首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A method is presented for carrying out interchange reactions on a small scale between cystamine and low molecular weight cystine peptides. The products of the reaction were separated from unchanged peptides and from excess cystamine by high-voltage electrophoresis on paper. The opening of intrachain disulfide bonds required substantially higher concentrations of cystamine than did the reaction of interchain bonds. The interchange reaction can be used to separate cysteine peptides on an analytical or a preparative scale from other components of enzymic digests of proteins. A cys-gly bond in one interchange product was hydrolyzed by trypsin, but a cys-leu bond in another interchanged peptide was insensitive to trypsin.  相似文献   

2.
We have recently shown that the physical mechanism for delta approximately mu H+-driven changes in the Km for three different transport systems is an oxidation-reduction reaction involving a dithiol-disulfide interconversion [Robillard, G.T. and Konings, W.N. (1981) Biochemistry, 20, 5025-5032; Konings, W.N. and Robillard, G.T. (1982) Proc. Natl Acad. Sci. USA, in the press]. Based on the similarities between the data from these three systems and published data from other systems, we now propose that dithiol-disulfide interchange may play a general role in membrane-related processes such as transport, energy transduction and hormone-receptor interactions. We propose that the affinities of the substrate-binding sites are regulated by a dithiol and a disulfide situated at different depths in the membrane. In addition we propose that the oxidation states of these two redox centers are coupled by dithiol-disulfide interchange such that, when one is oxidized, the other is reduced. Since a transmembrane electrical potential, delta psi, or a pH gradient, delta pH, can alter the redox state, it can change the affinity of the substrate-binding sites. The delta approximately mu H+-induced changes in affinity are sufficient to drive active transport (symport or antiport) and energy-transducing processes. A similar mechanism can be applied to transport systems driven by phosphorylated enzyme intermediates instead of delta approximately mu H+. Changes of the redox potential in a given compartment during metabolism could also control the affinity of ligand binding even in the absence of a delta approximately mu H+. The ligand-binding affinities of facilitated diffusion transport systems and receptor proteins may be regulated in this manner.  相似文献   

3.
Epidermal Langerhans cells may be identified by light microscopy by their strongly positive reaction following incubation for ATPase activity. Intact sheets of epidermis from mice killed at various time intervals following a single pulse label of H3-thymidine were incubated to demonstrate ATPase activity and subsequently processed for autoradiography. In specimens taken one hour after labelling, many basal keratinocytes were labelled but very few ATPase-positive dendritic cells. At subsequent time periods a few pairs of labelled ATPase-positive cells were found but individually labelled cells were not observed. The findings suggest that epidermal Langerhans cells form a very stable (labelling index less than 0.01%) self-replicating population which divides to maintain cell spacing during growth. No evidence was found for migration and interchange of Langerhans cells with the connective tissue, or for an origin of Langerhans cells by transformation of another cell type.  相似文献   

4.
Macroscopic pKa values associated with the influence of pH on the visible spectrum of 2-electron reduced pig heart lipoamide dehydrogenase and yeast glutathione reductase have been determined by monitoring changes in the principal flavin band near 460 nm and the charge transfer band at 540 nm. The ionization of at least three active site amino acid side chains can influence the spectra over the range of pH studied: the two nascent thiols (interchange thiol and electron transfer thiol) and the histidine residue which acts as the base catalyst in lipoamide dehydrogenase and the acid catalyst in glutathione reductase thiol-disulfide interchange reactions. These systems are analogous to, but more complex than, those in glyceraldehyde-3-phosphate dehydrogenase and papain where a single thiol and a histidine residue in a relatively apolar milieu form a thiolate-imidazolium ion pair which is favored over the thiol-imidazole prototropic tautomer. In an effort to more nearly mimic the papain titrations, the macroscopic pKa values were determined on reduced glutathione reductase which had been monoalkylated with iodoacetamide under conditions known to favor the reaction of the interchange thiol by at least 10 to 1 (Arscott, L. D., Thorpe, C., and Williams, C. H., Jr. (1981) Biochemistry 20, 1513-1520). Like papain and glyceraldehyde-3-phosphate dehydrogenase, alkylated glutathione reductase showed two macroscopic pKa values, at pH 3.7 and pH 9.1, and by analogy, these were associated primarily with the thiol and the imidazole, respectively. Results with the native enzymes depended on the wavelength monitored. Glutathione reductase had pKa values at 4.8, 7.1, and 9.2 when monitored at 540 nm and 5.1 and 8.2 when monitored at 462 nm. Lipoamide dehydrogenase had pKa values at 4.4 and 8.7 when monitored at 529 nm and 3.9, 7.0, and 9.3 when monitored at 455 nm.  相似文献   

