首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
B S Jandhyala  G J Hom 《Life sciences》1983,33(14):1325-1340
Vanadium is distributed extensively in nature. It is a trace element and is present in almost all living organisms including man. Even though vanadium was originally recognized for its ability to inhibit membrane Na+-K+-ATPase, various laboratory studies now document that this element has the capacity to affect the activity of various intracellular enzyme systems and may modify their physiological functions. Vanadium may be an essential element for normal development and may play an important role in various homeostatic mechanisms, and thus vanadium deficiency may prove to be an important concern. Abnormalities in biological disposition of vanadium may be involved in the pathogenesis of certain neurological disorders or cardiovascular diseases. While the essentiality of this element for living organisms is yet to be established with certainty, vanadium has become an increasingly important element and is used extensively in various heavy industries such as steel, oil, etc.; thus, the incidence of exposure to toxic levels of vanadium to industrial workers has been an increasing concern for toxicologists. To date, little information is available on the physiological or pharmacological actions of vanadium; hence, it is difficult to reach any definitive conclusion concerning its biological significance, essentiality and its role in pathological states. An attempt has been made in this review to broadly document what is known of various biological actions of vanadium.  相似文献   

2.
The number of reports concerning the chemical toxicology of metals which are released in the environment by natural as well as anthropogenic sources, have been increasing constantly. Lead, cadmium, and manganese have found a variety of uses in industry, craft, and agriculture owing to their physical and chemical properties. The environmental burden of heavy metals has been rising substantially by smelter emission in air and waste sewage in water. Further, organic compounds of lead and manganese used as antiknock substances in gasoline are emitted into the atmosphere by automobile exhaustion. Such environmental contamination of air, water, soil, and food is a serious threat to all living kinds. Although these metals are known to produce their toxic effects on a variety of body systems, much emphasis has been placed on their effects on the nervous system owing to apparent association of relatively low or "subclinical" levels of metallic exposure with behavioral and psychological disorders. Clinical and animal data on environmental exposure show that while lead and manganese are most toxic to the nervous system, cadmium exerts profound adverse effects on kidney and the male reproductive system. It appears that the consequences of exposure to lead in adults are less severe than the types of exposure associated with hyperactivity in neonates. Except for a few reports, hyperactivity has indeed been observed in animals exposed to either of these three metals. Experimental work has also shown that these metals produce behavioral changes by altering the metabolism of brain neurotransmitters, especially catecholamines. Recently, it is hypothesized that these metals exert their toxic effect by damaging biological defences which exist in the body to serve as protective mechanisms against exogenous toxins. A voluminous publication list with diverse opinions on the biological effects of metals is available and there is an urgent need to compile assessment of the existing literature to identify the future theme of research work. The problem of metal toxicity becomes even more complex owing to simultaneous or successive exposure of the general population to different physical, chemical, biological, and psychological factors in the environment. The net toxic manifestations produced by multiple exposure should, therefore, be different from those produced by a single factor as the result of their additive, synergistic or antagonistic action. Even though a metal may not exist in sufficient amounts to cause any disability, the toxicity could result when a second factor is also present.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Role of arsenic and its resistance in nature   总被引:1,自引:0,他引:1  
  相似文献   

4.
This review deals with the measurement of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices of rats and humans (blood, serum, tissues, urine, breath, feces and flatus). Hydrogen sulfide and methanethiol both contain the active thiol (–SH) group and appear in the free gaseous form, in the acid-labile form and in the dithiothreitol-labile form. Dimethyl sulfide is a neutral molecule and exists only in the free form. The foul odor of these sulfur volatiles is a striking characteristic and plays a major role in bad breath, feces and flatus. Because sulfur is a biologically active element, the biological significance of the sulfur volatiles are also highlighted. Despite its highly toxic properties, hydrogen sulfide has been lately recommended to become the third gasotransmitter, next to nitric oxide and carbon monoxide, based on high concentration found in healthy tissues, such as blood and brain. However, there is much doubt about the reliability of the assay methods used. Many artifacts in the sulfide assays exist. The methods to detect the various forms of hydrogen sulfide are critically reviewed and compared with findings of our group. Recent findings that free gaseous hydrogen sulfide is absent in whole blood urged the need to revisit its role as a blood-borne signaling molecule.  相似文献   

