首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Structure-function and biological role of betacellulin   总被引:3,自引:0,他引:3  
Betacellulin (BTC) belongs to the epidermal growth factor (EGF) family of peptide ligands that are characterised by a six-cysteine consensus motif that forms three intra-molecular disulfide bonds crucial for binding the ErbB receptor family. BTC was initially described, purified and cloned from a mouse insulinoma cell line. BTC is proteolytically processed from a larger membrane-anchored precursor and is a potent mitogen for a wide variety of cell types. BTC binds and activates ErbB-1 and ErbB-4 homodimers and is further characterised by its unique ability to activate all possible heterodimeric ErbB receptors. BTC is widely expressed in most tissues and various body fluids, including milk. Expression is particularly high in the pancreas where it is thought to play a role in the differentiation of pancreatic beta cells. While much is known about the ErbB receptor binding characteristics of BTC and its effect on a variety of cultured cells under different conditions, the challenge that lies ahead is to determine the role of BTC in vivo. This review will focus on the structure of BTC and the various biological effects ascribed to this member of the EGF family.  相似文献   

2.
EGF activates the ErbB1 receptor, but there appears only a limited correlation between its receptor binding affinity and mitogenic activity. This is indicated by our present observation that in cells with high ErbB1 expression, including SUM102 breast tumor cells, low affinity EGF/Notch chimeras have similarly high mitogenic activity as EGF, in spite of the fact that EGF is superior in inducing receptor tyrosine phosphorylation and p42/p44 MAP-kinase activity. However, as a result of receptor-mediated internalisation high-affinity ligands such as EGF are depleted much more rapidly from the extracellular medium than low-affinity EGF/Notch chimeras. As a consequence, the mitogenic activity of EGF on ErbB1 overexpressing cells is limited by substantial degradation of internalised ligand in the period before cells enter S-phase, a phenomenon that is not observed for low affinity mutant ligands. The mitogenic activity of EGF on ErbB1 overexpressing cells does therefore not only depend on the applied concentration but also on the total amount of ligand added, and is strongly underestimated when tested in a limited assay volume. No such dependence on the incubation volume was observed for EGF activity on cells with low ErbB1 expression levels and on cells for which EGF is growth inhibitory.  相似文献   

3.
Interleukin-3 (IL-3)-dependent murine 32D cells do not detectably express epidermal growth factor receptors (EGFRs) and do not proliferate in response to EGF, heregulin (HRG) or other known EGF-like ligands. Here, we report that EGF specifically binds to and can be crosslinked to 32D transfectants co-expressing ErbB2 and ErbB3 (32D.E2/E3), but not to transfectants expressing either ErbB2 or ErbB3 individually. [125I]EGF-crosslinked species detected in 32D. E2/E3 cells were displaced by HRG and betacellulin (BTC) but not by other EGF-like ligands that were analyzed. EGF, BTC and HRG also induced receptor tyrosine phosphorylation, activation of downstream signaling molecules and proliferation of 32D.E2/E3 cells. 32D transfectants were also generated which expressed an ErbB3-EGFR chimera alone (32D.E3-E1) or in combination with ErbB2 (32D. E2/E3-E1). While HRG stimulation of 32D.E3-E1 cells resulted in DNA synthesis and receptor phosphorylation, EGF and BTC were inactive. However, EGF and BTC were as effective as HRG in mediating signaling when ErbB2 was co-expressed with the chimera in the 32D.E2/E3-E1 transfectant. These results provide evidence that ErbB2/ErbB3 binding sites for EGF and BTC are formed by a previously undescribed mechanism that requires co-expression of two distinct receptors. Additional data utilizing MDA MB134 human breast carcinoma cells, which naturally express ErbB2 and ErbB3 in the absence of EGFRs, supported the results obtained employing 32D cells and suggest that EGF and BTC may contribute to the progression of carcinomas that co-express ErbB2 and ErbB3.  相似文献   

4.
Dimerization of epidermal growth factor receptor (EGFR) leads to the activation of its tyrosine kinase. To elucidate whether dimerization is responsible for activation of the intracellular tyrosine kinase domain or just plays a role in the stabilization of the active form, the activated status of wild-type EGFR moiety in the heterodimer with kinase activity-deficient mutant receptors was investigated. The kinase activity of the wild-type EGFR was partially activated by EGF in the heterodimer with intracellular domain deletion (sEGFR) or ATP binding-deficient mutant (K721A) EGFRs, while the wild-type EGFR in the heterodimer of wild-type and phosphate transfer activity-deficient mutant receptor D813N could be fully activated. After treatment with EGF, the ATP binding affinity and the V(max) of the wild-type EGFR increased. In the presence of sEGFR, a similar increase in the affinity for ATP was observed, but V(max) did not change. A two-step activation mechanism for EGFR was proposed: upon binding of EGF, the affinity for ATP increased and then, as a result of interaction between the neighboring tyrosine kinase domain, V(max) increased.  相似文献   

