首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The anamnestic antibody response to synthetic peptide antimalarial vaccines is under Ir gene control. It has therefore been inferred that the development of antibody responses to the native repetitive Ag of malaria parasites also requires linkage of T and B cell epitopes, presentation of Ag in the context of MHC class II components, and cognate T cell help for antibody production. In this study, we sought to test this assumption, by utilizing classical protocols to determine whether the antibody response to the repetitive surface Ag of malaria sporozoites, the circumsporozoite (CS) protein, is under Ir gene control. In contrast to vaccine constructs, such as recombinant proteins or synthetic peptides, secondary responses to the repetitive oligomeric domains of the native CS protein of intact malaria sporozoites do not require the presence of Ag-specific Th cells. Conferral of CS-specific Th cells does not appear to influence the magnitude of this thymus-independent response to sporozoites. In further contrast to synthetic CS analogs, exposure to the parasite appears to be associated with low levels of Ag-specific Th cell sensitization. These observations suggest a functional role in immune evasion for the immunodominant repetitive domains found within protein Ag of malaria and other parasites.  相似文献   

2.
The purpose of this study was to examine the role of IL-1 on the activation of CD8+/CD4- class I-restricted helper cell-independent cytolytic T cell (HITc) clones known to produce IL-2 and proliferate in vitro after Ag stimulation with a Friend retrovirus-induced leukemia (FBL). The functional role of IL-1 in Ag-specific proliferation and IL-2 secretion was assessed by stimulating the T cell clones with FBL either in the presence or absence of macrophages (M phi), rIL-1, or rIL-2. Resting cloned HITc cells, purified from residual accessory cells, failed to proliferate in response to FBL alone, but proliferated in response to FBL plus M phi, rIL-1 or rIL-2. Stimulation with FBL alone in the absence of M phi or IL-1 was sufficient for induction of IL-2R expression, and rendered cells responsive to IL-2, but M phi or IL-1 were also required to induce production of IL-2. The activity of IL-1 was further examined by measuring the binding of [125I]rIL-1 alpha, which demonstrated that resting cloned HITc cells expressed IL-1R that increased in number after activation with Ag. This expression of IL-1R and requirement for IL-1 by CD8+ HITc was surprising because previous studies examining T cell populations after mitogen stimulation have not detected IL-1R on the CD8+ population. Therefore, the role of IL-1 in the activation of CD8+ CTL that do not secrete IL-2 after activation was assessed. By contrast to HITc, CD8+ CTL required exogenous IL-2 to proliferate in vitro and did not express IL-1R. These data demonstrate that the subset of CD8+ T cells responsible for IL-2 production express IL-1R and that triggering this receptor with IL-1 after Ag stimulation results in the production of IL-2 and subsequent proliferation.  相似文献   

3.
Patients with acute Plasmodium falciparum malaria have defective cell-mediated immune responses to malaria-specific Ag (MA). This immunologic defect may partially explain the difficulty with which natural immunity to falciparum malaria develops and may have important implications for the efficacy of potential malaria vaccines in endemic areas. To investigate the basis of this immune defect, we have examined the capacity of PBMC from patients with acute falciparum malaria to produce IL-2 and to express I1-2R in response to Ag stimulation. The effect of exogenous IL-1 and IL-2 on lymphocyte proliferation was studied. Soluble IL-2R levels were measured in acute and convalescent sera. Our results showed that no detectable IL-2 was produced and no IL-2R were expressed by PBMC in response to MA during the acute infection. IL-2 production and IL-2R expression were also depressed when PBMC were exposed to streptococcal Ag. The specific immune defect was not reconstituted by the addition of graded doses of purified human IL-1 or IL-2 and could not be attributed to suppressor adherent cells. In contrast to the absence of IL-2 and cell-bound IL-2R, circulating soluble IL-2R was elevated in acute sera. These findings suggest that the lack of IL-2, through either a defect in its production or inhibition of its activity, may be the basis of the Ag-specific immune unresponsiveness in acute P. falciparum malaria.  相似文献   