5.
Copper is a metallic element that is crucial for cell metabolism; however, in extended concentrations, it is toxic for all living organisms. The dual nature of copper has forced organisms, including bacteria, to keep a tight hold on cellular copper content. This challenge has led to the evolution of complex mechanisms that on one hand enable them to deliver the essential element and on the other to protect cells against its toxicity. Such mechanisms have been found in both eukaryotic and prokaryotic cells. In bacteria a number of different systems such as extra- and intracellular sequestration, enzymatic detoxification, and metal removal from the cell enabling them to survive in the presence of high concentration of copper have been identified. Gram-negative bacteria, due to their additional compartment, need to deal with both cytoplasmic and periplasmic copper. Therefore, these bacteria have evolved intricate and precisely regulated systems which interact with each other. In this review the active mechanisms of copper resistance at their molecular level are discussed.  相似文献   

6.
Interactions of chromium with microorganisms and plants   总被引:24,自引:0,他引:24  
Chromium is a highly toxic non-essential metal for microorganisms and plants. Due to its widespread industrial use, chromium (Cr) has become a serious pollutant in diverse environmental settings. The hexavalent form of the metal, Cr(VI), is considered a more toxic species than the relatively innocuous and less mobile Cr(III) form. The presence of Cr in the environment has selected microbial and plant variants able to tolerate high levels of Cr compounds. The diverse Cr-resistance mechanisms displayed by microorganisms, and probably by plants, include biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux. Some of these systems have been proposed as potential biotechnological tools for the bioremediation of Cr pollution. In this review we summarize the interactions of bacteria, algae, fungi and plants with Cr and its compounds.  相似文献   

7.
Toxic effects of chromium and its compounds   总被引:1,自引:0,他引:1  
Chromium was discovered in 1797 by Vauquelin. Numerous industrial applications raised chromium to a very important economic element. At the same time, with the development of its uses, the adverse effects of chromium compounds in human health were being defined. Trivalent chromium is an essential trace element in humans and in animals. Chromium as pure metal has no adverse effect. Little toxic effect is attributed to trivalent chromium when present in very large quantities. Both acute and chronic toxicity of chromium are mainly caused by hexavalent compounds. The most important toxic effects, after contact, inhalation, or ingestion of hexavalent chromium compounds are the following: dermatitis, allergic and eczematous skin reactions, skin and mucous membrane ulcerations, perforation of the nasal septum, allergic asthmatic reactions, bronchial carcinomas, gastro-enteritis, hepatocellular deficiency, and renal oligo anuric deficiency. Prevention of occupational risks, biological monitoring of workers, and treatment of poisoning are also reported.  相似文献   

8.
Manganese (Mn) is a required element for biological systems; however, its excessive exposure may lead to a neurological syndrome known as manganism. The aim of the present study was to assess the toxic effects of subacute exposure of Mn by measuring weight gain, motor performance, and biochemical parameters (complex I activity, lipid peroxides, and protein carbonyls) in brain mitochondria in rats. We also examined whether edaravone (EDA), a radical scavenger, exerts protective effects against Mn‐induced neurotoxicity. In addition, we evaluated the accumulation of Mn in brain regions using magnetic resonance imaging. Mn‐exposed rats revealed significantly impaired motor performance, weight loss, and Mn accumulation in particular brain area. Lipid peroxides and protein carbonyls were significantly increased in Mn‐exposed rats, whereas complex I activity was found to be decreased. EDA treatment significantly prevented mitochondrial oxidative damage and improved motor performance. These findings suggested that EDA might serve as a clinically effective agent against Mn‐induced neurotoxicity.  相似文献   

9.
In recent years, there has been growing interest in estimating the degree of heating caused by the diagnostic ultrasound in clinical practice. Both theoretical and experimental methods have been suggested for estimating the heating potential, or thermal hazard, of diagnostic ultrasound. Aim of this study was to evaluate in vivo effects of ultrasound exposure of variable duration (from 10 up to 20 min) with commercially available imaging systems commonly used for diagnostic imaging. Numerical results related to the thermal effect are obtained by simulation program based on B-mode (scanning) and Doppler (non-scanning). To investigate the biological effects of the ultrasound exposure to the brain and liver tissues, the antioxidant enzyme activity and thiobarbituric acid reactive substances (TBARS) of the tissues were evaluated. In liver tissue, as a lipid peroxidation index, TBARS levels very significantly increase in Doppler group compared to control. However, in B-mode, TBARS levels are the same with the control group. Use of B-mode in foetal tissue is more reliable than Doppler mode because temperature rise is very small compared to the Doppler mode. On the other hand, the antioxidant enzyme activities tend to increase in B-mode and Doppler groups compared to the control group as a defensive mechanism. In the brain tissue, lipid peroxidation is increased slightly in B-mode compared to the control group. This situation is related to the molecular structure of the brain tissue because of its high lipid concentration. In brain tissue, the antioxidant enzyme activities and lipid peroxidation were significantly increased, such as liver tissue in Doppler groups. Doppler ultrasound may produce harmful effects in rat foetus liver and brain tissues as a result of the high temperature rises.  相似文献   

