPase, but inhibited it slightly. 5. Plots of 1/v vs. 1/[ATP] at various concentrations of spermine showed that spermine decreased the Km for ATP without changing the Vmax. 6. Plots of 1/v vs. 1/[ATP] at concentrations of K+ from 0.05 mM to 0.5 mM showed that K+ increased the Km for ATP with increase in the Vmax in the presence of 0.2 mM spermine similarly to that in the absence of spermine. The contradictory effects of spermine on this enzyme system suggest that the K+-dependent monophosphatase activity does not reflect the second half (the dephosphorylation step) of the Na+,K+-ATPase catalytic cycle.  相似文献   

20.
A cDNA clone encoding pyruvate kinase (PK) was isolated from a skeletal muscle cDNA library of globefish (Fugu rubripes), which is a kind of lower vertebrate. The full-length cDNA of globefish skeletal muscle pyruvate kinase (FM-PK) is approximately 2 kb and encodes a protein comprising 530 amino acids. The FM-PK gene is spanning approximately 4.8 kb and consists of 11 exons. FM-PK mRNA was detected in muscle and heart using Northern blots. The recombinant FM-PK (rFM-PK) was expressed in a baculovirus-insect cell system and purified using ion-exchange chromatography. The purified rFM-PK was shown to exist a 230 kDa homotetramer composed of 57 kDa subunits. Gel filtration showed 230000 as the tetramer of the subunit. The apparent K(m) (or S(0.5)) and the Hill coefficient for phosphoenolpyruvate (PEP) and ADP are 0.14 mM, 1.3 and 0.30 mM 0.98 at pH 7.4, respectively, when the enzyme is saturated with the second substrate. The rFM-PK is strongly activated by fructose-1,6-bisphosphate, the apparent K(m) for PEP changes to 0.059 mM and the Hill coefficient to 1.1. ATP, which is the product of the enzyme reaction, inhibits activity. This is the first report to show the full-length cDNA and amino acid sequence of PK for a species of fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号