4.
Human rIL-1 alpha significantly enhanced splenic plaque-forming cells (PFC) to SRBC in vitro and in vivo. A single i.p. injection was sufficient to produce a fivefold or greater increase in the generation of PFC in a primary response. IL-1 treatment resulted in an increased production of Ag-specific PFC, both in vitro and in vivo, in combination with suboptimal doses of Ag. When IL-1 was given with a primary dose of Ag in vivo, an enhanced IgG response occurred. IL-1 enhanced in vivo carrier priming for an anti-hapten PFC response, indicating increased Th activity. Furthermore, T cells from spleens of mice treated with IL-1 provided significantly more help in both carrier (SRBC)- and hapten (TNP)- specific PFC. The enhancement of PFC by IL-1 in vitro occurred even in the presence of an excess of neutralizing anti-IL-2 antibody. These results suggest that IL-1 may enhance T cell-dependent antibody production in part by increasing Th activity, and that the mechanism of IL-1 action in increasing antibody production involves pathways in addition to the induction of IL-2 secretion.  相似文献   

5.
To investigate whether CD4+ T cells are predetermined to produce a given pattern of lymphokines, we have used a culture system that allows the controlled induction of either IL-2- or IL-4-producing CD4+ T cells. Single, freshly isolated murine CD4+ T cells were activated with Con A, rIL-2, and APC; the developing clones were split and then cultured for an additional 14 days with either rIL-2 alone or with rIL-2 and anti-CD3 stimulation. Subclones expanded in the presence of rIL-2 alone produced predominantly IL-2, although subclones derived from the same precursor and expanded in the presence of rIL-2 and a mitogenic antibody to CD3 released predominantly IL-4. Subclones expanded for 2 wk in the presence of rIL-2 plus a mitogenic mAb to CD3 released up to 60 times more IL-4 but only 1/90 the amount of IL-2 released by subclones derived from the same precursor cell and expanded with rIL-2. Both phenotypes can be derived from IL-2-producing precursor cells. These results demonstrate that IL-2-producing clones can be derived from the same cells as IL-4-producing clones and are most consistent with the view that the IL-2-producing Th1 or the IL-4-producing Th2 phenotype of a T cell clone is acquired during T cell differentiation and is not secondary to the expansion of distinct subpopulations that are predetermined to produce a specific cytokine pattern.  相似文献   

6.
Mice with chronic Trypanosoma cruzi infections are unable to mount primary responses to T-dependent Ag, such as SRBC. Responses to SRBC were restored in vitro and in vivo with rIL-1. The cellular basis of the immunodeficiency and the mechanism of IL-1 action were investigated. B cells from infected mice were capable of normal levels of PFC production when provided with the appropriate signals, IL-2 plus IL-1. T cells from infected mice were unable to provide Th function to normal B cells. However, Th activity was provided by these cells if IL-1 was added to the cultures. Furthermore, T-depleted spleen cells from infected mice did not make antibody in the presence of normal T cells unless IL-1 was added to the cultures. Neutralizing antibody against IL-2 greatly reduced the augmentation by IL-1 of the antibody response of cells from infected mice. Together these results indicate that splenic B cells from infected mice are capable of antibody production, but that Th function is lacking in the spleens of infected mice. These results suggest that the inability of mice with T. cruzi infection to mount primary antibody responses to T-dependent Ag may be due to a macrophage defect lending to impairment of Th function. These results document the potential of IL-1 in restoring immune competence in an infectious disease model.  相似文献   

7.
Human rIL-2, expressed and purified from Escherichia coli, is currently being tested as an anticancer therapeutic agent. Some of the patients undergoing clinical trials with rIL-2 have developed antibodies to rIL-2. We describe a chemical modification of rIL-2 that reduces its immunogenicity. rIL-2 has been chemically modified with a water soluble polymer, monomethoxy polyethylene glycol (PEG). This covalent conjugate PEG-rIL-2 has enhanced solubility and extended in vivo circulation. Attachment of PEG to rIL-2 reduces its immunogenicity when tested in rabbits and in mice. Ag-specific IgG antibody titers were 100 to 1000-fold lower when PEG-rIL-2 was used as the Ag, compared to rIL-2. In a long term study, 7 of 10 rabbits injected with PEG-rIL-2 had no Ag-specific IgG antibody response. In these seven rabbits, the in vivo behavior of the injected PEG-rIL-2 remained essentially unchanged after repeated immunizations. PEG-rIL-2 injected before rIL-2 injections, immunosuppressed the antibody response to rIL-2 in rabbits. The maintenance of the systemic exposure of PEG-rIL-2 after repetitive dosing is related to its decreased immunogenicity. Thus, the PEGylation (covalent attachment of PEG) of rIL-2-enhances its potential as an anticancer therapeutic.  相似文献   