5.
A convenient method is presented for quantitating disulfide interchange reactions based on the use of a commercially available organomercurial resin. Isotopically labeled thiol is incubated with a disulfide and the reaction is terminated by charging the incubation mixture onto the resin. The thiol is bound as the mercaptide allowing labeled interchange products, as well as the unlabeled interchanges substrate, to be eluted for quantitation. In principle the method is applicable to all monothiol and disulfide pairs and may be more generally applied to other thiol-transfer reactions that result in conjugation of the thiol. Examples of the use of the technique for glutathione transferase-catalyzed reactions are presented.  相似文献   

6.
The conversion of L-lysine to L-beta-lysine is catalyzed by lysine 2,3-aminomutase. The reaction involves the interchange of the 2-amino group of lysine with a hydrogen at carbon 3. As such the reaction is formally analogous to adenosylcobalamin-dependent rearrangements. However, the enzyme does not contain and is not activated by this coenzyme. Instead it contains iron and pyridoxal phosphate and is activated by S-adenosylmethionine. Earlier experiments implicated adenosyl-C-5' of S-adenosylmethionine in the hydrogen transfer mechanism, apparently in a role similar or analogous to that of adenosyl moiety of adenosylcobalamin in the B12-dependent rearrangements. The question of whether both hydrogens or only one hydrogen at adenosyl-C-5' participate in the hydrogen-transfer process has been addressed by carrying out the lysine 2,3-aminomutase reaction with S-[5'-3H] adenosylmethionine in the presence of 10 times its molar concentration of enzyme. Under these conditions all of the tritium appeared in lysine and beta-lysine, showing that C-5'-hydrogens participate. To determine whether hydrogen transfer is compulsorily intermolecular and intramolecular, various molar ratios of [3,3-2H2]lysine and unlabeled lysine were submitted to the action of lysine 2,3-aminomutase under conditions in which 10-15% conversion to beta-lysine occurred. Mass spectral analysis of the beta-lysine for monodeutero and dideutero species showed conclusively that hydrogen transfer is both intramolecular and intermolecular. The results quantitatively support our postulate that activation of the enzyme involves a transformation of S-adenosylmethionine into a form that promotes the generation of an adenosyl-5' free radical, which abstracts hydrogen from lysine to form 5'-deoxyadenosine as an intermediate.  相似文献   

7.
The interchange reaction of disulfides was caused by the copper(II)/ascorbic acid/O2 system. The incubation of two symmetric disulfides, L-cystinyl-bis-L-phenylalanine (PP) and L-cystinyl-bis-L-tyrosine (TT), with L-ascorbic acid and CuSO4 in potassium phosphate buffer (pH 7.2, 50 mM) resulted in the formation of an asymmetric disulfide, L-cystinyl-L-phenylalanine-L-tyrosine (PT), and the final ratio of PP:PT:TT was 1:2:1. As the reaction was inhibited by catalase and DMSO only at the initial time, hydroxyl radical generated by the copper(II)/ascorbic acid/O2 system seemed to be responsible for the initiation of the reaction. Oxytocin and insulin were denatured by this system, and catalase and DMSO similarly inhibited these denaturations. As the composition of amino acids was unchanged after the reaction, hydroxyl radical was thought to cause the cleavage and/or interchange reaction of disulfides to denature the peptides.  相似文献   

