首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A c-type cytochrome, cytochrome c-552, from a soluble fraction of an extreme thermophile, Thermus thermophilus HB8, was highly purified and its properties investigated. The absorption peaks were at 552, 522, and 417 nm in the reduced form, and at 408 nm in the oxidized form. The isoelectric point was at PH 10.8, the midpoint redox potential was about +0.23 V, and the molecular weight was about 15,000. The cytochrome c-552 was highly thermoresistant. The cytochrome reacted rapidly with pseudomonas aeruginosa nitrite reductase [EC 1.9.3.2], but slowly with bovine cytochrome oxidase [EC 1.9.3.1], yeast cytochrome c peroxidase [EC 1.11.1.5], or Nitrosomonas europaea hydroxylamine-cytochrome c reductase [EC 1.7.3.4].  相似文献   

2.
Comparison of the organization and sequence of the hao (hydroxylamine oxidoreductase) gene clusters from the gammaproteobacterial autotrophic ammonia-oxidizing bacterium (aAOB) Nitrosococcus oceani and the betaproteobacterial aAOB Nitrosospira multiformis and Nitrosomonas europaea revealed a highly conserved gene cluster encoding the following proteins: hao, hydroxylamine oxidoreductase; orf2, a putative protein; cycA, cytochrome c(554); and cycB, cytochrome c(m)(552). The deduced protein sequences of HAO, c(554), and c(m)(552) were highly similar in all aAOB despite their differences in species evolution and codon usage. Phylogenetic inference revealed a broad family of multi-c-heme proteins, including HAO, the pentaheme nitrite reductase, and tetrathionate reductase. The c-hemes of this group also have a nearly identical geometry of heme orientation, which has remained conserved during divergent evolution of function. High sequence similarity is also seen within a protein family, including cytochromes c(m)(552), NrfH/B, and NapC/NirT. It is proposed that the hydroxylamine oxidation pathway evolved from a nitrite reduction pathway involved in anaerobic respiration (denitrification) during the radiation of the Proteobacteria. Conservation of the hydroxylamine oxidation module was maintained by functional pressure, and the module expanded into two separate narrow taxa after a lateral gene transfer event between gamma- and betaproteobacterial ancestors of extant aAOB. HAO-encoding genes were also found in six non-aAOB, either singly or tandemly arranged with an orf2 gene, whereas a c(554) gene was lacking. The conservation of the hao gene cluster in general and the uniqueness of the c(554) gene in particular make it a suitable target for the design of primers and probes useful for molecular ecology approaches to detect aAOB.  相似文献   

3.
The N- and ring-hydroxylation of 2-acetamidofluorene were studied with a reconstituted cytochrome P-450 enzyme from microsomal fractions of liver from both control and 3-methylcholanthrene-pretreated rats. Proteinase treatment and Triton X-100 solubilization were two important steps for partial purification of the cytochrome P-450 fraction. Both cytochrome P-450 and NADPH-cytochrome c reductase fractions were required for optimum N- and ring-hydroxylation activity. Hydroxylation activity was determined by the source of cytochrome P-450 fraction; cytochrome P-450 fraction from pretreated animals was severalfold more active than the fraction from controls. Formation of N-hydroxylated metabolites with reconstituted systems from both control and pretreated animals was greater than that with their respective whole microsomal fractions.  相似文献   

4.
An NADH cytochrome c reductase has been identified in plasma membrane fractions from neutrophils in addition to the superoxide producing NADPH oxidase which has been extensively studied by other investigators. Activation of neutrophils resulted in increased enzyme activities but to different degrees; the NADH cytochrome c reductase increased 2 fold in specific activity and the NADPH oxidase 30 fold. Treatment of the plasma membrane fraction with sonication and differential centrifugation yielded a particulate fraction (R2) with a 2 fold increase in specific activities of both enzymes and concentrations of cytochrome b and FAD. The cytochrome b in the preparation was not reduced under anaerobic conditions by either NADH or NADPH. Treatment of preparations of R2 with deoxycholate or potassium thiocyanate separated the two enzymes yielding particulate preparations with only NADPH oxidase or NADH cytochrome c reductase activity, respectively.  相似文献   