8.
Recent studies have shown that IL-4 can affect lymphocyte responses to IL-2. To evaluate the effects of IL-4 on T cell responses to physiologically relevant stimuli, we studied normal human T cells cultured with a low concentration of anti-CD3 mAb and IL-2 in the presence and absence of added IL-4. The addition of IL-4 to cultures of T cells stimulated with anti-CD3 mAb and IL-2 reduced the proliferative response by 49 to 59%. The inhibitory effect was observed in 3-, 5-, and 7-day cultures. Inhibition was dose-dependent with maximal inhibition at concentrations greater than or equal to 5 to 10 U/ml IL-4. IL-4-mediated inhibition occurred early during the T cell response, inasmuch as addition of IL-4 after stimulation for 24 h did not result in significant inhibition. Phenotypic analyses of cells cultured in the presence of anti-CD3 mAb, IL-2, and IL-4 suggested that the mechanism of regulation by IL-4 involves the inhibition of IL-2R expression. The proportion of both CD4+ and CD8+ cells that expressed IL-2R in response to IL-2 was diminished in the presence of IL-4, although HLA-DR levels were unaffected. Soluble IL-2R was also reduced in supernatants of cultures stimulated with anti-CD3 mAb, IL-2, and IL-4 as compared to cultures stimulated with anti-CD3 mAb and IL-2. These findings indicate that when normal human T cells are stimulated in vitro in a manner that approximates a physiologic interaction with Ag in vivo, rIL-4 provides a potent inhibitory signal to IL-2 responsive cells that is likely mediated by IL-4-induced inhibition of IL-2R expression.  相似文献   

9.
Administration of rIL-2 to BALB/c mice induces a rapid, cell-mediated response that is sufficient to protect mice from a lethal i.p. dose of Escherichia coli. Mice were protected from septic death if IL-2 was administered i.p. within 1 h after the bacterial challenge. Optimal protection was provided by treating the lethally challenged mice with rIL-2 at 1 and 5 h or 1, 5, and 10 h after the bacterial challenge and was dose-dependent (greater than or equal to 5.0 x 10(5) U/kg). Furthermore, treatment of mice with anti-IL-2R antibody abolished the protective effect induced by rIL-2 administration. These data suggest that the rIL-2-induced protection against septic death in mice is mediated by a cell type expressing a functional IL-2R. One potentially important therapeutic application of rIL-2 may be to modulate the course of sepsis once the host has been exposed to potentially lethal microbial pathogens.  相似文献   

10.
We have analyzed the evolution of the pattern of lymphokine secretion by Th cell lines specific for either the synthetic terpolymer Glu60Ala30Tyr10 (GAT) or killed bacillus Calmette Guérin. When cultured in the presence of exogenous rIL-2 as a growth factor, GAT-specific Th cell lines secreted mainly IL-4, whereas bacillus Calmette Guérin-specific lines produced predominantly IL-2. However, culturing in the presence of rIL-4 or of anti-IL-4 mAb and rIL-2 led to the establishment of Th2-like and Th1-like lines, respectively, regardless of their Ag specificity. Inasmuch as we show that the proliferative response of mature Th1 and Th2 cells was identical in the presence of IL-4, these results indicate that IL-4 influences the development of Th cell subsets. To understand the mode of IL-4 action, we isolated immature GAT-specific Tho clones able to secrete IL-2 and IL-4. Two types of Tho cells were isolated: ThoA cells that secreted IL-2 and IL-4, but not IFN-gamma, and ThoB cells that secreted IL-2, IL-4, and IFN-gamma. We show for the first time that such cells are indeed Th precursors able to differentiate into Th1 or Th2 cells. We demonstrate that IL-4 positively and negatively controls the differentiation of Tho cells into Th2 and Th1 cells, respectively. When cultured in rIL-4, Tho cells stop secreting IL-2 and IFN-gamma, but maintain IL-4 secretion. Moreover, endogenous IL-4 produced by Tho cells has similar effects: when cultured in rIL-2 alone, Tho cells either keep their immature phenotype or become Th2 cells, but do not become Th1 cells. In contrast, neutralization of secreted IL-4 completely prevents the differentiation of Tho into Th2 cells, but permits the development of Th1 cells. The presence of exogenous IFN-gamma does not affect the development of Tho into Th1 and Th2 cells, because it does not modify either mode of IL-4 action. However, it influences the ratio between the two types of Tho cells: when IL-4 is neutralized, added IFN-gamma can induce IFN-gamma secretion by ThoA cells and thereby facilitate their passage into ThoB cells. Taken together, our results demonstrate that IL-4, in addition to mediating T cell growth, is a principal factor that controls the differential development of Tho cells into Th1 and Th2 cells.  相似文献   