5.
Addition of epidermal growth factor (EGF) to many cell types activates phospholipase C resulting in increased levels of diacylglycerol and intracellular Ca2+ which may lead to activation of protein kinase C. EGF treatment of cells can also lead to phosphorylation of the EGF receptor at threonine 654 (a protein kinase C phosphorylation site) which appears to attenuate some aspects of receptor signaling. Thus, a feedback loop involving the EGF receptor, phospholipase C, and protein kinase C may regulate EGF receptor function. In this report, the role of phosphorylation of threonine 654 of the EGF receptor in regulation of EGF-stimulated activation of phospholipase C was investigated. NIH-3T3 cells expressing the normal human EGF receptor or expressing EGF receptor in which an alanine residue had been substituted at residue 654 of the receptor were used. Addition of EGF to cells expressing wild-type receptor induced a rapid, but transient, increase in phosphorylation of threonine 654. EGF addition also caused the rapid accumulation of inositol phosphates in these cells. EGF-stimulated accumulation of inositol phosphates was significantly higher in cells expressing Ala-654 receptors compared to control cells. Treatment of cells with 12-O-tetradecanoylphorbol 13-acetate (TPA), which stimulated phosphorylation of threonine 654 to a greater degree than EGF, completely inhibited EGF-dependent inositol phosphate accumulation in cells expressing wild-type receptor, but caused only a 20-30% inhibition in Ala-654 expressing cells. EGF stimulated phosphorylation of phospholipase C-gamma on serine and tyrosine residues in cells expressing wild-type of Ala-654 receptors. However, TPA treatment of cells inhibited EGF-induced tyrosine phosphorylation of phospholipase C-gamma only in cells expressing wild-type receptors. Similarly, TPA inhibited tyrosine-specific autophosphorylation of the EGF receptor and tyrosine phosphorylation of several other proteins in wild-type receptor cells, but not in Ala-654 cells. TPA treatment abolished high affinity binding of EGF to cells expressing wild-type receptors, while decreasing the number of high affinity binding sites 20-30% in Ala-654 cells. These data suggest that phosphorylation of threonine 654 can regulate early events in EGF receptor signal transduction such as phosphoinositide turnover, probably through a feedback mechanism involving protein kinase C. Subsequent dephosphorylation of threonine 654 could reactivate the EGF receptor for participation in later signaling events.  相似文献   

6.
VIP receptors on AR42J rat pancreatic cells were analyzed by competition binding, affinity labeling and by N-glycanase digestion analyses. These studies revealed the presence of specific, high affinity (Kd approximately 1 nM) VIP receptors with a mass of 67 kDa or 59 kDa under reducing or non-reducing conditions, respectively. N-glycanase digestion of affinity labeled membranes generated a core receptor protein of approximately 44 kDa and evidence for at least two N-linked glycans on the mature receptor. The receptor lacked O-linked oligosaccharides but contained terminal sialic acid residues on its N-linked glycan(s) based on digestions with O-glycanase and neuraminidase. The similarity of the AR42J VIP receptor to the recently cloned cDNA for human VIP receptors makes this cell line an attractive model for further analysis of VIP receptor signal transduction events.  相似文献   