5.
An improved method was developed to sequentially fractionate succinate-cytochrome c reductase into three reconstitutive active enzyme systems with good yield: pure succinate dehydrogenase, ubiquinone-binding protein fraction and a highly purified ubiquinol-cytochrome c reductase (cytochrome b-c1 III complex). An extensively dialyzed succinate-cytochrome c reductase was first separated into a succinae dehydrogenase fraction and the cytochrome b-c1 complex by alkali treatment. The resulting succinate dehydrogenase fraction was further purified to homogeneity by the treatment of butanol, calcium phosphate gel adsorption and ammonium sulfate fractionation under anaerobic condition in the presence of succinate and dithiothreitol. The cytochrome b-c1 complex was separated into chtochrome b-c1 III complex and ubiquinone-binding protein fractions by careful ammonium acetate fractionation in the presence of deoxycholate. The purified succinate dehydrogenase contained only two polypeptides with molecular weights of 70 000 anbd 27 000 as revealed by the sodium dodecyl sulfate polyacrylamide gel electrophoretic pattern. The enzyme has the reconstitutive activity and a low Km ferricyanide reductase activity of 85 mumol succinate oxidized per min per mg protein at 38 degrees C. Chemical composition analysis of cytochrome b-c1 III complex showed that the preparation was completely free of contamination of succinate dehydrogenase and ubiquinone-binding protein and was 30% more pure than the available preparation. When these three components were mixed in a proper ratio, a thenoyltrifluoroacetone- and antimycin A-sensitive succinate-cytochrome c reductase was reconstituted.  相似文献   

6.
The ratio between the nitrite reductase and cytochrome oxidase activities of Pseudomonas aeruginosa nitrite reductase [EC 1.9.3.2.] varies with kind of C-type cytochrome used as the electron donor. Withe cytochrome c-548, 554 (Micrococcus sp.), the nitrite reductase activity is greater than the cytochrome oxidase activity, while the former is smaller than the latter with cytochrome c-554 (Navicula pelliculosa). The aerobic oxidation catalyzed by this enzyme of denitrifying bacterial ferrocytochrome c is greatly accelerated on addition of nitrite, while that of the algal ferrocytochrome c is not affected or is even depressed by the salt. An accelerative effect of nitrite is generally observed with many kinds of C-type cytochromes which react with the enzyme very or fairly rapidly. The difference in the ratio of the two activities of the enzyme seems to arise according to whether or not nitrite affects the interaction of C-type cytochrome with the enzyme.  相似文献   

7.
Cytochrome c554 (cyt c554) is a tetra-heme cytochrome involved in the oxidation of NH3 by Nitrosomonas europaea. The X-ray crystal structures of both the oxidized and dithionite-reduced states of cyt c554 in a new, rhombohedral crystal form have been solved by molecular replacement, at 1.6 A and 1.8 A resolution, respectively. Upon reduction, the conformation of the polypeptide chain changes between residues 175 and 179, which are adjacent to hemes III and IV. Cyt c554 displays conserved heme-packing motifs that are present in other heme-containing proteins. Comparisons to hydroxylamine oxidoreductase, the electron donor to cyt c554, and cytochrome c nitrite reductase, an enzyme involved in nitrite ammonification, reveal substantial structural similarity in the polypeptide chain surrounding the heme core environment. The structural determinants of these heme-packing motifs extend to the buried water molecules that hydrogen bond to the histidine ligands to the heme iron. In the original structure determination of a tetragonal crystal form, a cis peptide bond between His129 and Phe130 was identified that appeared to be stabilized by crystal contacts. In the rhombohedral crystal form used in the present high-resolution structure determination, this peptide bond adopts the trans conformation, but with disallowed angles of phi and psi.  相似文献   