11.
Murine CD4+ T cell clones have been classified into at least two subsets, Th1 and Th2, on the basis of their distinct lymphokine secretion profiles and functions. In the present study, we compared the functional responses of Th1 and Th2 clones to Ag presentation by splenic B cells and peritoneal macrophages. Th2 clones secreted IL-4 in response to Ag presented by resting B cells, but their optimal proliferation required the addition of IL-1 or a source of IL-1. The degree of IL-1 dependence varied among the four Th2 clones examined. In contrast, Th1 clones secreted IL-2 and proliferated in response to Ag presented by both B cells and macrophages, without any requirement for exogenous IL-1. Furthermore, the proliferation of Th2 clones in response to Ag presented by splenocytes or macrophages was inhibited by an IL-1R antagonist. These results indicate that IL-1 is an important costimulator for the expansion of the Th2 subset of CD4+ T cells. The different requirements for the proliferation of Th1 and Th2 cells may be responsible for the preferential expansion of one or the other subset under different conditions of immunization.  相似文献   

12.
The IL-27R, WSX-1, is required to limit IFN-γ production by effector CD4+ T cells in a number of different inflammatory conditions but the molecular basis of WSX-1-mediated regulation of Th1 responses in vivo during infection has not been investigated in detail. In this study we demonstrate that WSX-1 signalling suppresses the development of pathogenic, terminally differentiated (KLRG-1+) Th1 cells during malaria infection and establishes a restrictive threshold to constrain the emergent Th1 response. Importantly, we show that WSX-1 regulates cell-intrinsic responsiveness to IL-12 and IL-2, but the fate of the effector CD4+ T cell pool during malaria infection is controlled primarily through IL-12 dependent signals. Finally, we show that WSX-1 regulates Th1 cell terminal differentiation during malaria infection through IL-10 and Foxp3 independent mechanisms; the kinetics and magnitude of the Th1 response, and the degree of Th1 cell terminal differentiation, were comparable in WT, IL-10R1−/− and IL-10−/− mice and the numbers and phenotype of Foxp3+ cells were largely unaltered in WSX-1−/− mice during infection. As expected, depletion of Foxp3+ cells did not enhance Th1 cell polarisation or terminal differentiation during malaria infection. Our results significantly expand our understanding of how IL-27 regulates Th1 responses in vivo during inflammatory conditions and establishes WSX-1 as a critical and non-redundant regulator of the emergent Th1 effector response during malaria infection.  相似文献   

13.
《MABS-AUSTIN》2013,5(5):837-847
ABSTRACT

Asthma is characterized by airway hyperresponsiveness and inflammation, as well as underlying structural changes to the airways. Interleukin-4 (IL-4) is a key T-helper type 2 (Th2) cytokine that plays important roles in the pathogenesis of atopic and eosinophilic asthma. We developed a novel humanized anti-IL-4Rα antibody that can potently inhibit IL-4/IL-13-mediated TF-1 cell proliferation. Using monocytes isolated from human peripheral blood mononuclear cells (PBMCs), we revealed a critical role of CD32 in modulating the immune responses of monocytes in response to blockade of IL-4Rα signaling pathway. We, therefore, devised a new strategy to increase the efficacy of the anti-IL-4Rα monoclonal antibody for the treatment of asthma and other atopic diseases by co-engaging CD32 and IL-4Rα on monocytic cells by choosing IgG classes or Fc mutations with higher affinities for CD32. The antibody with selectively enhanced affinity for CD32A displayed superior suppression of IL-4-induced monocytes’ activities, including the down-regulation of CD23 expression. Intriguingly, further analysis demonstrated that both CD32A and CD32B contributed to the enhancement of antibody-mediated suppression of CD23 expression from monocytes in response to blockade of IL-4Rα signaling. Furthermore, inhibition of IgE secretion from human PBMC by the antibody variants further suggests that the complex allergic inflammation mediated by IL-4/IL-4Rα signaling might result from a global network where multiple cell types that express multiple FcγRs are all involved, of which CD32, especially CD32A, is a key mediator. In this respect, our study provides new insights into designing therapeutic antibodies for targeting Th2 cytokine-mediated allergic pathogenesis.  相似文献   