10.
Information concerning the chemical state of trace elements in biological systems generally has not been available. Such information for toxic elements and metals in metalloproteins could prove extremely valuable in the elucidation of their metabolism and other biological processes. The shielding of core electrons by binding electrons affect the energy required for creating inner-shell holes. Furthermore, the molecular binding and symmetry of the local environment of an atom affect the absorption spectrum in the neighborhood of the absorption edge. X-ray absorption near-edge structure (XANES) using synchrotron radiation excitation can be used to provide chemical speciation information for trace elements at concentrations as low as 10 ppm. The structure and position of the absorption curve in the region of an edge can yield vital data about the local structure and oxidation state of the trace element in question. Data are most easily interpreted by comparing the observed edge structure and position with those of model compounds of the element covering the entire range of possible oxidation states. Examples of such analyses will be reviewed.  相似文献   

11.
Gold is a nonessential element with a variety of applications in medicine. A few gold(I) compounds are used in the clinics for treatment of rheumatoid arthritis and of discoid lupus. Some novel gold(III) compounds are under evaluation as anticancer agents. It is known that gold compounds generally produce toxic effects on the kidneys and characteristic lesions in the brain. However, information concerning the neurotoxicity of gold derivatives in humans as well as in experimental toxicology is rather scarce. For this reason we tried to shed some further light on this aspect of gold neurotoxicity by chronic treatment of mice with sodium tetrachloroaurate(III) in order to observe possible biophysical and morphological alterations that may occur in the brain. Chronic gold treatment resulted in a markedly decreased expression of metallothioneins and of glial fibrillary acidic protein in astrocytes of different brain areas. To examine its effects on cell membranes, interactions of sodium tetrachloroaurate(III) with molecular models were also evaluated. The models consisted in bilayers built-up of classes of phospholipids located in the outer and inner monolayers of biological membranes. Structural perturbation of cell membrane models was observed only at concentrations 10(5) times higher than those detected in the brains of animals after three months' treatment. These results show that toxic effects on animal brain upon treatment with sodium tetrachloroaurate develop with difficulty and may be observed only at high doses.  相似文献   

12.
13.
Cadmium toxicity in animal cells by interference with essential metals   总被引:8,自引:0,他引:8  
Martelli A  Rousselet E  Dycke C  Bouron A  Moulis JM 《Biochimie》2006,88(11):1807-1814
Cadmium is found in the environment as part of several, mainly zinc-rich, ores. It has been used in many technological applications, but biological systems generally failed to safely deal with this element. In mammalian biology, cadmium exposure jeopardizes health and mechanisms of cadmium toxicity are multifarious. Mainly because bioavailable cadmium mimics other metals that are essential to diverse biological functions, cadmium follows a Trojan horse strategy to get assimilated. Metals susceptible to cadmium deceit include calcium, zinc, and iron. The wealth of data addressing cadmium toxicity in animal cells is briefly reviewed with special emphasis on disturbance of the homeostasis of calcium, zinc, and iron. A limited number of tissues and cell types are considered as main targets for cadmium toxicity. Still, the diversity of pathways affected by cadmium exposure points to a more general threat to basic cellular functions. The poor efficiency of cellular export systems for cadmium explains the long residence time of the element in mammals. Therefore, proper disposal and educated uses of this technologically appealing, but biologically malicious, element should be favored in the future. The comprehensive knowledge of cadmium biological effects is indeed a necessary step to protect human and animal populations from environmental and anthropological exposures.  相似文献   