8.
Nitrosomonas europaea uses only NH(3), CO(2) and mineral salts for growth and as such it is an obligate chemo-lithoautotroph. The oxidation of NH(3) is a two-step process catalyzed by ammonia monooxygenase (AMO) and hydroxylamine oxidoreductase (HAO). AMO catalyzes the oxidation of NH(3) to NH(2)OH and HAO catalyzes the oxidation of NH(2)OH to NO(2)(-). AMO is a membrane-bound enzyme composed of three subunits. HAO is located in the periplasm and is a homotrimer with each subunit containing eight c-type hemes. The electron flow from HAO is channeled through cytochrome c(554) to cytochrome c(m552), where it is partitioned for further utilization. Among the ammonia-oxidizing bacteria, the genes for AMO, these cytochromes, and HAO are present in up to three highly similar copies. Mutants with mutations in the copies of amoCAB and hao in N. europaea have been isolated. All of the amoCAB and hao gene copies are functional. N. europaea was selected by the United States Department of Energy for a whole-genome sequencing project. In this article, we review recent research on the molecular biology and biochemistry of NH(3) oxidation in nitrifiers.  相似文献   

9.
Protective effect of L-carnitine on hyperammonemia   总被引:1,自引:0,他引:1  
The diheme cytochrome c-554 which participates in ammonia oxidation in the chemoautotroph , Nitrosomonas europaea has been studied by Soret excitation resonance Raman spectroscopy. The Raman spectrum of reduced cytochrome c-554 at neutral pH is similar classical 6-coordinate low-spin ferrous mammalian cytochrome c. In contrast, the spectrum of ferric cytochrome c-554 suggests a 5-coordinate state which is unusual for c hemes. The oxidized spectrum closely resemble that of horseradish peroxidase (HRP) or cytochrome c peroxidase (CcP) at pH 6.4. The narrow linewidth of the heme core-size vibrations indicates that both heme irons of c-554 have similar geometries.  相似文献   

10.
Cytochrome b558 of pig blood neutrophils was purified from the membranes of resting cells to examine its ability to reconstitute superoxide (O2-)-forming NADPH oxidase activity in a cell-free assay system containing cytosol and fatty acid. The membrane-associated cytochrome b558 was solubilized with a detergent, n-heptyl beta-thioglucoside, and purified by DEAE-Sepharose, heparin-Sepharose, and Mono Q column chromatography. The final preparation of cytochrome containing 11.5 nmol of protoheme/mg of protein gave bands of the large and small subunits on immunoblotted gel. The cell-free system with the purified cytochrome alone as a membrane component showed little O2(-)-generating activity in the absence of exogenous FAD. However, the system showed high O2(-)-generating activity of 31.8 mol/s/mol of cytochrome b558 (52.5% of the original O2(-)-generating activity of the solubilized membranes) in the presence of a nitro blue tetrazolium (NBT) reductase fraction that was separated from the cytochrome b fraction by heparin-Sepharose chromatography. Heat treatment of the NBT reductase fraction resulted in loss of the O2(-)-generating activity in the reconstituted system. The O2(-)-forming activity of the reconstituted system was markedly decreased by removal of FAD from the NBT reductase fraction and was restored by readdition of FAD to the FAD-depleted reductase. The reconstituted system containing purified cytochrome b558 plus the NBT reductase showed approximately 100 times higher O2(-)-generating activity than a system containing rabbit liver NADPH-cytochrome P-450 reductase instead. These results suggest that both the FAD-dependent NBT reductase and cytochrome b558 are required as membrane redox components for O2(-)-forming NADPH oxidase activity. The present data are discussed in comparison with previously reported results on reconstituted systems containing added free FAD.  相似文献   

11.
Nitrite is the highly toxic end product of ammonia oxidation that accumulates in the absence of a nitrite-consuming process and is inhibitory to nitrifying and other bacteria. The effects of nitrite on ammonia oxidation rates and regulation of a common gene set were compared in three ammonia-oxidizing bacteria (AOB) to determine whether responses to this toxic metabolite were uniform. Mid-exponential-phase cells of Nitrosomonas europaea ATCC 19718, Nitrosospira multiformis ATCC 25196, and Nitrosomonas eutropha C-91 were incubated for 6 h in mineral medium supplemented with 0, 10, or 20 mM NaNO(2) . The rates of ammonia oxidation (nitrite production) decreased significantly only in NaNO(2) -supplemented incubations of N. eutropha; no significant effect on the rates was observed for N. europaea or N. multiformis. The levels of norB (nitric oxide reductases), cytL (cytochrome P460), and cytS (cytochrome c'-β) mRNA were unaffected by nitrite in all strains. The levels of nirK (nitrite reductase) mRNA increased only in N. europaea in response to nitrite (10 and 20 mM). Nitrite (20 mM) significantly reduced the mRNA levels of amoA (ammonia monooxygenase) in N. multiformis and norS (nitric oxide reductase) in the two Nitrosomonas spp. Differences in response to nitrite indicated nonuniform adaptive and regulatory strategies of AOB, even between closely related species.  相似文献   