7.
The major sites of serine and threonine phosphorylation of the human epidermal growth factor (EGF) receptor observed in intact cells are Thr654, Thr669, Ser1046, and Ser1047. Phosphorylation of the EGF receptor is increased at these sites in cells treated with platelet-derived growth factor or phorbol ester. This increase in EGF receptor phosphorylation is associated with an inhibition of the high affinity binding of EGF to cell surface receptors and an inhibition of the receptor tyrosine protein kinase activity. In order to test the hypothesis that the phosphorylation of the EGF receptor is mechanistically related to the modulation of EGF receptor function, we replaced the major sites of serine and threonine phosphorylation with alanine residues. EGF receptors containing single point mutations or multiple mutations were expressed in Chinese hamster ovary cells. Analysis of the regulation of the EGF receptor tyrosine protein kinase activity demonstrated that phorbol ester caused an inhibition of the tyrosine phosphorylation of wild-type receptors and receptors lacking Thr669, Ser1046, or Ser1047. In contrast, the inhibition of EGF receptor tyrosine phosphorylation caused by phorbol ester was not observed for any of the mutated EGF receptors that lacked Thr654. These data are consistent with the hypothesis that the phosphorylation of the EGF receptor at Thr654 is required for the inhibition of the receptor tyrosine protein kinase activity caused by phorbol ester. Investigation of the apparent affinity of the EGF receptor demonstrated that treatment with phorbol ester caused an inhibition of the high affinity binding of 125I-EGF to cells expressing wild-type EGF receptors and each of the mutated EGF receptors examined. We conclude that the regulation of the apparent affinity of the EGF receptor is independent of the major sites of serine and threonine phosphorylation of the EGF receptor.  相似文献   

8.
9.
The epidermal growth factor (EGF) receptor is a substrate for phosphorylation by the calcium- and phospholipid-dependent protein kinase (protein kinase C) at Thr654. The hypothesis that this phosphorylation is causally related to the regulation of the functional properties of the EGF receptor was tested by substitution of Thr654 with an alanine residue. Activation of protein kinase C using phorbol ester caused a decrease in the high affinity binding of EGF to Chinese hamster ovary cells expressing wild-type [Thr654]EGF receptors. Similar results were obtained with cells expressing mutated [Ala654]EGF receptors. The regulation of the protein kinase activity of the EGF receptor by protein kinase C was examined using a synthetic peptide substrate for tyrosine phosphorylation. Protein kinase C caused a Ca2+-dependent decrease in the tyrosine-protein kinase activity of the wild-type [Thr654]EGF receptor. In contrast, no inhibition of the tyrosine-protein kinase activity of the mutated [Ala654]EGF receptor caused by protein kinase C was detected. In further experiments, the desensitization of EGF action caused by the activation of protein kinase C was examined by investigating the regulation of the transferrin receptor by EGF. Phorbol ester was observed to cause the desensitization of signaling by the wild-type [Thr654] and mutated [Ala654]EGF receptors. These data are consistent with a role for the phosphorylation of EGF receptor Thr654 in the regulation of the receptor tyrosine-protein kinase activity. However, the inhibition of the high affinity binding of EGF to cell-surface receptors caused by protein kinase C does not require Thr654. It is concluded that independent mechanisms account for the regulation by protein kinase C of the EGF receptor affinity and tyrosine-protein kinase activity.  相似文献   

10.
The effects of glucocorticoids on somatostatin binding and cAMP response in the rat pancreatic acinar carcinoma AR4-2J cell line were examined. Dexamethasone treatment reduced the number of somatostatin receptors 2.5 fold without any change in receptor affinity. In addition, dexamethasone increased the sensitivity of the cells to somatostatin-inhibited cAMP formation and restored the biphasic pattern of cAMP response to somatostatin previously observed in normal pancreatic acinar cells. Such effect may be associated with the glucocorticoid-promoted cellular pancreatic differentiation of AR4-2J cells.  相似文献   

11.
Epidermal growth factor (EGF)-stimulated tyrosine phosphorylation of proteins was examined in cells expressing wild-type (WT-EGFR) EGF receptors or EGF receptors truncated at residue 973 (973-EGFR). A much broader spectrum of tyrosine phosphorylated proteins was found following EGF treatment of 973-EGFR expressing cells compared with cells expressing wild-type receptors. Several additional ras GTPase activating protein-associated tyrosine phosphorylated proteins were found in EGF-treated 973-EGFR cells relative to WT-EGFR cells. Additional tyrosine-phosphorylated proteins were also found to co-immunoprecipitate with phospholipase C gamma 1 (PLC gamma 1) following EGF treatment of cells expressing 973-EGFR relative to cells expressing WT-EGFR. EGF-stimulated tyrosine phosphorylation of PLC gamma 1 was found in cells expressing WT-EGFR, but not in cells expressing 973-EGFR. WT-EGF receptor from EGF-treated cells bound well to bacterially expressed src homology (SH) regions of PLC gamma 1 and to a lesser extent to bacterially expressed GTPase activating protein SH regions. No binding of 973-EGF receptor to SH regions of either protein could be detected. EGF treatment greatly reduced the half-life of WT-EGFR, but had relatively little effect on the half-life of 973-EGFR. EGF induced internalization of 973-EGFR at a slower rate than WT-EGFR and caused the appearance of discrete receptor degradation products for both cell types. The data indicate that truncation of the EGF receptor at residue 973 alters receptor substrate specificity, decreases the rate of receptor internalization, and has an inhibitory effect on receptor degradation.  相似文献   

