首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coelome-associated lympho-myeloid tissues, including the omentum, are derived from early embryo haemopoietic tissue of the splanchnopleura, and produce B lymphocytes and macrophages. They are reactive in pathologies involving coelomic cavities, in which they can expand in situ the cells of inflammatory infiltrates. We have addressed the question of the role of the adult omentum in permanent basal production of early lymphopoietic progenitors (pro-B/pre-B cells), through characterisation of omentum cells ex vivo, and study of their in vitro differentiation. We have shown that the murine omentum produces early haemopoietic progenitors throughout life, including B-cell progenitors prior to the Ig gene recombination expressing RAG-1 and 5, as well as macrophages. Their production is stroma-dependent. The omentum stroma can supply in vitro the cytokines (SDF-1, Flt3 ligand and IL-7) and the molecular environment required for generation of these two cell lineages. Omentum haemopoietic progenitors are similar to those observed in foetal blood cell production, rather than to progenitors found in the adult haemopoietic tissue in the bone marrow—in terms of phenotype expression and differentiation capacity. We conclude that a primitive pattern of haemopoiesis observed in the early embryo is permanently preserved and functional in the adult omentum, providing production of cells engaged in nonspecific protection of abdominal intestinal tissue and of the coelomic cavity.Supported by CNPq, FINEP and PADCT grants of the Brazilian Ministry of Science and Technology, and a FAPERJ grant of the Rio de Janeiro State Government  相似文献   

2.
Understanding the role of CD11b(+)GR-1(+) myeloid suppressor cells in the immune suppression and immunoregulation associated with a variety of diseases may provide therapeutic opportunities. In this article, we show, in a model of helminth infection, that CD11b(+)GR-1(+) myeloid suppressor cells but not CD11b(+)F4/80(high) mature macrophages expanded in the peritoneal cavity of BALB/c mice implanted with Taenia crassiceps. Peritoneal cell populations from early stage-infected animals impaired T cell proliferation by secreting NO. Yet, they lost their ability to secrete NO in the late stage of infection. Concomitantly, their capacity to exert arginase activity and to express mRNAs coding for FIZZ1 (found in inflammatory zone 1), Ym, and macrophage galactose-type C-type lectin increased. Furthermore, cells from early stage-infected mice triggered T cells to secrete IFN-gamma and IL-4, whereas in the late stage of infection, they only induced IL-4 production. These data suggest that CD11b(+)GR-1(+) myeloid suppressor cells displaying an alternative activation phenotype emerged gradually as T. crassiceps infection progressed. Corroborating the alternative activation status in the late stage of infection, the suppressive activity relied on arginase activity, which facilitated the production of reactive oxygen species including H(2)O(2) and superoxide. We also document that the suppressive activity of alternative myeloid suppressor cells depended on 12/15-lipoxygenase activation generating lipid mediators, which triggered peroxisome proliferator-activated receptor-gamma. IL-4 and IL-13 signaling contributed to the expansion of myeloid suppressor cells in the peritoneal cavity of T. crassiceps-infected animals and to their antiproliferative activity by allowing arginase and 12/15-lipoxygenase gene expression.  相似文献   

3.
4.
There is evidence that mature dendritic cells (DCs) present in the rheumatoid arthritis (RA) joint mediate immunopathology in RA. In this study, we indicate that early myeloid progenitors for DCs and DC growth factors existing in RA synovial fluid (SF) are also likely participants in the RA disease process. A fraction of cells lacking markers associated with mature DCs or DC precursors and enriched in CD34(negative) myeloid progenitors was isolated from RA SF. These cells proliferated extensively when cultured in vitro with cytokines that promote the growth of myeloid DCs (GM-CSF/TNF/stem cell factor/IL-4) and, to a lesser degree, when cultured with monocyte/granulocyte-restricted growth factors (M-CSF/GM-CSF). Mature DCs derived from RA SF progenitors with CD14-DC cytokines known to be prevalent in the inflamed RA joint (GM-CSF/TNF/stem cell factor/IL-13) were potent stimulators of allogeneic T cells and inflammatory-type Th1 responses and included CD14-DC subtypes. Cell-free RA SF facilitated DC maturation from myeloid progenitors, providing direct evidence that the inflamed RA joint environment instructs DC growth. Enhanced development of CD14-derived DCs was correlated with the presence of soluble TNFR (p55), raising the possibility that soluble TNFR also regulate CD14-derived DC growth in vivo. SF from patients with osteoarthritis contained neither myeloid DC progenitors nor DC growth factors. The existence of DC progenitors and myeloid DC growth factors in RA SF supports the concept that RA SF may be a reservoir for joint-associated DCs and reveals a compelling mechanism for the amplification and perpetuation of DC-driven responses in the RA joint, including inflammatory-type Th1 responses.  相似文献   