8.
Soluble enzymes from sage (Salvia officinalis) and tansy (Tanacetum vulgare), which catalyze the cyclization of geranyl pyrophosphate and the presumptive intermediate linalyl pyrophosphate to the (+) and (-) enantiomers, respectively, of 2-bornyl pyrophosphate, were employed to evaluate mechanistic alternatives for the pyrophosphate migration in monoterpene cyclization reactions. Separate incubation of [1-3H2,alpha-32P]- and [1-3H2,beta- 32P]geranyl and (+/-)-linalyl pyrophosphates with partially purified preparations of each enantiomer-generating cyclase gave [3H, 32P]bornyl pyrophosphates, which were selectively hydrolyzed to the corresponding bornyl phosphates. Measurement of 3H:32P ratios of these monophosphate esters established that two ends of the pyrophosphate moiety retained their identifies in the cyclization of both precursors to both products and also indicated that there was no appreciable exchange with exogenous inorganic pyrophosphate in the reaction. Subsequent incubations of each cyclase with [8,9-14C,1-18O]geranyl pyrophosphate and with (1E)-(+/-)-[1-3H,3-18O]linalyl pyrophosphate gave the appropriate (+)- or (-)-bornyl pyrophosphates, which were hydrolyzed in situ to the corresponding borneols. Analysis of the derived benzoates by mass spectrometry demonstrated each of the product borneols to possess an 18O enrichment essentially identical with that of the respective acyclic precursor. The absence of P alpha-P beta interchange and the complete lack of positional 18O isotope exchange of the pyrophosphate moiety are compatible with tight ion pairing of intermediates in the coupled isomerization-cyclization of geranyl pyrophosphate and establish a remarkably tight restriction on the motion of the transiently generated pyrophosphate anion with respect to its cationic terpenyl reaction partner.  相似文献   

9.
The conversion of littorine to hyoscyamine has been investigated by feeding deuterium labelled (RS)-[2-(2)H]-, [3, 3-(2)H(2)]-, [2, 3, 3-(2)H(3)]- phenyllactic acids to transformed root cultures of Datura stramonium. Isolation and GC-MS analyses of the isotope incorporation into the resultant hyoscyamine does not support the involvement of a vicinal interchange process operating during the isomerisation of littorine to hyoscyamine. Additionally a metabolism study with [1'-13C, 3', 3'-(2)H(2)]-hyoscyamine has established that the alkaloid is metabolically stable at C-3' with no evidence for a reversible in vivo oxidation process to the corresponding aldehyde. The data do not support an S-adenosy-L-methionine (SAM 5)/co-enzyme-B(12) mediated process for the isomerisation of littorine to hyoscyamine.  相似文献   

10.
The conditions for phosphatidylethanolamine (PE)-diacylglycerol (DAG) exchange catalysed by cell-free extracts of Escherichia coli were studied using 14C- or 3H-analogues of both these lipids. The reaction, examined with either labelled PE or labelled DAG, occurred without co-factor addition and was inhibited by Ca2+ and Mg2+. Detergents such as Triton X-100 greatly enhanced the activity; however, the optimal concentration of this agent depended on the lipid substrate concentration. The exchange-catalysing enzyme involved in these extracts appeared to be very specific for DAG and PE, since no other labelled phospholipid or acylglycerol derivative formed radioactive product under the assay conditions tested. Again, endogenous [3H]PE present in the enzyme source, but no other endogenous lipid, was converted to labelled DAG in the presence of added 1,2-dioleoyl-sn-glycerol. The Vmax value for the conversion of labelled PE to DAG was very similar to the Vmax value found for the conversion of labelled DAG to PE as would be expected in the case of an exchange reaction being responsible for both conversions. However, the Km value for PE was appreciably larger than that for DAG. The enzyme involved, displayed a broad acyl chain specificity as could be judged from: (1) the ability of various species of DAG and PE to stimulate the exchange; (2) the suitability of lipid substrates prepared from widely different biological sources; and (3) the interchange of acyl groups that occurred between dimyristoyl PE and dilauroylglycerol. As would be expected for an exchange reaction, the incorporation of lauroyl groups into PE occurred without an increase in the total fatty acid content of this phospholipid. The results of the present study confirm and further characterize the PE-DAG exchange reaction of E. coli.  相似文献   