14.
Protection from cutaneous leishmaniasis, a chronic ulcerating skin lesion affecting millions, has been achieved historically using live virulent preparations of the parasite. Killed or recombinant Ags that could be safer as vaccines generally require an adjuvant for induction of a strong Th1 response in murine models. Murine rIL-12 as an adjuvant with soluble Leishmania Ag has been shown to protect susceptible mice. We used 48 rhesus macaques to assess the safety, immunogenicity, and efficacy of a vaccine combining heat-killed Leishmania amazonensis with human rIL-12 (rhIL-12) and alum (aluminum hydroxide gel) as adjuvants. The single s.c. vaccination was found to be safe and immunogenic, although a small transient s.c. nodule developed at the site. Groups receiving rhIL-12 had an augmented in vitro Ag-specific IFN-gamma response after vaccination, as well as increased production of IgG. No increase in IL-4 or IL-10 was found in cell culture supernatants from either control or experimental groups. Delayed hypersensitivity reactions were not predictive of protection. Intradermal forehead challenge infection with 107 metacyclic L. amazonensis promastigotes at 4 wk demonstrated protective immunity in all 12 monkeys receiving 2 microgram rhIL-12 with alum and Ag. Partial efficacy was seen with lower doses of rhIL-12 and in groups lacking either adjuvant. Thus, a single dose vaccine with killed Ag using rhIL-12 and alum as adjuvants was safe and fully effective in this primate model of cutaneous leishmaniasis. This study extends the murine data to primates, and provides a basis for further human trials.  相似文献   

15.
Lymphocytes obtained from forty individuals living in a malaria endemic area of West Africa were tested for in vitro proliferative responses to peptides representing variant regions of the immunodominant T cell domain of the circumsporozoite protein (amino acids 326 to 345, referred to as Th2R, and 361 to 380, referred to as Th3R) from three distinct strains of Plasmodium falciparum. A total of 83% of the individuals responded to at least one of the six peptides tested, confirming that these epitopes are immunodominant. A much greater number of individuals than expected by chance (32% of the responders to Th2R and 27% of the responders to Th3R) reacted to all three of the variant peptides for that epitope, indicating interdependency of the T cell responses, suggestive of cross-reactivity. Nevertheless, some subjects' T cells were clearly able to distinguish each variant peptide from the others. Using EBV transformed B cells, lymphocytes from 10 of the individuals were HLA typed. In this small group, HLA DRw13 was associated with a positive response to any of the peptides, whereas there was a negative association between DQw3 and response to any of the peptides. These results, although limited by the small sample size, suggest that recognition of T epitopes may be Ir gene linked. Our findings suggest that it may be possible to broaden the immunogenicity of an anti-sporozoite malaria vaccine.  相似文献   

16.
Expulsion of the gastrointestinal nematode Trichinella spiralis is associated with pronounced mastocytosis mediated by a Th2-type response involving IL-4, IL-10, and IL-13. Here we demonstrate that IL-18 is a key negative regulator of protective immune responses against T. spiralis in vivo. IL-18 knockout mice are highly resistant to T. spiralis infection, expel the worms rapidly and subsequently develop low levels of encysted muscle larvae. The increased speed of expulsion is correlated with high numbers of mucosal mast cells and an increase in IL-13 and IL-10 secretion. When normal mice were treated with rIL-18 in vivo, worm expulsion was notably delayed, and the development of mastocytosis and Th2 cytokine production was significantly reduced. The treatment had no effect on intestinal eosinophilia or goblet cell hyperplasia but specifically inhibited the development of mastocytosis. Addition of rIL-18 to in vitro cultures of bone marrow-derived mast cells resulted in a significant reduction in cell yields as well as in the number of IL-4-secreting mast cells. In vivo treatment of T. spiralis-infected IFN-gamma knockout mice with rIL-18 demonstrated that the inhibitory effect of IL-18 on mastocytosis and Th2 cytokine secretion is independent of IFN-gamma. Hence, IL-18 plays a significant biological role as a negative regulator of intestinal mast cell responses and may promote the survival of intestinal parasites in vivo.  相似文献   