5.
Evidence suggests that NK and NKT cells contribute to inflammation and mortality during septic shock caused by cecal ligation and puncture (CLP). However, the specific contributions of these cell types to the pathogenesis of CLP-induced septic shock have not been fully defined. The goal of the present study was to determine the mechanisms by which NK and NKT cells mediate the host response to CLP. Control, NK cell-deficient, and NKT cell-deficient mice underwent CLP. Survival, cytokine production, and bacterial clearance were measured. NK cell trafficking and interaction with myeloid cells was also studied. Results show that mice treated with anti-asialoGM1 (NK cell deficient) or anti-NK1.1 (NK/NKT cell deficient) show less systemic inflammation and have improved survival compared with IgG-treated controls. CD1 knockout mice (NKT cell deficient) did not demonstrate decreased cytokine production or improved survival compared with wild type mice. Trafficking studies show migration of NK cells from blood and spleen into the inflamed peritoneal cavity where they appear to facilitate the activation of peritoneal macrophages (F4-80(+)GR-1(-)) and F4-80(+)Gr-1(+) myeloid cells. These findings indicate that NK but not CD1-restricted NKT cells contribute to acute CLP-induced inflammation. NK cells appear to mediate their proinflammatory functions during septic shock, in part, by migration into the peritoneal cavity and amplification of the proinflammatory activities of specific myeloid cell populations. These findings provide new insights into the mechanisms used by NK cells to facilitate acute inflammation during septic shock.  相似文献   

6.
In this paper, we describe a protocol for hematopoietic differentiation of human pluripotent stem cells (hPSCs) and generation of mature myeloid cells from hPSCs through expansion and differentiation of hPSC-derived lin(-)CD34(+)CD43(+)CD45(+) multipotent progenitors. The protocol comprises three major steps: (i) induction of hematopoietic differentiation by coculture of hPSCs with OP9 bone marrow stromal cells; (ii) short-term expansion of multipotent myeloid progenitors with a high dose of granulocyte-macrophage colony-stimulating factor; and (iii) directed differentiation of myeloid progenitors into neutrophils, eosinophils, dendritic cells, Langerhans cells, macrophages and osteoclasts. The generation of multipotent hematopoietic progenitors from hPSCs requires 9 d of culture and an additional 2 d to expand myeloid progenitors. Differentiation of myeloid progenitors into mature myeloid cells requires an additional 5-19 d of culture with cytokines, depending on the cell type.  相似文献   

7.
To assess the combined role of G-CSF, GM-CSF, and M-CSF in myeloid cell production, mice deficient in all three myeloid CSFs were generated (G-/-GM-/-M-/- mice). G-/-GM-/-M-/- mice share characteristics found in mice lacking individual cytokines: they are toothless and osteopetrotic and furthermore acquire alveolar proteinosis that is more severe than that found in either GM-/- or G-/-GM-/- mice. G-/-GM-/-M-/- mice have a significantly reduced lifespan, which is prolonged by antibiotic administration, suggesting compromised ability to control bacterial infection. G-/-GM-/-M-/- mice have circulating neutrophils and monocytes, albeit at significantly reduced numbers compared with wild-type mice, but surprisingly, have more circulating monocytes than M-/- mice and more circulating neutrophils than G-/-GM-/- mice. Due to severe osteopetrosis, G-/-GM-/-M-/- mice show diminished numbers of myeloid cells, myeloid progenitors, and B lymphocytes in the bone marrow, but have significantly enhanced compensatory splenic hemopoiesis. Although G-/-GM-/-M-/- mice have a profound deficiency of myeloid cells in the resting peritoneal cavity, the animals mount a moderate cellular response in a model of sterile peritonitis. These data establish that in the absence of G-CSF, GM-CSF, and M-CSF, additional growth factor(s) can stimulate myelopoiesis and acute inflammatory responses.  相似文献   