12.
DNA sequences encoding the human epidermal growth factor (EGF) receptor and various EGF-receptor deletion mutants were transfected into chinese hamster ovary (CHO) cells devoid of endogenous EGF receptors. A functional human EGF-receptor is expressed on the surface of heterologous CHO cells with the following properties: it exhibits typical high affinity (10%; Kd = 3 X 10(-10) M) and low affinity (90%; Kd = 3 X 10(-9) M) binding sites for 125I-EGF; it is expressed as a polypeptide of 170,000 molecular weight with intrinsic protein tyrosine kinase activity. EGF stimulates the kinase activity leading to self-phosphorylation and to phosphorylation of exogenous substrate; 125I-EGF is rapidly internalized into the CHO cells by receptor mediated endocytosis and; EGF stimulates DNA synthesis in the cells expressing the human EGF-receptor. Deletion of 63 amino acids from the C-terminal end of EGF-receptor, which removes two autophosphorylation sites, abolishes the high affinity state of the receptor. Nevertheless, this receptor mutant is able to undergo endocytosis and to respond mitogenically to EGF to a similar extent as the "wild type" receptor. Further deletions from the cytoplasmic domain give rise to low affinity endocytosis-defective receptor mutants. Finally, deletion of the transmembrane domain of the human receptor yields an EGF-receptor ligand binding domain which is secreted from the cells.  相似文献   

13.
Transforming growth factor-α (TGF-α) and epidermal growth factor (EGF) are members of the EGF family of growth factors. They have a common receptor, the EGF receptor. This belongs to the tyrosine kinase group of receptors called the ErbB receptor family. Other members are ErbB-2, ErbB-3, and ErbB-4. Binding of either ligand to the receptor elicits an increase in tyrosine kinase activity, resulting in the autophosphorylation of the receptor followed by a phosphorylation cascade of other tyrosine kinase substrates including mitogen-activated protein kinase (MAPK). TGF-α and EGF have been shown to stimulate cell division in the olfactory epithelium in vitro and may regulate cell division in vivo. To investigate whether exogenous TGF-α or EGF has a functional effect on the olfactory mucosa in vivo, 12.5–50 μg of each growth factor was administered to rats via the carotid artery. After 2 min, olfactory mucosa and liver samples were collected, homogenized, and immunoprecipitated with antibodies to the ErbB receptors. The immunoprecipitates were subjected to sodium dodecyl sulfate–polyacrylamide gel electrophoresis and Western immunoblotting. Using phosphotyrosine antibody, the receptors were probed for phosphorylation. Activation of MAPK was also investigated using MAPK antibody. Exogenous TGF-α activated EGFR, ErbB-2 and MAPK, whereas EGF activated only the EGFR. TGF-α was a more potent activator of EGFR than EGF. Neither ligand had an effect on ErbB-3 and ErbB-4 receptors. These effects were absent in the control animals which received the same solution without the growth factor. These results are consistent with the notion that binding of TGF-α to EGFR may play a role in olfactory cell division in vivo. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 199–210, 1998  相似文献   

14.
The tumor promoter phorbol ester (TPA) modulates the binding affinity and the mitogenic capacity of the epidermal growth factor (EGF) receptor. Moreover, TPA-induced kinase C phosphorylation occurs mainly on Thr-654 of the EGF receptor, suggesting that the phosphorylation state of this residue regulates ligand-binding affinity and kinase activity of the EGF receptor. To examine the role of this residue, we prepared a Tyr-654 EGF receptor cDNA construct by in vitro site-directed mutagenesis. Like the wild-type receptor, the mutant receptor exhibited typical high- and low-affinity binding sites when expressed on the surface of NIH 3T3 cells. Moreover, TPA regulated the affinity of both wild-type and mutant receptors and stimulated receptor phosphorylation of serine and threonine residues other than Thr-654. The addition of TPA to NIH 3T3 cells expressing a wild-type human EGF receptor blocked the mitogenic capacity of EGF. However, this inhibition did not occur in cells expressing the Tyr-654 EGF receptor mutant. In the latter cells, EGF was able to stimulate DNA synthesis even in the presence of inhibitory concentrations of TPA. While phosphorylation of sites other than Thr-654 may regulate ligand-binding affinity, the phosphorylation of Thr-654 by kinase C appears to provide a negative control mechanism for EGF-induced mitogenesis in mouse NIH 3T3 fibroblasts.  相似文献   