11.
A procedure for the isolation of cathepsin B (EC 3.4.22.1) and of cathepsin H from bovine spleen involving covalent chromatography by thiol-disulphide interchange and ion-exchange chromatography was devised. The stabilities of both cathepsins in alkaline media are markedly temperature-dependent, and reliable kinetic data can be obtained at pH values up to 8 by working at 25 degrees C with a continuous spectrophotometric assay. Both enzyme preparations contain only one type of thiol group as judged by reactivity characteristics towards 2,2'-dipyridyl disulphide at pH values up to 8; in each case this thiol group is essential for catalytic activity. Cathepsin H was characterized by kinetic analysis of the reactions of its thiol group with 2,2'-dipyridyl disulphide in the pH range approx. 2-8 and the analogous study on cathepsin B [Willenbrock & Brocklehurst (1984) Biochem. J. 222, 805-814] was extended to include reaction at pH values up to approx. 8. Cathepsin H, like the other cysteine proteinases, was shown to contain an interactive catalytic-site system in which the nucleophilic character of the sulphur atom is maintained in acidic media. The considerable differences in catalytic site characteristics detected by this two-protonic-state reactivity probe between cathepsin B, cathepsin H, papain (EC 3.4.22.2) and actinidin (EC 3.4.22.14) are discussed. Reaction with 2,2'-dipyridyl disulphide in acidic media, which is known to provide a rapid spectrophotometric active centre titration for many cysteine proteinases, is applicable to cathepsin H. This is useful because other active-centre titrations have proved unsuitable in view of the relatively low reactivity of the thiol group in cathepsin H.  相似文献   

12.
Morphological transformation, cell survival, chromosomal aberrations and micronuclei were measured in C3H/101/2CL8 cells after 24 h exposure to amsacrine. A weak but dose-related increase in the percentage of dishes containing transformed foci occurred. As previously reported for alkylating agents, this effect was increased by treating 5 days instead of 1 day after plating. There was no evidence for gene mutation at the Na/K ATPase locus, although amsacrine induced micronuclei in a large percentage of cells and chromosomal aberrations, including interchange events and double minute chromosomes, in dividing cells. In would appear that transformation and chromosomal events may be related in amsacrine-treated C3H/10T1/2CL8 cells. The results strongly suggest that amsacrine has carcinogenic potential, possibly related to its chromosome-breaking properties.  相似文献   

13.
Moisture-induced aggregation of lyophilized proteins in the solid state   总被引:3,自引:0,他引:3  
A critical problem in the storage and delivery of pharmaceutical proteins is their aggregation induced by moisture. A model system has been elaborated and investigated to elucidate the mechanism of this phenomenon. When 10 mg of bovine serum albumin lyophilized from an aqueous solution of pH 7.3 are wetted with just 3 muL of a buffered physiological saline solution and incubated in the solid state at 37 degrees C, the protein progressively loses its solubility in water; e.g., after a 24 h incubation 97% of the protein becomes insoluble. This moisture-induced aggregation of albumin has been discovered to be due to an intermolecular S-S bond formation via the thiol-disulfide interchange reaction. The dependence of the extent of the solid-state aggregation on the amount and mode of addition of moisture and the atmosphere, additives, temperature, and history of the protein powder have been investigated. The moisture-induced solid-state aggregation has also been established and studied for three other lyophilized proteins: ovalbumin, glucose oxidase, and beta-lactoglobulin. In all cases, the loss of solubility is caused by thiol-disulfide interchange either alone or in combination with a conformational (noncovalent) process. The aggregation can be minimized by lyophilizing the proteins from acidic aqueous solutions, by adding inorganic salts, by co-lyophilizing the proteins with water-soluble polymers, or by controlling the moisture content at optimal levels.  相似文献   

14.
S. Zadoo  T. N. Khoshoo 《Genetica》1968,39(1):353-359
A case of interchange heterozygosity has been found inB. peruviana cv “Princess Margaret Rose” in which there is a regular formation of 15 bivalents and an interchange multiple of 4 chromosomes. The multiple is always associated with the nucleolus at diakinesis, indicating that one of the chromosome involved is nucleolar. The nucleolar pair of chromosomes shows a slight heteromorphicity which may be due to an unequal interchange. Although 80% of interchange multiples orientate non-disjunctionally, yet 65% pollen is stainable. The pollen is ineffective in self pollination, but highly effective in crosses with 2x and 3x cultivars ofB. spectabilis. The higher pollen stainability indicates that the deficiencies and duplications caused by non-disjunction do not have serious physiological offects on pollen grains and that its genome can withstand rearrangements.  相似文献   