8.
Modelling of ex vivo expansion/maintenance of hematopoietic stem cells   总被引:1,自引:0,他引:1  
In this study, we described the modelling of the expansion/maintenance of human hematopoietic stem/progenitor cells from adult human bone marrow. CD 34(+)-enriched cell populations from bone marrow were cultured in the presence and absence of human stroma in serum-free media containing bFGF, SCF, LIF and Flt-3 ligand for several days. The cells in the culture were analysed for expansion and phenotype by flow cytometry. Although significant expansion of bone marrow cultures occurred in the presence and absence of human stroma, the results of expansion were effectively better in the presence of a stromal layer. In both situations the phenotypic analysis demonstrated a great expansion of CD 34(+)38(-) cells. The differentiative potential of bone marrow CD 34(+) cells co-cultured with human stroma was primarily shifted towards the myeloid lineage with the presence of CD 15 and CD 33.  相似文献   

9.
Hemopoietic stem and progenitor cells ordinarily residing within bone marrow are released into the circulation following G-CSF administration. Such mobilization has a great clinical impact on hemopoietic stem cell transplantation. Underlying mechanisms are incompletely understood, but may involve G-CSF-induced modulation of chemokines, adhesion molecules, and proteolytic enzymes. We studied G-CSF-induced mobilization of CD34+ CD10+ CD19- Lin- and CD34+ CD10+ CD19+ Lin- cells (early B and pro-B cells, respectively). These mobilized lymphoid populations could differentiate only into B/NK cells or B cells equivalent to their marrow counterparts. Mobilized lymphoid progenitors expressed lymphoid- but not myeloid-related genes including the G-CSF receptor gene, and displayed the same pattern of Ig rearrangement status as their bone marrow counterparts. Decreased expression of VLA-4 and CXCR-4 on mobilized lymphoid progenitors as well as multipotent and myeloid progenitors indicated lineage-independent involvement of these molecules in G-CSF-induced mobilization. The results suggest that by acting through multiple trans-acting signals, G-CSF can mobilize not only myeloid-committed populations but a variety of resident marrow cell populations including lymphoid progenitors.  相似文献   

10.
11.
The omentum is a sheet-like tissue attached to the greater curvature of the stomach and contains secondary lymphoid organs called milky spots. The omentum has been used for its healing potential for over 100 years by transposing the omental pedicle to injured organs (omental transposition), but the mechanism by which omentum helps the healing process of damaged tissues is not well understood. Omental transposition promotes expansion of pancreatic islets, hepatocytes, embryonic kidney, and neurons. Omental cells (OCs) can be activated by foreign bodies in vivo. Once activated, they become a rich source for growth factors and express pluripotent stem cell markers. Moreover, OCs become engrafted in injured tissues suggesting that they might function as stem cells.Omentum consists of a variety of phenotypically and functionally distinctive cells. To understand the mechanism of tissue repair support by the omentum in more detail, we analyzed the cell subsets derived from the omentum on immune and inflammatory responses. Our data demonstrate that the omentum contains at least two groups of cells that support tissue repair, immunomodulatory myeloid derived suppressor cells and omnipotent stem cells that are indistinguishable from mesenchymal stem cells. Based on these data, we propose that the omentum is a designated organ for tissue repair and healing in response to foreign invasion and tissue damage.  相似文献   

12.
The Drosophila lymph gland is a haematopoietic organ in which progenitor cells, which are most akin to the common myeloid progenitor in mammals, proliferate and differentiate into three types of mature cell--plasmatocytes, crystal cells and lamellocytes--the functions of which are reminiscent of mammalian myeloid cells. During the first and early second instars of larval development, the lymph gland contains only progenitors, whereas in the third instar, a medial region of the primary lobe of the lymph gland called the medullary zone contains these progenitors, and maturing blood cells are found juxtaposed in a peripheral region designated the cortical zone. A third group of cells referred to as the posterior signalling centre functions as a haematopoietic niche. Similarly to mammalian myeloid cells, Drosophila blood cells respond to multiple stresses including hypoxia, infection and oxidative stress. However, how systemic signals are sensed by myeloid progenitors to regulate cell-fate determination has not been well described. Here, we show that the haematopoietic progenitors of Drosophila are direct targets of systemic (insulin) and nutritional (essential amino acid) signals, and that these systemic signals maintain the progenitors by promoting Wingless (WNT in mammals) signalling. We expect that this study will promote investigation of such possible direct signal sensing mechanisms by mammalian myeloid progenitors.  相似文献   