15.
The epidermal growth factor (EGF) family of tyrosine kinase receptors (ErbB1, -2, -3, and -4) and their ligands are involved in cell differentiation, proliferation, migration, and carcinogenesis. However, it has proven difficult to link a given ErbB receptor to a specific biological process since most cells express multiple ErbB members that heterodimerize, leading to receptor cross-activation. In this study, we utilize carcinoma cells depleted of ErbB2, but not other ErbB receptor members, to specifically examine the role of ErbB2 in carcinoma cell migration and invasion. Cells stimulated with EGF-related peptides show increased invasion of the extracellular matrix, whereas cells devoid of functional ErbB2 receptors do not. ErbB2 facilitates cell invasion through extracellular regulated kinase (ERK) activation and coupling of the adaptor proteins, p130CAS and c-CrkII, which regulate the actin-myosin cytoskeleton of migratory cells. Overexpression of ErbB2 in cells devoid of other ErbB receptor members is sufficient to promote ERK activation and CAS/Crk coupling, leading to cell migration. Thus, ErbB2 serves as a critical component that couples ErbB receptor tyrosine kinases to the migration/invasion machinery of carcinoma cells.  相似文献   

16.
The present studies were conducted to establish interactions between transforming growth factor (TGF)-beta and the epidermal growth factor (EGF) family members, TGFalpha and betacellulin (BTC), relative to proliferation and differentiation of granulosa cells in hen ovarian follicles. Results presented demonstrate expression of TGFbeta isoforms, plus TGFalpha, BTC, and ErbB receptors in prehierarchal follicles, thus establishing the potential for autocrine/paracrine signaling and cross-talk within granulosa cells at the onset of differentiation. Treatment with TGFalpha or BTC increases levels of TGFbeta1 mRNA in undifferentiated granulosa cells, while the selective inhibitor of mitogen activated protein kinase signaling, U0126, reverses these effects. Moreover, TGFbeta1 attenuates c-myc mRNA expression and granulosa cell proliferation, while TGFalpha blocks both these inhibitory effects. Collectively, these data provide evidence that EGF family ligands regulate both the expression and biological actions of TGFbeta1 in hen granulosa cells, and indicate that the timely interaction of these opposing factors is an important modulator of both granulosa cell proliferation and differentiation.  相似文献   

17.
The EGF receptor has seven different cognate ligands. Previous work has shown that these different ligands are capable of inducing different biological effects, even in the same cell. To begin to understand the molecular basis for this variation, we used luciferase fragment complementation to measure ligand-induced dimer formation and radioligand binding to study the effect of the ligands on subunit-subunit interactions in EGF receptor (EGFR) homodimers and EGFR/ErbB2 heterodimers. In luciferase fragment complementation imaging studies, amphiregulin (AREG) functioned as a partial agonist, inducing only about half as much total dimerization as the other three ligands. However, unlike the other ligands, AREG showed biphasic kinetics for dimer formation, suggesting that its path for EGF receptor activation involves binding to both monomers and preformed dimers. EGF, TGFα, and betacellulin (BTC) appear to mainly stimulate receptor activation through binding to and dimerization of receptor monomers. In radioligand binding assays, EGF and TGFα exhibited increased affinity for EGFR/ErbB2 heterodimers compared with EGFR homodimers. By contrast, BTC and AREG showed a similar affinity for both dimers. Thus, EGF and TGFα are biased agonists, whereas BTC and AREG are balanced agonists with respect to selectivity of dimer formation. These data suggest that the differences in biological response to different EGF receptor ligands may result from partial agonism for dimer formation, differences in the kinetic pathway utilized to generate activated receptor dimers, and biases in the formation of heterodimers versus homodimers.  相似文献   