14.
Cadmium is a toxic metal with no known biological function. It is increasingly important as an environmental hazard to both humans and wildlife, and it exemplifies the double edged nature of many toxic substances. Thus, on the one hand cadmium can act as a mitogen, stimulate cell proliferation, inhibit apoptosis, inhibit DNA repair, and promote cancer in a number of tissues. On the other hand, it causes tissue damage, notably in the kidney, by inducing cell death. At low and moderate concentrations in cell culture systems (e.g., 0.1–10 μM) cadmium primarily causes apoptosis, and at higher concentrations (>50 μM) necrosis becomes evident. This generalization appears to hold in vivo. There is also evidence of cadmium-induced autophagy, although whether this is a direct cause of cell death remains uncertain. After discussing these generalities, this review considers the details of apoptotic death, and its inhibition, in renal mesangial cells. We also present evidence for the effect of environmental exposure to cadmium in affecting renal function, and in particular review the evidence for the role of the mesangial cell in cadmium nephrotoxicity.  相似文献   

15.
Lead is a nonphysiological metal that has been implicated in toxic processes that affect several organ systems in humans and other animals. Although the brain generally has stronger protective mechanisms against toxic substances than other organs have, exposure to lead results in several neurophysiological and behavioral symptoms. The administration of a single injection (i.p.) of lead acetate in mice is a model of acute Pb2 + toxicity. In the present study, this model was used to explore the magnitude of the effect of different doses, time intervals and mice strains on several biobehavioral parameters. We investigated the effects of acute lead acetate administration on body and brain weight, brain lead acetate accumulation and specially, spontaneous locomotion and brain catalase activity. Lead acetate was injected i.p. in outbred (Swiss or CD1) and inbred (BALB/c, C57BL/J6 or DBA/2) mice at doses of 0, 50, 100, 150 or 200 mg/kg. At different time intervals following this acute treatment, several biochemical, physiological and behavioral responses were recorded. Results indicated that acute lead acetate has deleterious dose-dependent effects on brain and body weight. The effect on body weight in the present study was transient, although lead acetate was detected in neural tissues for several days after administration. Spontaneous locomotor activity only was reduced up until 24 hours. The effect of lead on body weight was strain-dependent, with Swiss mice showing greater resistance compared to the other strains. Total brain catalase activity in lead-pretreated Swiss mice showed a significant induction. This enzymatic upregulation could provide a protective mechanism for oxidative stress in these mice.  相似文献   

16.
Biological monitoring of exposure to metals and metalloids involves not only determination of these elements in selected body fluids and tissues but, in some cases, also determination of a certain biochemical indicator which signalises the presence of the monitored element in the organism. Biological monitoring of occupational exposure to metals has a long tradition whereas biological monitoring of exposure in general environment has developed more intensively only in the past two decades. New information about the toxic effect of some metals and metalloids and about their kinetics of absorption, distribution and excretion in experimental animals, and particularly in man, is necessary for elaborating suitable biological exposure tests. Of current interest is also the movement of persistent noxae in the environment, seen from the ecologic view point. This report outlines the present state of the problem in Czechoslovakia.  相似文献   

17.
This review has focused on several parameters related to the delivery of carcinogenic metal compounds to the cell nucleus as a basis for understanding the intermediates formed between metals and cellular components and the effect of these intermediates on DNA structure and function. Emphasis has been placed on metal interactions at the cellular membrane, including lipid peroxidation, metal interactions with glutathione and their relation to membrane injury, and metal effects on the membrane bound enzyme, Na+/K+ ATPase. Metal binding to metallothionein is also considered, particularly as related to transport and utilization of metal ions and to genetic defects in these processes exemplified in Menkes disease. The ability of cadmium to induce the synthesis of metallothionein more strongly than zinc is also discussed in relation to other toxic and carcinogenic metals. The effects of metal ions on purified DNA and RNA polymerase systems are presented with some of the recent studies using biological ligand-metal complexes. This review points out the importance of considering how metals affect in vitro systems when presented as ionic forms or complexed to relevant biological ligands.  相似文献   