13.
Recently, a new class of human dendritic cell (DC) precursors has been described in the peripheral blood recognized by the mAb M-DC8. These cells represent approximately 1% of PBMC and acquire several characteristics of myeloid DC upon in vitro culture. In this report we show that M-DC8(+) monocytes secrete in response to LPS >10 times the amount of TNF-alpha as M-DC8(-) monocytes, but produce significantly less IL-10. Consistent with a role in inflammatory responses, we found that M-DC8(+) cells localized in the T cell area of inflamed human tonsils and in the subepithelial dome region of Peyer's patches. In patients with active Crohn's disease, abundant M-DC8(+) cells were detectable in inflamed ileal mucosa, which were entirely depleted after systemic steroid treatment. Our results indicate that M-DC8(+) cells are cells of DC phenotype in inflamed mucosa-associated lymphoid tissue that may contribute to the high level of TNF-alpha production in Crohn's disease. We infer that selective elimination of M-DC8(+) cells in inflammatory diseases has therapeutic potential.  相似文献   

14.
The two closely related Stat5 (Stat5A and Stat5B) proteins are activated by a broad spectrum of cytokines. However, with the complication of the involvement of Stat5A/5B in stem cell function, the role of Stat5A/5B in the development and function of lymphocytes, especially B cells, is not fully understood. In this study, we demonstrated that Stat5A/5B(-/-) fetal liver cells had severe diminution of B cell progenitors but clearly had myeloid progenitors. Consistently, the mutant fetal liver cells could give rise to hemopoietic progenitors and myeloid cells but not B cells beyond pro-B cell progenitors in lethally irradiated wild-type or Jak3(-/-) mice. Deletion of Stat5A/5B in vitro directly impaired IL-7-mediated B cell expansion. Of note, reintroduction of Stat5A back into Stat5A/5B(-/-) fetal liver cells restored their abilities to develop B cells. Importantly, CD19-Cre-mediated deletion of Stat5A/5B in the B cell compartment specifically impaired early B cell development but not late B cell maturation. Moreover, the B cell-specific deletion of Stat5A/5B did not impair splenic B cell survival, proliferation, and Ig production. Taken together, these data demonstrate that Stat5A/5B directly control IL-7-mediated early B cell development but are not required for B cell maturation and Ig production.  相似文献   

15.
N Banu  B Deng  S D Lyman  H Avraham 《Cytokine》1999,11(9):679-688
The Flt-3 receptor is expressed in primitive haematopoietic cells and its ligand exerts proliferative effects on these cells in vitro in synergy with other cytokines. To increase our knowledge of the functional properties of the human Flt-3 ligand (FL) as relating to in vitro expansion of haematopoietic stem cells, the effects on murine haematopoiesis of FL alone or in combination with other growth factors were studied. Analysis of Flk-2/Flt-3 mRNA expression indicated that Flk-2/Flt-3 was preferentially expressed in primitive haematopoietic cell populations. To examine the expression of the Flk-2/Flt-3 receptor on megakaryocyte progenitors (CFU-Meg), Flk-2/Flt-3 positive and negative CD34(+)populations were separated from human bone marrow and cultured in a plasma clot culture system. CFU-Meg colonies were found in the Flk-2/Flt-3 negative fraction. Myeloid (CFU-GM) derived colonies appeared in the presence of FL alone. Neither FL+IL-3 nor FL+IL-3+IL-6 had any effect on the generation of megakaryocyte colonies (CFU-MK), due to the lack of FL receptor expression on megakaryocyte progenitors. Bone marrow cells remaining after 5-fluorouracil (5-FU) treatment of mice represent a very primitive population of progenitors enriched for reconstituting stem cells. This cell population expressed FL receptors, as revealed by RT-PCR analysis. Addition of FL alone did not enhance the replication of such cells in liquid cultures as compared to controls. However, a significantly greater generation of myeloid progenitors (CFU-GM) in clonogenic assays was observed in the presence of FL+IL-3, FL+GM-CSF or FL+CSF-1. In addition, the effects of FL on in vitro expansion of murine haematopoietic stem cells were studied using lineage-negative (lin(-)) Sca-1 positive (Sca-1(+)) c-kit positive (c-kit(+)) marrow cells from 5-FU treated mice. FL enhanced the survival of primitive murine lin(-)Sca-1(+)c-kit(+)cells. FL and IL-6 were able to significantly expand murine progenitor stem cells in vitro and promote their survival. These studies strongly suggest that FL significantly and selectively enhanced the generation of myeloid progenitors in vitro and increased myeloid progenitor responsiveness to later acting growth factors. In addition, FL synergized with IL-6 to support in vitro expansion of haematopoietic progenitors and promoted the survival of lin(-)Sca-1(+)c-kit(+)cells.  相似文献   

