首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Peritoneal macrophages (PM), obtained from 39 healthy women with normal laparoscopy findings, were stimulated with the ionophore A23187 or/and arachidonic acid (AA) both in adherence and in suspension. AA lipoxygenase metabolites were determined by reversed-phase HPLC. The major metabolites identified were 5-hydroxyeicosatetraenoic acid (5-HETE), leukotriene (LT)B4 and LTC4. The 20-hydroxy-LTB4, 20-carboxy-LTB4, and 15-HETE were not detected. Incubations of adherent PM with 2 microM A23187 induced the formation of LTB4, 110 +/- 19 pmol/10(6) cells, 5-HETE, 264 +/- 53 pmol/10(6) cells and LTC4, 192 +/- 37 pmol/10(6) cells. When incubated with 30 microM exogenous AA, adherent PM released similar amounts of 5-HETE (217 +/- 67 pmol/10(6) cells), but sevenfold less LTC4 (27 +/- 12 pmol/10(6) cells) (p less than 0.01). In these conditions LTB4 was not detectable. These results indicate that efficient LT synthesis in PM requires activation of the 5-lipoxygenase/LTA4 synthase, as demonstrated previously for blood phagocytes. When stimulated with ionophore, suspensions of Ficoll-Paque-purified PM produced the same lipoxygenase metabolites. The kinetics of accumulation of the 5-lipoxygenase/LTA4 synthase products in A23187-stimulated adherent cells varied for the various metabolites. LTB4 reached a plateau by 5 min, whereas LTC4 levels increased up to 60 min, the longest incubation time studied. Levels of 5-HETE were maximal at 5 min, and then slowly decreased with time. Thus, normal PM, in suspension or adherence, have the capacity to produce significant amounts of 5-HETE, LTB4, and LTC4. The profile of lipoxygenase products formed by the PM and the reactivity of this cell to AA and ionophore A23187 are similar to those of the human blood monocyte, but different from those of the human alveolar macrophage.  相似文献   

2.
Lipoxygenase metabolism of arachidonic acid was compared between peritoneal macrophages from untreated rats and those from rats on day 7 after intraperitoneal injection of thioglycollate broth (TG). Resident macrophages (M phi) from untreated rats produced mainly LTB4 (303 +/- 25 pmol/5 x 10(6) cells) and 5-HETE (431 +/- 56 pmol/5 x 10(6) cells) when stimulated with 5 micrograms/ml calcium ionophore A23187 for 20 min at 37 degrees C. On the other hand, TG-elicited M phi generated less amounts of lipoxygenase metabolites (157 +/- 10 pmol LTB4 and 319 +/- 19 pmol 5-HETE/5 x 10(6) cells) with the same stimulus. Then, leukotriene productivity was examined by using subcellular fractions of each M phi lysate and an unstable epoxide intermediate, leukotriene A4. LTA4 hydrolase activity was mainly contained in soluble fractions from the both groups of M phi. The cytosol fraction from the resident M phi exhibited the following specific and total activity; 2.2 +/- 0.1 nmol LTB4/mg protein/5 min and 12.2 +/- 0.5 nmol LTB4/5 min per 10(8) cells. On the contrary, the cytosol fraction from the TG-elicited M phi showed 1.9 +/- 0.1 nmol LTB4/mg protein/5 min and 9.6 +/- 0.3 nmol LTB4/5 min per 10(8) cells. The resident M phi, however, generated 0.14 +/- 0.04 nmol O2-/min/4 x 10(5) cells whereas the TG-elicited M phi did 0.49 +/- 0.13 nmol O2-/min/4 x 10(5) cells when stimulated with wheat germ lectin. These results suggest that the TG-elicited macrophages show enhanced superoxide production but generate less lipoxygenase metabolites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
This study investigates the effect of platelet/neutrophil interactions on eicosanoid production. Human platelets and polymorphonuclear leukocytes (PMNs) were stimulated alone and in combination, with calcium ionophore A23187 and the resulting eicosanoids 12S-hydroxy-(5Z,8Z,10E,14Z)-eicosatetraenoic acid (12-HETE), 12S-heptadecatrienoic acid (HHT), 5S,12R-dihydroxy-(6Z,8E,10E,14Z)-eicosatetraenoi c acid (LTB4) and 5S-hydroxy-(6E,8Z,11Z,14Z)-eicosatetraenoic acid (5-HETE) were measured by HPLC. The addition of PMNs to platelet suspensions caused a 104% increase in 12-HETE, a product of 12-lipoxygenase activity, but had only a modest effect on the cyclooxygenase product HHT (increase of 18%). By using PMNs labelled with [14C]arachidonic acid it was shown that the increases in these platelet eicosanoids could be accounted for by translocation of released arachidonic acid from PMNs to platelets and its subsequent metabolism. The observation that 12-lipoxygenase was about five times more efficient than cyclooxygenase at utilising exogenous arachidonic acid during the platelet/PMN interactions was confirmed in experiments in which platelets were stimulated with A23187 in the presence of [14C]arachidonic acid. Stimulations of platelets with thrombin in the presence of PMNs resulted in a decrease in 12-HETE and HHT levels of 40% and 26%, respectively. The presence of platelets caused a small increase in neutrophil LTB4 output but resulted in a decrease in 5-HETE production of 43% during stimulation with A23187. This study demonstrates complex biochemical interactions between platelets and PMNs during eicosanoid production and provides evidence of a mechanism to explain the large enhancement in 12-HETE production.  相似文献   