15.
31P NMR spectra of equilibrium mixtures of enzyme-bound reactants and products of the adenylate kinase reaction (formula; see text) were analyzed by using computer simulations based on density matrix theory of chemical exchange. Since adenylate kinase has the unique feature that the reactants in the reverse direction are both ADP molecules, which are indistinguishable off the enzyme, the density matrix equations are formulated for the ABC + D in equilibrium A'B' + A"B" exchange appropriate for the reaction, in which the interchange of A'B' and A"B" is explicitly introduced. It is shown that the consideration of this interchange is essential to explain the experimentally observed line shapes. By comparison of the computer-simulated spectra with various values for the rates of the exchange with the experimental spectra for porcine adenylate kinase at pH 7.0 and T = 4 degrees C, the following characteristic rates were determined: interconversion rates, 375 +/- 30 s-1 (ATP formation) and 600 +/- 50 s-1 (ADP formation); interchange rates of donor and acceptor ADP's, 100 +/- 30 s-1 (in the presence of optimal Mg2+ concentration), 1500 +/- 100 s-1 (in the absence of Mg2+). It is shown that under the conditions of the experiments the interchange rate is the lower limit of the dissociation rate of ADP (or MgADP from the acceptor site if Mg2+ was present) from the enzyme complexes. The significance of these interchange rates and their values relative to the interconversion rates is discussed with special reference to the role of the Mg2+ ion in the differentiation of the two nucleotide binding sites on adenylate kinase.  相似文献   

16.
Improved insulin stability through amino acid substitution.   总被引:4,自引:0,他引:4  
Insulin analogs designed to decrease self-association and increase absorption rates from subcutaneous tissue were found to have altered stability. Replacement of HB10 with aspartic acid increased stability while substitutions at B28 and/or B29 were either comparable to insulin or had decreased stability. The principal chemical degradation product of accelerated storage conditions was a disulfide-linked multimer that was formed through a disulfide interchange reaction which resulted from beta-elimination of the disulfides. The maintenance of the native state of insulin was shown to be important in protecting the disulfides from reduction by dithiothreitol and implicitly from the disulfide interchange reaction that occurs during storage. To understand how these amino acid changes alter chemical stability, the intramolecular conformational equilibria of each analog was assessed by equilibrium denaturation. The Gibbs free energy of unfolding was compared with the chemical stability during storage for over 20 analogs. A significant positive correlation (R2 = 0.8 and P less than 0.0005) exists between the conformational stability and chemical stability of these analogs, indicating that the chemical stability of insulin's disulfides is under the thermodynamic control of the conformational equilibria.  相似文献   

17.
Methylmalonyl-CoA mutase is an adenosylcobalamin-dependent enzyme that catalyzes the 1,2 rearrangement of methylmalonyl-CoA to succinyl-CoA. This reaction results in the interchange of a carbonyl-CoA group and a hydrogen atom on vicinal carbons. The crystal structure of the enzyme reveals the presence of an aromatic cluster of residues in the active site that includes His-244, Tyr-243, and Tyr-89 in the large subunit. Of these, His-244 is within hydrogen bonding distance to the carbonyl oxygen of the carbonyl-CoA moiety of the substrate. The location of these aromatic residues suggests a possible role for them in catalysis either in radical stabilization and/or by direct participation in one or more steps in the reaction. The mechanism by which the initially formed substrate radical isomerizes to the product radical during the rearrangement of methylmalonyl-CoA to succinyl-CoA is unknown. Ab initio molecular orbital theory calculations predict that partial proton transfer can contribute significantly to the lowering of the barrier for the rearrangement reaction. In this study, we report the kinetic characterization of the H244G mutant, which results in an acute sensitivity of the enzyme to oxygen, indicating the important role of this residue in radical stabilization. Mutation of His-244 leads to an approximately 300-fold lowering in the catalytic efficiency of the enzyme and loss of one of the two titratable pK(a) values that govern the activity of the wild type enzyme. These data suggest that protonation of His-244 increases the reaction rate in wild type enzyme and provides experimental support for ab initio molecular orbital theory calculations that predict rate enhancement of the rearrangement reaction by the interaction of the migrating group with a general acid. However, the magnitude of the rate enhancement is significantly lower than that predicted by the theoretical studies.  相似文献   