16.
We have developed methods for detailed characterization of the proliferation kinetics and lineage potential of single human hematopoietic progenitor cells in an in vitro culture system. Fetal bone marrow CD34(hi)/lin(-) cells were cultured at one cell per well in the presence of c-kit ligand (KL), interleukin (IL)-3, IL-6, and leukemia inhibitory factor (LIF) on a murine stroma cell monolayer. Individual wells were scored for growth between 1 and 10 weeks of culture and analyzed by flow cytometry for lineage composition. A wide variation in time (1 to 8 weeks) was observed before initial cell division, even in the presence of cytokines promoting cell division in primitive progenitors. Eleven percent of the plated cells eventually produced a confluent culture well of approximately 20,000 progeny. Confluent wells were harvested and individually analyzed by flow cytometry for cell surface phenotype. Forty-eight percent of confluent wells contained primitive progenitors (CD34(+)lin(-)), 16% contained B-lymphoid cells (CD19(+) or CD10(+)), and 100% contained cells committed to the myelo-erythroid lineage (CD33(+)). CD34(+)/lin(-) cells from confluent wells were replated at one cell per well in secondary culture and the analysis repeated. One of 216 original single cells plated produced populations of B-lymphoid cells, myeloid cells, and primitive progenitors (CD34(+)/lin(-)) which persisted through two expansion cycles. We estimate that more than 36 million cells can be produced from a single cell under these culture conditions. A very small percentage of the CD34(hi)/lin(-) population (about 1%) was responsible for the majority of subsequent cell production. Our estimate of stem cell content in fetal bone marrow, defined by self-renewal as well as both B-lymphoid and myeloid differentiation from one cell, is approximately 1/13,000. This assay system provides direct in vitro measurements of the expected characteristics of hematopoietic stem cells (high proliferation potential, multilineage potential, self-renewal, and quiescence), and is therefore well suited to assessment of stem cell activity within various cell populations. (c) 1996 John Wiley & Sons, Inc.  相似文献   

17.
Myeloid cells, which include monocytes, macrophages, and granulocytes, are important innate immune cells, but the mechanism and downstream effect of their cell death on the immune system is not completely clear. Necroptosis is an alternate form of cell death that can be triggered when death receptor-mediated apoptosis is blocked, for example, in stimulated Fas-associated Death Domain (FADD) deficient cells. We report here that mice deficient for FADD in myeloid cells (mFADD-/-) exhibit systemic inflammation with elevated inflammatory cytokines and increased levels of myeloid and B cell populations while their dendritic and T cell numbers are normal. These phenotypes were abolished when RIP3 deficiency was introduced, suggesting that systemic inflammation is caused by RIP3-dependent necroptotic and/or inflammatory activity. We further found that loss of MyD88 can rescue the systemic inflammation observed in these mice. These phenotypes are surprisingly similar to that of dendritic cell (DC)-specific FADD deficient mice with the exception that DC numbers are normal in mFADD-/- mice. Together these data support the notion that innate immune cells are constantly being stimulated through the MyD88-dependent pathway and aberrations in their cell death machinery can result in systemic effects on the immune system.  相似文献   