4.
Transcellular lipoxygenase metabolism between monocytes and platelets   总被引:4,自引:0,他引:4  
We have examined the effects of co-culture and in vitro co-stimulation on lipoxygenase metabolism in monocytes and platelets. Monocytes were obtained from the peripheral blood of normal volunteers by discontinuous gradient centrifugation and adherence to tissue culture plastic. Platelets were obtained from the platelet-rich plasma of the same donor. When 10(9) platelets and 2.5 x 10(6) monocytes were co-stimulated with 1 microM A23187, these preparations released greater quantities of 12(S)-hydroxy-10-trans-5,8,14-cis-eicosatetraenoic acid, 5(S),12-(S)dihydroxy-6,10-trans-8,14-cis-eicosatetraenoic acid, and leukotriene C4, 5(S)-hydroxy-6(R)-S-glutathionyl-7,9-trans-11,14-cis-eicosatetraenoic (LTC4) when compared with monocytes alone. Release of arachidonic acid, 5-HETE, delta 6-trans-LTB4, and delta 6-trans-12-epi-LTB4 from monocytes was decreased in the presence of platelets. A dose-response curve was constructed and revealed that the above changes became evident when the platelet number exceeded 10(7). Dual radiolabeling experiments with 3H- and 14C-arachidonic acid revealed that monocytes provided arachidonic acid, 5-HETE, and LTA4 for further metabolism by the platelet. Monocytes did not metabolize platelet intermediates detectably. In addition, as much as 1.2 microM 12(S)-hydroxy-10-trans-5,8,14-cis-eicosatetraenoic acid and 12(S)-hydroperoxy-10-trans-5,8,14-cis-eicosatetraenoic acid had no effect on monocyte lipoxygenase metabolism. Platelets were capable of converting LTA4 to LTC4, but conversion of LTA4 to LTB4 was not detected. We conclude that the monocyte and platelet lipoxygenase pathways undergo a transcellular lipoxygenase interaction that differs from the interaction of the neutrophil and platelet lipoxygenase pathways. In this interaction monocytes provide intermediate substrates for further metabolic conversion by platelets in an unidirectional manner.  相似文献   

5.
Alveolar macrophages release greater amounts of leukotriene B4 (LTB4) and 5-hydroxyeicosatetraenoic acid (5-HETE) after A23187 stimulation than do blood monocytes. The mechanisms for this enhanced 5-lipoxygenase activity in alveolar macrophages are unknown. In these studies, we determined whether alveolar macrophages have greater amounts of the enzyme 5-lipoxygenase than do blood monocytes. We confirmed that alveolar macrophages released greater amounts of LTB4 after A23187 stimulation than did equivalent numbers of blood monocytes. In both the presence and absence of A23187, alveolar macrophages had greater amounts of immunoreactive 5-lipoxygenase, determined by Western analysis, on a per cell and a per protein basis than did blood monocytes. The amounts of 5-lipoxygenase enzyme in the cells roughly correlated with the amounts of LTB4 released by both types of cells. These observations suggest that A23187 stimulates alveolar macrophages to release greater amounts of LTB4 and 5-HETE than blood monocytes, in part, due to the greater amounts of 5-lipoxygenase.  相似文献   