18.
DNA-directed RNA polymerase from Escherichia coli can break down RNA by catalysing the reverse of the reaction: NTP + (RNA)n = (RNA)n+1 + PPi where n indicates the number of nucleotide residues in the RNA molecule, to yield nucleoside triphosphates. This reaction requires the ternary complex of the polymerase with template DNA and the RNA that it has synthesized. It is now shown that methylenebis(arsonic acid) [CH2(AsO3H2)2], arsonomethylphosphonic acid (H2O3As-CH2-PO3H2) and arsonoacetic acid (H2O3As-CH2-CO2H) can replace pyrophosphate in this reaction. When they do so, the low-Mr products of the reaction prove to be nucleoside 5'-phosphates, so that the arsenical compounds endow the polymerase with an artificial exonuclease activity, an effect previously found by Rozovskaya, Chenchik, Tarusova, Bibilashvili & Khomutov [(1981) Mol. Biol. (Moscow) 15, 636-652] for phosphonoacetic acid (H2O3P-CH2-CO2H). This is explained by instability of the analogues of nucleoside triphosphates believed to be the initial products. Specificity of recognition of pyrophosphate is discussed in terms of the sites, beta and gamma, for the -PO3H2 groups of pyrophosphate that will yield P-beta and P-gamma of the nascent nucleoside triphosphate. Site gamma can accept -AsO3H2 in place of -PO3H2, but less well; site beta can accept both, and also -CO2H. We suggest that partial transfer of an Mg2+ ion from the attacking pyrophosphate to the phosphate of the internucleotide bond of the RNA may increase the nucleophilic reactivity of the pyrophosphate and the electrophilicity of the diester, so that the reaction is assisted.  相似文献   

19.
Amino acid sequences of a-factor mating peptides from Saccharomyces cerevisiae   总被引:15,自引:0,他引:15  
The molecular structure of a-factor, the mating hormone produced by mating type a cells of Saccharomyces cerevisiae, has been investigated. In culture filtrates of a cells four oligopeptides (a1 to a4) exhibiting a-factor activity have been found. These peptides have been isolated and their amino acid sequences have been determined. The a-factor peptides comprise two (apparently identical) pairs, a1/a2 and a3/a4, which differ in an interchange at position 6 of a valine in a1/a2 for a leucine in a3/a4. a1 and a4, which can be obtained by oxidation with H2O2 of purified a2 and a3, respectively, obviously represent oxidation artifacts formed under the conditions of culture. The amino acid sequences determined for the a-factor peptides are Tyr-Ile-Ile-Lys-Gly-Val Leu-Phe-Trp-Asp-Pro-Ala-Cys. Several lines of evidence suggest that the carboxyl-terminal cysteine residue is S-alkylated by a hydrophobic moiety.  相似文献   

20.
A rapid and simplified assay method for tyrosine hydroxylase   总被引:1,自引:0,他引:1  
Tyrosine hydroxylase can be measured by release of tritiated water from labeled tyrosine, and the assay method has now been modified to allow recovery of 3H2O from the reaction mixture in a much more rapid and less tedious manner than previously possible. In the new method, the tyrosine hydroxylase reaction is stopped with sodium carbonate, pH 11.6. At this pH the tritium in 3H2O, but not other 3H species, is extracted into an organic scintillant containing 25% isoamyl alcohol, toluene, 2,5-diphenyloxazole, and p-bis-[2-(5-phenyloxazolyl)]benzene. The selective extraction occurs by means of exchange of tritium in 3H2O with the hydroxyl proton of isoamyl alcohol. It is the [3H]isoamyl alcohol that is then extracted into the scintillant and quantified by liquid scintillation spectrometry. Although the organic extraction method is somewhat less sensitive than the more frequently used ion-exchange method for isolating the 3H2O formed in the tyrosine hydroxylase reaction, it is much more rapid, as well as cost effective, since the enzyme reaction, extraction, and counting are carried out within the same vial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号