18.
Cellular signaling via epidermal growth factor (EGF) and EGF-like ligands can determine cell fate and behavior. Osteoblasts, which are responsible for forming and mineralizing osteoid, express EGF receptors and alter rates of proliferation and differentiation in response to EGF receptor activation. Transgenic mice over-expressing the EGF-like ligand betacellulin (BTC) exhibit increased cortical bone deposition; however, because the transgene is ubiquitously expressed in these mice, the identity of cells affected by BTC and responsible for increased cortical bone thickness remains unknown. We have therefore examined the influence of BTC upon mesenchymal stem cell (MSC) and pre-osteoblast differentiation and proliferation. BTC decreases the expression of osteogenic markers in both MSCs and pre-osteoblasts; interestingly, increases in proliferation require hypoxia-inducible factor-alpha (HIF-α), as an HIF antagonist prevents BTC-driven proliferation. Both MSCs and pre-osteoblasts express EGF receptors ErbB1, ErbB2, and ErbB3, with no change in expression under osteogenic differentiation. These are the first data that demonstrate an influence of BTC upon MSCs and the first to implicate HIF-α in BTC-mediated proliferation.  相似文献   

19.
Sphingosine-1-phosphate, a sphingolipid metabolite, is involved in the mitogenic response of platelet-derived growth factor (PDGF) and is formed by activation of sphingosine kinase. We examined the effect of PDGF on sphingosine kinase activation in TRMP cells expressing wild-type or various mutant betaPDGF receptors. Sphingosine kinase was stimulated by PDGF in cells expressing wild-type receptors but not in cells expressing kinase-inactive receptors (R634). Cells expressing mutated PDGF receptors with phenylalanine substitutions at five major tyrosine phosphorylation sites 740/751/771/1009/1021 (F5 mutants), which are unable to associate with PLCgamma, phosphatidylinositol 3-kinase, Ras GTPase-activating protein, or protein tyrosine phosphatase SHP-2, not only failed to increase DNA synthesis in response to PDGF but also did not activate sphingosine kinase. Moreover, mutation of tyrosine-1021 of the PDGF receptor to phenylalanine, which impairs its association with PLCgamma, abrogated PDGF-induced activation of sphingosine kinase. In contrast, PDGF was still able to stimulate sphingosine kinase in cells expressing the PDGF receptor mutated at tyrosines 740/751 and 1009, responsible for binding of phosphatidylinositol 3-kinase and SHP-2, respectively. In agreement, PDGF did not stimulate sphingosine kinase activity in F5 receptor 'add-back' mutants in which association with the Ras GTPase-activating protein, phosphatidylinositol 3-kinase, or SHP-2 was individually restored. However, a mutant PDGF receptor that was able to bind PLCgamma (tyrosine-1021), but not other signaling proteins, restored sphingosine kinase sensitivity to PDGF. These data indicate that the tyrosine residue responsible for binding of PLCgamma is required for PDGF-induced activation of sphingosine kinase. Moreover, calcium mobilization downstream of PLCgamma, but not protein kinase C activation, appears to be required for stimulation of sphingosine kinase by PDGF.-Olivera, A., Edsall, J., Poulton, S., Kazlauskas, A., Spiegel, S. Platelet-derived growth factor-induced activation of sphingosine kinase requires phosphorylation of the PDGF receptor tyrosine residue responsible for binding of PLCgamma.  相似文献   

20.
We have analyzed ErbB receptor interplay induced by the epidermal growth factor (EGF)-related peptides in cell lines naturally expressing the four ErbB receptors. Down-regulation of cell surface ErbB-1 or ErbB-2 by intracellular expression of specific antibodies has allowed us to delineate the role of these receptors during signaling elicited by: EGF and heparin binding EGF (HB-EGF), ligands of ErbB-1; betacellulin (BTC), a ligand of ErbB-1 and ErbB-4; and neu differentiation factor (NDF), a ligand of ErbB-3 and ErbB-4. Ligand-induced ErbB receptor heterodimerization follows a strict hierarchy and ErbB-2 is the preferred heterodimerization partner of all ErbB proteins. NDF-activated ErbB-3 or ErbB-4 heterodimerize with ErbB-1 only when no ErbB-2 is available. If all ErbB receptors are present, NDF receptors preferentially dimerize with ErbB-2. Furthermore, EGF- and BTC-induced activation of ErbB-3 is impaired in the absence of ErbB-2, suggesting that ErbB-2 has a role in the lateral transmission of signals between other ErbB receptors. Finally, ErbB-1 activated by all EGF-related peptides (EGF, HB-EGF, BTC and NDF) couples to SHC, whereas only ErbB-1 activated by its own ligands associates with and phosphorylates Cbl. These results provide the first biochemical evidence that a given ErbB receptor has distinct signaling properties depending on its dimerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号