18.
Metals and metalloids play a key role in plant and other biological systems as some of them are essential to living organisms and all can be toxic at high concentrations. It is therefore important to understand how they are accumulated, complexed and transported within plants. In situ imaging of metal distribution at physiological relevant concentrations in highly hydrated biological systems is technically challenging. In the case of roots, this is mainly due to the possibility of artifacts arising during sample preparation such as cross sectioning. Synchrotron x-ray fluorescence microtomography has been used to obtain virtual cross sections of elemental distributions. However, traditionally this technique requires long data acquisition times. This has prohibited its application to highly hydrated biological samples which suffer both radiation damage and dehydration during extended analysis. However, recent advances in fast detectors coupled with powerful data acquisition approaches and suitable sample preparation methods can circumvent this problem. We demonstrate the heightened potential of this technique by imaging the distribution of nickel and zinc in hydrated plant roots. Although 3D tomography was still impeded by radiation damage, we successfully collected 2D tomograms of hydrated plant roots exposed to environmentally relevant metal concentrations for short periods of time. To our knowledge, this is the first published example of the possibilities offered by a new generation of fast fluorescence detectors to investigate metal and metalloid distribution in radiation-sensitive, biological samples.  相似文献   

19.
Different anthropogenic activities as well as natural sources contribute enormously towards various heavy metal contaminations in aquatic habitats. Cadmium (Cd) is one of most prevalent and toxic heavy metals with a long half life. Unlike terrestrial animals, exposure of Cd in fishes may happen not only through feeds but also from its habitat water. Bioaccumulation of Cd in fishes occurs in many tissues, but mainly in gill, liver, kidney, skin, and muscle. The concentrations of Cd in fish tissues depend upon the extent and duration of Cd exposure, species and age of fishes, dietary minerals and antioxidant concentrations, and habitat water quality. Specific histopathological observations in liver, kidney, and gill are useful to understand the effects of Cd, which could help to determine the ameliorating methods to be adopted. Exposure of Cd exerts several adverse effects on general growth and development, reproductive processes, osmoregulation, morphological and histological structures, stress tolerance, and endocrine system, mainly due to changes in biological functions induced by differential expressions of several genes related to oxidative stress, apoptosis, inflammation, immunosuppressions, genotoxicity, Cd chelation and carbohydrate metabolism. Chronic biomagnifications of Cd exceeding the permitted level may be harmful not only to the fishes itself but also to humans through food chains. Amelioration of such toxic heavy metal that has been categorized as a potent carcinogenic in humans is of utmost importance. Main modes of amelioration encompas reducing oxidative damages by promoting the antioxidative defenses, decreasing Cd absorption, increasing excretion through excretory system and improving the tolerance of fishes to Cd toxicity. Many amelioration measures such as use of minerals (for example, zinc, calcium, and iron), vitamins (vitamin C, A, and E), different herbs, probiotics and other agents (taurine, bentonite, chitosan, zeolite, and metallothionein) have been explored for their effective roles to reduce Cd bioaccumulation and toxicity symptoms in fishes. The present review discusses bioaccumulation of Cd, histopathological alterations, oxidative stress, synergism-antagonism, and gene regulation in different tissues, and its amelioration measures in fishes.  相似文献   

20.
Organic mercury (Hg) species exert their toxicity primarily in the central nervous system. The food relevant Hg species methylmercury (MeHg) has been frequently studied regarding its neurotoxic effects in vitro and in vivo. Neurotoxicity of thiomersal, which is used as a preservative in medical preparations, is to date less characterised. Due to dealkylation of organic Hg or oxidation of elemental Hg, inorganic Hg is present in the brain albeit these species are not able to readily cross the blood brain barrier. This study compared for the first time toxic effects of organic MeHg chloride (MeHgCl) and thiomersal as well as inorganic mercury chloride (HgCl2) in differentiated human neurons (LUHMES) and human astrocytes (CCF-STTG1). The three Hg species differ in their degree and mechanism of toxicity in those two types of brain cells. Generally, neurons are more susceptible to Hg species induced cytotoxicity as compared to astrocytes. This might be due to the massive cellular mercury uptake in the differentiated neurons. The organic compounds exerted stronger cytotoxic effects as compared to inorganic HgCl2. In contrast to HgCl2 exposure, organic Hg compounds seem to induce the apoptotic cascade in neurons following low-level exposure. No indicators for apoptosis were identified for both inorganic and organic mercury species in astrocytes. Our studies clearly demonstrate species-specific toxic mechanisms. A mixed exposure towards all Hg species in the brain can be assumed. Thus, prospectively coexposure studies as well as cocultures of neurons and astrocytes could provide additional information in the investigation of Hg induced neurotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号