6.
Neutrophils which ingest particles (serum-treated zymosan, monosodium urate crystals) or are exposed to calcium ionophore A23187 generate leukotriene B4 (LTB4). Earlier work has shown that cells exposed to colchicine before exposure to monosodium urate crystals produce less LTB4; the formation of 5-HETE is unaffected. To determine whether inhibition by colchicine of LTB4 generation was stimulus-specific and was mediated by microtubule integrity, the effects of colchicine (10 microM, 60 min) on the release of lipoxygenase products from neutrophils exposed to ionophore A23187 (10 microM, 5 min) were examined. In the presence of exogenous arachidonic acid (100 microM, 15 min), colchicine decreased LTB4 to 48% +/- 11.7 of control and 5-HETE to 60.5% +/- 5.7 of control (mean +/- SEM); 15-HETE was also decreased to 61% +/- 10.3 of control. In the absence of exogenous arachidonate, LTB4 was decreased to 22.2% +/- 11.7 of control and 5-HETE to 13% +/- 4.8 of control. Lumicolchicine did not significantly affect formation of 5-HETE or LTB4. However, vinblastine sulfate (20 microM, 60 min), another microtubule-disruptive agent, decreased the formation of both 5-lipoxygenase products. The effects of colchicine and vinblastine were not due to impairment of cell viability because the release of cytoplasmic lactic dehydrogenase was unaffected. Ultrastructural analysis of centriolar microtubules showed that decrements in microtubule numbers of colchicine- and vinblastine-treated cells paralleled decrements in 5-lipoxygenase products. These pharmacologic manipulations suggested that functional microtubules might be required for optimal lipoxygenase activity. Consequently, we prepared neutrophil-derived cytoplasts, devoid of an intact microtubule system. No significant decreases in the 5- or 15-lipoxygenase products were found when cytoplasts were exposed to colchicine in the presence of exogenous arachidonate and A23187. The data show that colchicine inhibits the formation of lipoxygenase products from neutrophils stimulated with A23187, most likely via its effect on microtubules, the integrity of which appears necessary for full expression of 5- and 15-lipoxygenases.  相似文献   

7.
A cloned murine mast cell MC9 expresses phospholipase and lipoxygenase activity when stimulated with IgE and hapten. Addition of DNP-BSA to sensitized MC9 cells causes release of 58% of the cell histamine and 127 pmoles LTC4/10(6) cells. Prelabelling studies with [1-14C]-arachidonic acid showed that LTC4 production was proceeded by the release of arachidonic acid from membrane phospholipids. Approximately 8.7% of the cell arachidonic acid was released and half of this was converted to LTC4. The remaining radioactivity was converted to diHETES including LTB4 (15%), 5-HETE (10%), free arachidonic acid (10%), reesterified 5-HETE and arachidonic acid (8%) and prostaglandins (7%). This stimulation was dependent on hapten (DNP-BSA) and extracellular Ca++. Under identical conditions the calcium ionophore A23187 stimulated the release of 10.3% of the total cell arachidonic acid, and 51% of this was metabolized to LTC4. In addition the ionophore stimulated the release of 61% of the total cellular histamine.  相似文献   

8.
Peripheral blood neutrophils from patients with allergic rhinitis and from normal subjects were incubated for 5 min at 37 degrees C with 0.15 microM calcium ionophore A23187 in the absence or presence of exogenous arachidonic acid (2.5 to 10 microM). In neutrophils from allergic patients, the leukotriene B4 (LTB4) level was significantly increased by exogenous arachidonic acid in a concentration-dependent manner (16.2 +/- 4.2 and 38.1 +/- 6.8 pmol/5 min per 2 X 10(6) cells in the absence and presence of 10 microM arachidonic acid, respectively; P less than 0.005; n = 8). The LTB4 level in neutrophils from healthy subjects was only 0.97 +/- 0.17 pmol/5 min per 2 x 10(6) cells (n = 5) and was not enhanced by exogenous arachidonate. When cells from allergic patients were challenged in the presence of exogenous [1-14C]arachidonic acid, released LTB4 was radiolabeled and the incorporated radioactivity increased with the labeled arachidonate concentration. Labeled LTB4 was never detectable after incubating neutrophils from normal donors with exogenous labeled arachidonate. When neutrophils were incubated with [1-14C]arachidonate for 1 h, the different lipid pools of the two cell populations were labeled but both types of neutrophils produced unlabeled LTB4 in response to ionophore stimulation. The hydrolysis of choline and ethanolamine phospholipids into diacyl-, alkenylacyl- and alkylacyl-species revealed that solely the alkylacyl-subclass of phosphatidylcholine was unlabeled. We conclude (i) that neutrophils from allergic patients stimulated by low ionophore concentration produce more LTB4 than neutrophils from healthy subjects and incorporate exogenous arachidonate, (ii) that endogenous arachidonate converted to LTB4 by the 5-lipoxygenase pathway may provide only from 1-O-alkyl-2-arachidonoyl-glycero-3-phosphocholine.  相似文献   