17.
18.
A genetic construct was created incorporating gene fragments encoding the H chain V region of the human carcinoma specific antibody L6, the CH1 domain of human IgG1, a linker region, and human IL-2. This construct was cotransfected with a chimeric L6 L chain construct into the murine myeloma cell line Ag8.653 for expression. First round clones produced the fusion protein at an estimated 5 to 10 micrograms/ml based on idiotypic reactivity. Dual binding activity was demonstrated through specific interaction with the L6 Ag on human tumor cells and the IL-2R on activated human T cells. The IL-2 portion of the molecule was shown to support the growth of the IL-2-dependent T cell line CTLL2, and the qualitative nature of the IL-2 signal was found to be the same as rIL-2 with respect to induction of tyrosine-phosphorylation of intracellular protein substrates. Tumor cells coated with the fusion protein were shown to cause T cell proliferation and the presence of the fusion protein was found to enhance cell-mediated destruction of human tumor cells.  相似文献   

19.
There is growing evidence to suggest a regulatory role of IL-4 in the immune system affecting both proliferation and lymphokine production. In the present work we have analyzed the effect of IL-4 on IL-2 and IFN-gamma synthesis by stimulating CD4+ human T cells (+10% accessory cells) with Con A in the presence of several doses (1 to 100 U/ml) of human rIL-4. The results showed an impaired IL-2 and IFN-gamma synthesis in the presence of IL-4. This inhibition was dose dependent and was evident only when IL-4 was added in the first 2 h of culture. Moreover, the external addition of IL-2 did not revert the inhibitory effect of IL-4 on IL-2 and IFN-gamma synthesis induced by Con A. We have also analyzed the effect of IL-4 on the expression of both alpha- and beta-chains of the IL-2R. Although the expression of IL-2R alpha mRNA was not modified after 6 h in culture in the presence of IL-4, a decrease was observed at 24 and 48 h. The addition of rIL-2 showed that the inhibition in IL-2R alpha expression could be explained by an impairment in the up-regulatory signal transmitted through the IL-2R. In addition to this, IL-4 did not modify the IL-2R beta mRNA expression at 6 and 24 h although a decreased expression was observed at 48 h which could be explained by the defective IL-2 production. The differential effect of IL-4 on the up-regulatory effect of IL-2 in the expression of IL-2R alpha and IL-2R beta suggest the existence of different regulatory mechanisms acting on the expression of both chains.  相似文献   

20.
Failure to detect IL-3-binding sites on human mast cells   总被引:3,自引:0,他引:3  
IL-3, a pleiotropic lymphokine, has been termed mast cell growth factor because it promotes growth and differentiation of murine mast cells. Murine mast cells, in turn, express cell surface receptors for IL-3. Human rIL-3 has been shown to induce proliferation and differentiation of human basophils and to activate basophils via high affinity binding sites. To investigate whether human mast cells express IL-3R, binding studies with 125I-radiolabeled human rIL-3 were performed on HMC-1, a novel human mast cell line, and on pure populations (i.e., 93 to 99% purity) of human tissue mast cells obtained with mAb and C from dispersed lung (n = 2). Unexpectedly, neither enriched human lung mast cells nor HMC-1 cells bound radiolabeled human rIL-3 specifically. Moreover, human rIL-3 failed to promote uptake of [3H]thymidine, synthesis of histamine, histamine releasability, or changes in expression of mast cell differentiation Ag (YB5B8, CD54/ICAM-1, CD9/p24, CD33/gp67) on either human lung mast cells or HMC-1 cells. It is hypothesized that the fundamental difference in the biologic response to IL-3 between human and murine mast cells is due to a loss during evolution of mast cell high affinity IL-3 binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号