18.
Adult hematopoietic stem cells (HSCs) with serially transplantable activity comprise two subtypes. One shows a balanced output of mature lymphoid and myeloid cells; the other appears selectively lymphoid deficient. We now show that both of these HSC subtypes are present in the fetal liver (at a 1:10 ratio) with the rarer, lymphoid-deficient HSCs immediately gaining an increased representation in the fetal bone marrow, suggesting that the marrow niche plays a key role in regulating their ensuing preferential amplification. Clonal analysis of HSC expansion posttransplant showed that both subtypes display an extensive but variable self-renewal activity with occasional interconversion. Clonal analysis of their differentiation programs demonstrated functional and molecular as well as quantitative HSC subtype-specific differences in the lymphoid progenitors they generate but an indistinguishable production of multipotent and myeloid-restricted progenitors. These findings establish a level of heterogeneity in HSC differentiation and expansion control that may have relevance to stem cell populations in other hierarchically organized tissues.  相似文献   

19.
Notch signaling is critical for T cell development of multipotent hemopoietic progenitors. Yet, how Notch regulates T cell fate specification during early thymopoiesis remains unclear. In this study, we have identified an early subset of CD34high c-kit+ flt3+ IL-7Ralpha+ cells in the human postnatal thymus, which includes primitive progenitors with combined lymphomyeloid potential. To assess the impact of Notch signaling in early T cell development, we expressed constitutively active Notch1 in such thymic lymphomyeloid precursors (TLMPs), or triggered their endogenous Notch pathway in the OP9-Delta-like1 stroma coculture. Our results show that proliferation vs differentiation is a critical decision influenced by Notch at the TLMP stage. We found that Notch signaling plays a prominent role in inhibiting non-T cell differentiation (i.e., macrophages, dendritic cells, and NK cells) of TLMPs, while sustaining the proliferation of undifferentiated thymocytes with T cell potential in response to unique IL-7 signals. However, Notch activation is not sufficient for inducing T-lineage progression of proliferating progenitors. Rather, stroma-derived signals are concurrently required. Moreover, while ectopic IL-7R expression cannot replace Notch for the maintenance and expansion of undifferentiated thymocytes, Notch signals sustain IL-7R expression in proliferating thymocytes and induce IL-7R up-regulation in a T cell line. Thus, IL-7R and Notch pathways cooperate to synchronize cell proliferation and suppression of non-T lineage choices in primitive intrathymic progenitors, which will be allowed to progress along the T cell pathway only upon interaction with an inductive stromal microenvironment. These data provide insight into a mechanism of Notch-regulated amplification of the intrathymic pool of early human T cell progenitors.  相似文献   

20.
In vitro differentiation of embryonic stem (ES) cells is often used to study hematopoiesis. However, the differentiation pathway of lymphocytes, in particular natural killer (NK) cells, from ES cells is still unclear. Here, we used a multi-step in vitro ES cell differentiation system to study lymphocyte development from ES cells, and to characterize NK developmental intermediates. We generated embryoid bodies (EBs) from ES cells, isolated CD34(+) EB cells and cultured them on OP9 stroma with a cocktail of cytokines to generate cells we termed ES-derived hematopoietic progenitors (ES-HPs). EB cell subsets, as well as ES-HPs derived from EBs, were tested for NK, T, B and myeloid lineage potentials using lineage specific cultures. ES-HPs derived from CD34(+) EBs differentiated into NK cells when cultured on OP9 stroma with IL-2 and IL-15, and into T cells on Delta-like 1-transduced OP9 (OP9-DL1) with IL-7 and Flt3-L. Among CD34(+) EB cells, NK and T cell potentials were detected in a CD45(-) subset, whereas CD45(+) EB cells had myeloid but not lymphoid potentials. Limiting dilution analysis of ES-HPs generated from CD34(+)CD45(-) EB cells showed that CD45(+)Mac-1(-)Ter119(-) ES-HPs are highly enriched for NK progenitors, but they also have T, B and myeloid potentials. We concluded that CD45(-)CD34(+) EB cells have lymphoid potential, and they differentiate into more mature CD45(+)Lin(-) hematopoietic progenitors that have lymphoid and myeloid potential. NK progenitors among ES-HPs are CD122(-) and they rapidly acquire CD122 as they differentiate along the NK lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号