9.
Stimulation of human neutrophils with 12-hydroperoxyeicosatetraenoic acid (12-HPETE) led to formation of 5S, 12S-dihydroxyeicosatetraenoic acid (DiHETE), but leukotriene B4 (LTB4) or 5-hydroxyeicosatetraenoic acid (5-HETE) was not detectable by reversed-phase high-performance liquid chromatography analysis. N-formylmethionylleucylphenylalanine (FMLP) induced the additional synthesis of small amounts of LTB4 in 12-HPETE-stimulated neutrophils. The addition of arachidonic acid greatly increased the synthesis of LTB4 and 5-HETE by neutrophils incubated with 12-HPETE. In experiments using [1-14C]arachidonate-labeled neutrophils, little radioactivity was released by 12-HPETE alone or by 12-HPETE plus FMLP, while several radiolabeled compounds, including LTB4 and 5-HETE, were released by A23187. These findings demonstrate that LTB4 biosynthesis by 12-HPETE-stimulated neutrophils requires free arachidonic acid which may be endogenous or exogenous.  相似文献   

10.
A cloned murine mast cell line designated MC9 expresses a 5-lipoxygenase activity when stimulated with the ionophore A23187. Upon addition of 0.5 microM ionophore, MC9 cells produce 270 +/- 43 pmoles 5-HETE, 74 +/- 40 pmoles 5,12 diHETEs and 65 +/- 31 pmoles LTC4/10(6) cells from 37 microM exogenously added [1-14C]arachidonic acid in two minutes. 5-HETE and 5,12-diHETES, including LTB4 were identified by GC/MS whereas LTC4 was confirmed by HPLC mobility, bio-assay, RIA and enzymatic transformation. The principal cyclooxygenase products were PGD2 and TxB2 (8.5 +/- 2.4 and 5.4 +/- 1.2 pmoles/10(6) cells respectively). Prostanoids were identified by comigration with authentic standards on two-dimensional thin layer chromatograms. Production of arachidonic acid lipoxygenase metabolites stimulated with ionophore proved relatively insensitive to removal of extracellular Ca+2 and chelation by EGTA. In addition, MC9 5-lipoxygenase required only low micromolar amounts of exogenous arachidonic acid for maximal activity. Whereas production of arachidonic acid metabolites lasted only two to five minutes, histamine release stimulated with ionophore was not initiated until 5 minutes (12 +/- 3% cellular histamine) and continued for 30 minutes (37 +/- 7% cellular histamine). Although these cells metabolize arachidonic acid differently from the classic peritoneal-derived mast cell, they resemble subpopulations found in certain tissues (such as mucosa) and should be useful in understanding the biochemistry of mast cell mediator release.  相似文献   

11.
The effect of adrenalectomy on the formation of cyclo-oxygenase and lipoxygenase products by activated peritoneal rat macrophages was determined and compared with that of the spleen. After isolation, the cells and tissues were incubated with [1-14C] arachidonic acid and the Ca-ionophore A23187 and the metabolites isolated by HPLC chromatography. The main components formed in the macrophages of the controls are 6-keto-PGF1 alpha, TxB2 and 12-HETE. One peak represents 5, 12 di HETE. Smaller amounts of PGF2 alpha, PGE2, PGD2, LTB4 and 15-HETE are also present. After adrenalectomy, a considerable increase occurs in the amounts of LTB4, 15-HETE and 12-HETE. The increase in the PG is smaller. The compounds formed from endogenous arachidonic acid are also determined. In the cells of the controls, the formation of LTB4 is considerably increased after adrenalectomy. In the spleen, PGD2 and 12-HETE are decreased after adrenalectomy. The effect of the macrophages is most probably related to a diminished amount or inactivation of lipocortin, a glucocorticosteroid induced peptide with PlA2 inhibitory activity in adrenalectomized animals. In the decrease in formation in the spleen, the absence of the permissive effect of glucocorticosteroids on the hormone-induced lipolysis may play a role.  相似文献   