12.
Tissue, cellular, and subcellular distributions of OM cytochrome b-mediated NADH-semidehydroascorbate (SDA) reductase activity were investigated in rat. NADH-SDA reductase activity was found in the post-nuclear particulate fractions of liver, kidney, adrenal gland, heart, brain, lung, and spleen of rat. Liver, kidney, and adrenal gland had higher NADH-SDA reductase activity than other tissues, and OM cytochrome b-dependent activity was 60-70% of the total activity. On the other hand, almost all of the reductase activity of heart and brain cells was mediated by OM cytochrome b. The ratio of the OM cytochrome b-mediated activities of NADH-SDA reductase to rotenone-insensitive NADH-cytochrome c reductase varied among these tissues. OM cytochrome b-mediated NADH-SDA reductase and rotenone-insensitive NADH-cytochrome c reductase activities were mainly present in the parenchymal cells of rat liver. The localization of the cytochrome-mediated reductase activities in the outer mitochondrial membrane was confirmed by subfractionation of liver mitochondria. Among the submicrosomal fractions, OM cytochrome b-mediated NADH-SDA reductase activity was highest in the cis-Golgi membrane fraction, in which monoamine oxidase activity was also highest. On the other hand, OM cytochrome b-mediated rotenone-insensitive NADH-cytochrome c reductase activity showed a slightly different distribution pattern from the NADH-SDA reductase activity. Thenoyltrifluoroacetone (TTFA), a metal chelator, effectively inhibited the NADH-SDA reductase activity, though other metal chelators did not affect the activity. TTFA failed to inhibit rotenone-insensitive NADH-cytochrome c reductase activity at the concentration which gave complete inhibition of NADH-SDA reductase activity.  相似文献   

13.
The protein composition, cytochrome content, and reductase activity in the dissimilatory selenate-reducing bacterium Geospirillum barnesii strain SeS3, grown with thiosulfate, nitrate, selenate, or fumarate as the terminal electron acceptor, was investigated. Comparison of seven high-molecular-mass membrane proteins (105.3, 90.3, 82.6, 70.2, 67.4, 61.1, and 57.3 kDa) by SDS-PAGE showed that their detection was dependent on the terminal electron acceptor used. Membrane fractions from cells grown on thiosulfate contained a 70.2-kDa c-type cytochrome with absorbance maxima at 552, 522, and 421 nm. A 61.1-kDa c-type cytochrome with absorption maxima at 552, 523, and 423 nm was seen in membrane fractions from cells grown on nitrate. No c-type cytochromes were detected in membrane fractions of either selenate- or fumarate-grown cells. Difference spectra, however, revealed the presence of a cytochrome b 554 (absorption maxima at 554, 523, and 422 nm) in membrane fractions from selenate-grown cells and a cytochrome b 556 (absorption maxima at 556, 520, and 416 nm) in membrane fractions from fumarate-grown cells. Analysis of reductase activity in the different membrane fractions showed variability in substrate specificity. However, enzyme activity was greatest for the substrate on which the cells had been grown (e.g., membranes from nitrate-grown cells exhibited the greatest activity with nitrate). These results show that protein composition, cytochrome content, and reductase activity are dependent on the terminal electron acceptor used for growth. Received: 21 August 1996 / Accepted: 24 October 1996  相似文献   

14.
D M Arciero  C Balny  A B Hooper 《Biochemistry》1991,30(48):11466-11472
During oxidation of hydroxylamine, hydroxylamine oxidoreductase (HAO) transfers two electrons to tetraheme cytochrome c554 at rates sufficient to account for physiological rates of oxidation of ammonia to nitrite in Nitrosomonas europaea. Spectroscopic changes indicate that the two electrons are taken up by a high-potential pair of hemes (E degrees' = +47 mV) (one apparently high spin and one low spin). During single-turnover experiments, in which the reduction of oxidized cytochrome c554 by NH2OH-reduced HAO is monitored, one electron is taken up by the high-spin heme at a rate too fast to monitor directly (greater than 100 s-1) but which is inferred either by a loss of amplitude (relative to that observed under multiple-turnover conditions) or is slowed down by increasing ionic strength (greater than or equal to 300 mM KCl). The second electron is taken up by the low-spin heme at a 10-30-fold slower rate. The latter kinetics appear multiphasic and may be complicated by a transient oxidation of HAO due to the rapid transfer of the first electron into the high-spin heme of cytochrome c554. Under multiple-turnover conditions, a "slower" rate of reduction is observed for the high-spin heme of cytochrome c554 with a maximum rate constant of approximately 30 s-1, a value also obtained for the reduction, by NH2OH, of the cytochrome c554 high-spin heme within an oxidized HAO/c554 complex. Under these conditions, the maximum rate of reduction of the low-spin heme was approximately 11.0 s-1. Both rates decreased as the concentration of cytochrome c554 was increased above the concentration of HAO.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The N-oxidation of NN-dimethylaniline was studied by using a reconstituted rabbit liver microsomal enzyme system consisting of highly purified cytochrome P-448, NADPH-cytochrome c reductase and lipid factor. Both cytochrome P-448 and NADPH-cytochrome c reductase were required for optimum N-oxygenating activity; the catalytic capacity of the reductase fraction for supporting N-oxide formation varied with the isolation procedure applied. Addition of microsomal lipids to the assay media stimulated N-oxidation of the arylamine. N-Oxide formation appeared to be not generally controlled by electron transfer from cytochrome b5 to cytochrome P-448. The present work confirms that cytochrome P-448 can mediate about 44% of the rabbit liver microsomal N-oxidation of NN-dimethylaniline, thus reinforcing the existence of at least two distinct tertiary amine N-oxidases, i.e. haemoprotein and flavoprotein oxidase, in liver microsomal fractions.  相似文献   

16.
The genome of Nitrosomonas europaea contains at least three copies each of the genes coding for hydroxylamine oxidoreductase (HAO) and cytochrome c554. A copy of an HAO gene is always located within 2.7 kb of a copy of a cytochrome c554 gene. Cytochrome P-460, a protein that shares very unusual spectral features with HAO, was found to be encoded by a gene separate from the HAO genes.  相似文献   

17.
18-Hydroxylation of deoxycorticosterone was studies with rat or bovine adrenal mitochondria or with reconstituted systems obtained from these fractions. The reconstituted systems consisted of a partially purified preparation of cytochrome P-450 from rat adrenals and a partially purified NADPH-cytochrome P450 reductase preparation from bovine adrenals. In some experimenta a soluble cytochrome P-450 fraction from bovine adrenals was used. Adrenodoxine and adrenodoxine reductase were shown to be the active components of the NADPH-cytochrome P-450 reductase preparation. Optimal assay conditions were determined for 18-hydroxylation by the crude mitochondrial fraction as well as by the reconstituted systems. In the presence of excess NADPH-cytochrome P-450 reductase fraction, the rate of 18-hydroxylation was linear with time and with the amount of cytochrome P-450. In incubations with intact rat adrenal mitochondria to which Ca2+ and an excess NADPH had been added, NADPH-cytochrome P-450 reductase increased the rate of 18-hydroxylation about 100%, indicating that NADPH-cytochrome P-45o reductase was to some extent rate-limiting. The rate of 18-hydroxylation of deoxycorticosterone by the reconstituted system as well as by intact mitochondrial fraction was much higher than the rat of 18-hydroxylation of corticosterone and progesterone. When the cytochrome P-450 preparation from rat adrenals in the reconstituted system was substituted for cytochrome P-450 from bovine adrenals, the rate of 18-hydroxylation decreased considerably. Under all experimental conditions, the 18-hydroxylation of deoxycorticosterone occurred with a concomitant and efficient 11beta-hydroxylation. Provided the source of cytochrome P-450 was the same, the ratio between 11beta- and 18hydroxylation was constant under all conditions and was not significantly different in the presence of metopirone, carbon monoxide, cytochrome c or different steroids. It is suggested that identical or at least very similar types of cytochrome P-450 are involved in 11beta- and 18-hydroxylation of deoxycorticosterone.  相似文献   