12.
Arachidonic acid metabolism in human neutrophils stimulated in vitro with the calcium ionophore A23187 was studied using combined HPLC and radioimmunoassays. Indomethacin (0.1 and 1.0 microM) caused a 300% increase in LTB4 formation in neutrophils stimulated with A23187. 5-, 12- and 15-HETE levels were also increased. In the presence of exogenous arachidonic acid 1.0 microM Indomethacin caused a 37% increase in LTB4 formation. Acetyl Salicylic Acid and Ibuprofen had no effect on the formation of lipoxygenase metabolites. The effect of indomethacin on LTB4 formation does not appear to be due to a simple redirection of substrate arachidonic acid from the cyclooxygenase to the lipoxygenase pathways.  相似文献   

13.
Alterations of leukotriene (LT) productivity in peritoneal macrophages (PM) from untreated rats (control) as well as from rats treated i.p. with thioglycollate broth (TG) were investigated on days 3, 7 and 14 after TG administration. The resident PM from the untreated rats produced mainly LTB4 and 5-HETE with small amounts of 12-HETE and LTD4 with only a trace of LTC4 when stimulated with the calcium ionophore A23187. The PM elicited from rats on days 3 and 7 produced more LTC4 than did the resident PM but fewer other lipoxygenase metabolites. On day 14, however, the elicited PM resembled the resident PM in terms of lipoxygenase metabolite production. Similar results were achieved in the presence of arachidonic acid and A23187. A decrease in lipoxygenase metabolism in the elicited PM was also suggested by using opsonized zymosan. Catabolism studies indicated a reduction in r-glutamyl transpeptidase activity in the elicited PM and suggested a reduction in catabolism for LTB4 in the former cells. The authors conclude that the TG-elicited PM generate fewer lipoxygenase metabolites than the resident PM following stimulation, but show a preferential conversion of LTA4 to sulfidopeptide LTs rather than to LTB4. The elicited PM also show a reduced catabolism for LTC4 and LTB4.  相似文献   

14.
The effects of the lipoxygenase products of arachidonic acid, 5- and 12-hydroxyeicosatetraenoic acid (5- and 12-HETE) and leukotriene B4 (LTB4), on the spontaneous contractility of lower uterine segment human myometrial strips obtained prior to labour have been studied in vitro. 5-HETE gave a dose- dependent (10-500ng) increase in both the rate of contractions and overall contractility of myometrial strips while 12-HETE and LTB4 had no effect at the same concentrations. Prostaglandin F2 alpha (50ng) contracted all myometrial strips in a similar pattern to 5-HETE but was approximately 10 times more potent. The effect of 5-HETE may be direct or perhaps indirect via interaction with the cyclo-oxygenase pathway. The findings do not disprove the contention that the onset of parturition may be characterised by a switch in arachidonic acid metabolism in intra-uterine tissues from lipoxygenase to cyclo-oxygenase products.  相似文献   

15.
Rat peritoneal monocytes and macrophages when exposed to the ionophore A23187 release products of the lipoxygenase pathway of arachidonic acid metabolism which cause the aggregation and chemokinesis of polymorphonuclear leucocytes suspensions. The major biologically active compound released was leukotriene B which accounted for greater than 80% of the activity. The remaining biological activity was due to the release of a more polar as yet unidentified compound. In addition rat macrophages release 5, 12 and 15-HETE but these mono-HETEs do not significantly contribute to the biological activity.  相似文献   

16.
Rat neutrophils isolated from three-hour carrageenan pleural exudates actively metabolize arachidonic acid into three major metabolites, HHT, 11-HETE and 15-HETE. However, in the presence of the calcium ionophore, A23187, or the non-ionic detergent, BRIJ 56, these cells also produce 5-HETE and LTB. The production of these lipoxygenase products is calcium dependent. While non-steroidal anti-inflammatory drugs do not affect 5-HETE or LTB production, BW 755C and ETYA inhibit formation of these metabolites from exogenously added arachidonic acid.  相似文献   