18.
The participation of a cytochrome b5-like hemoprotein of outer mitochondrial membrane (OM cytochrome b) in the NADH-semidehydroascorbate (SDA) reductase activity of rat liver was studied. NADH-SDA reductase activity was strongly inhibited by antibodies against OM cytochrome b and NADH-cytochrome b5 reductase, whereas no inhibition was caused by anti-cytochrome b5 antibody. NADH-SDA reductase exhibited the same distribution pattern as OM cytochrome b-mediated rotenone-insensitive NADH-cytochrome c reductase activity among various subcellular fractions and submitochondrial fractions. Both activities were localized in outer mitochondrial membrane. These observations suggest that OM cytochrome b-mediated rotenone-insensitive NADH-cytochrome c reductase system participates in the NADH-SDA reductase activity of rat liver.  相似文献   

19.
Abstract The biochemical pathway and genetics of autotrophic ammonia oxidation have been studied almost exclusively in Nitrosomonas europaea. Terrestrial autotrophic ammonia-oxidizing bacteria (AAOs), however, comprise two distinct phylogenetic groups in the beta-Proteobacteria, the Nitrosomonas and Nitrosospira groups. Hybridization patterns were used to assess the potential of functional probes in non-PCR-based molecular analysis of natural AAO populations and their activity. The objective of this study was to obtain an overview of functional gene homologies by hybridizing probes derived from N. europaea gene sequences ranging in size from 0.45 to 4.5 kb, and labeled with 32P to Southern blots containing genomic DNA from four Nitrosospira representatives. Probes were specific for genes encoding ammonia monooxygenase (amoA and amoB), hydroxylamine oxidoreductase (hao), and cytochrome c-554 (hcy). These probes produced hybridization signals, at low stringency (30 degreesC), with DNA from each of the four representatives; signals at higher stringency (42 degreesC) were greatly reduced or absent. The hybridization signals at low stringency ranged from 20 to 76% of the total signal obtained with N. europaea DNA. These results indicate that all four functional genes in the ammonia oxidation pathway have diverged between the Nitrosomonas and Nitrosospira groups. The hao probe produced the most consistent hybridization intensities among the Nitrosospira representatives, suggesting that hao sequences would provide the best probes for non-PCR-based molecular analysis of terrestrial AAOs. Since N. europaea can also denitrify, an additional objective was to hybridize genomic DNA from AAOs with probes for Pseudomonas genes involved in denitrification. These probes were specific for genes encoding heme-type dissimilatory nitrite reductase (dNir), Cu-type dNir, and nitrous oxide reductase (nosz). No hybridization signals were observed from probes for the heme-type dNir or nosz, but Nitrosospira sp. NpAV and Nitrosolobus sp. 24-C hybridized, under low-stringency conditions, with the Cu-type dNir probe. These results indicate that AAOs may also differ in their mechanisms and capacities for denitrification.  相似文献   

20.
A new method was employed for the purification of cytochrome P-450 from rat liver microsomes. The purified cytochrome was essentially free from possible contaminants and the recovery and degree of purification were high. Although 15% of the original P-450 was recovered through the purification procedure used, only 0.8% of the total original microsomal ethanol oxidation activity was associated with this fraction. Addition of this purified fraction to other fractions isolated did not further stimulate ethanol oxidation. The component of rat liver microsomes that was found most efficient in the oxidation of ethanol was the mixture of catalase and NADPH - cytochrome c - reductase. It is concluded that highly purified cytochrome P-450 by itself does not oxidize ethanol to any appreciable degree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号