17.
Leukotriene B5 (LTB5) and three stereoisomers were prepared biosynthetically from eicosapentaenoic acid and compared with the analogous derivatives of arachidonic acid for their chemotactic and aggregating effects on human neutrophilic polymorphonuclear leukocytes. Leukotriene B4 (LTB4), LTB5, and the 6-trans-diastereoisomers of each were generated by activating polymorphonuclear leukocytes with the calcium ionophore A23187 in the presence of 14C-labeled and unlabeled arachidonic acid or 14C-labeled and unlabeled eicosapentaenoic acid, respectively. The double lipoxygenase products, (5S,12S)-6-trans-8-cis-LTB4 and (5S,12S)-6-trans-8-cis-LTB5, were generated from 5S-hydroxyeicosatetraenoic acid and racemic 5-hydroxyeicosapentaenoic acid intermediates by incubation with platelet sonicates. The products of each reaction were isolated by reverse-phase-high performance liquid chromatography and identified by their retention times relative to the appropriate totally synthetic standards, ultraviolet absorption spectra, immunoreactivity in a radioimmunoassay for LTB4, and, for all but the double lipoxygenase products, by incorporation of radiolabel from the specific polyunsaturated fatty acid source. When the concentration of LTB5 eliciting maximum chemotactic response of human polymorphonuclear leukocytes, 50 ng/ml (1.5 X 10(-7) M), and that eliciting a maximum aggregation response, 20 ng/ml (5.9 X 10(-8) M), were compared with the interpolated values of LTB4 eliciting comparable effects, the potency of LTB5 relative to LTB4 was approximately 1:8 as a chemotactic agent and about 1:20 as an aggregating agent. The double lipoxygenase products and the resolved 6-trans-diastereoisomers of the pentaene and tetraene series were about 2 logs less active as chemotactic factors than LTB4 and only (5S,12S)-6-trans-8-cis-LTB4 had even minimal aggregating activity.  相似文献   

18.
Incubation of cell sonicates from monoclonal B cells with arachidonic acid led to the formation of leukotriene (LT) B4 and 5-hydroxy-eicosatetraenoic acid (5-HETE). In contrast, stimulation of intact B cells with the calcium ionophore A23187 +/- arachidonic acid did not, under similar conditions, lead to formation of LTB4. The identification of these products was based on reverse phase- and straight phase-HPLC analysis, UV-spectroscopy and gas chromatography-mass spectrometry. Cell sonicates of highly enriched human tonsillar B lymphocytes also converted arachidonic acid to LTB4 and 5-HETE. Activation of these cells with B cell mitogen and cytokines for three days led to an upregulation of 5-lipoxygenase activity. This study provides evidence for the biosynthesis of LTB4 from arachidonic acid in B cell lines and in normal human tonsillar B lymphocytes.  相似文献   

19.
Rat peritoneal monocytes and macrophages when exposed to the ionophore A23187 release products of the lipoxygenase pathway of arachidonic acid metabolism which cause the aggregation and chemokinesis of polymorphonuclear leucocytes suspensions. The major biologically active compound released was leukotriene B which accounted for >80% of the activity. The remaining biological activity was due to the release of a more polar as yet unidentified compound. In addition rat macrophages release 5, 12 and 15-HETE but these mono-HETEs do not significantly contribute to the biological activity.  相似文献   

20.
Escherichia coli hemolysin (HlyA) is a prototype of a large family of pore-forming proteinaceous exotoxins that have been implicated in the pathogenetic sequelae of severe infection and sepsis, including development of acute lung injury. In the present study in rabbit alveolar macrophages (AMs), subcytolytic concentrations of purified HlyA evoked rapid synthesis of platelet-activating factor, with quantities approaching those in response to maximum calcium ionophore challenge. In parallel, large quantities of leukotriene (LT) B(4) and 5-, 8-, 9-, 12-, and 15-hydroxyeicosatetraenoic acid (HETE) were liberated from HlyA-exposed AMs depending on exogenous arachidonic acid (AA) supply. Coadministration of eicosapentaenoic acid (EPA) dose dependently suppressed generation of the proinflammatory lipoxygenase products LTB(4) and 5-, 8-, 9-, and 12-HETE in parallel with the appearance of the corresponding EPA-derived metabolites LTB(5) and 5-, 8-, 9-, and 12-hydroxyeicosapentaenoic acid (HEPE). At equimolar concentrations, EPA turned out to be the preferred substrate over AA for these AM lipoxygenase pathways, with the sum of LTB(5) and 5-, 8-, 9-, and 12-HEPE surpassing the sum of LTB(4) and 5-, 8-, 9-, and 12-HETE by >80-fold. In contrast, coadminstration of EPA did not significantly reduce HlyA-elicited generation of the anti-inflammatory AA lipoxygenase product 15-HETE. We conclude that AMs are sensitive target cells for HlyA attack, resulting in marked proinflammatory lipid mediator synthesis. In the presence of EPA, lipoxygenase product formation is shifted from a pro- to an anti-inflammatory profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号