首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Lumazine protein is believed to serve as an optical transponder in bioluminescence emission by certain marine bacteria. Sequence arguments suggest that the protein comprises two similarly folded riboflavin synthase-type domains, but earlier work also suggested that only one domain binds 6,7-dimethyl-8-ribityllumazine (DMRL). We show that the replacement of serine-48 or threonine-50 in the N-terminal domain of lumazine protein of Photobacterium leiognathi modulates the absorbance and fluorescence properties of bound DMRL or riboflavin. Moreover, the replacement of these amino acids is accompanied by reduced ligand affinity. Replacement of serine-48 by tryptophan shifts the (13)C NMR signal of the 6-methyl group in bound DMRL upfield by 2.9 ppm as compared to the wild-type protein complex. Replacement of threonine-50 causes a downfield shift of approximately 20 ppm for the (15)N NMR signal of N-5, as well as an upfield shift of 3 ppm for the (13)C NMR signal of C-7 in bound DMRL, respectively. The replacement of the topologically equivalent serine-144 and proline-146 in the C-terminal domain had no significant impact on optical properties, chemical shifts and apparent binding constants of bound DMRL. These data show that the N-terminal domain is the unique site for ligand binding in lumazine protein.  相似文献   

2.
The experimental and analytical protocols required for obtaining rotational correlation times of biological macromolecules from fluorescence anisotropy decay measurements are described. As an example, the lumazine protein from Photobacterium leiognathi was used. This stable protein (Mr 21 200) contains the noncovalently bound, natural fluorescent marker 6,7-dimethyl-8-ribityllumazine, which has in the bound state a long fluorescence lifetime (tau = 14 ns). Shortening of the fluorescence lifetime to 2.6 ns at room temperature was achieved by addition of the collisional fluorescence quencher potassium iodide. The shortening of tau had virtually no effect on the rotational correlation time of the lumazine protein (phi = 9.4 ns, 19 degrees C). The ability to measure biexponential anisotropy decay was tested by the addition of Photobacterium luciferase (Mr 80 000), which forms an equilibrium complex with lumazine protein. Under the experimental conditions used (2 degrees C) the biexponential anisotropy decay can best be described with correlation times of 20 and 60 ns, representing the uncomplexed and luciferase-associated lumazine proteins, respectively. The unbound 6,7-dimethyl-8-ribityllumazine itself (tau = 9 ns) was used as a model compound for determining correlation times in the picosecond time range. In the latter case rigorous deconvolution from the excitation profile was required to recover the correlation time, which was shorter (100-200 ps) than the measured laser excitation pulse width (500 ps).  相似文献   

3.
The intensely fluorescent lumazine protein is believed to be involved in the bioluminescence of certain marine bacteria. The sequence of the catalytically inactive protein resembles that of the enzyme riboflavin synthase. Its non-covalently bound fluorophore, 6,7-dimethyl-8-ribityllumazine, is the substrate of this enzyme and also the committed precursor of vitamin B2. An extensive crystallization screen was performed using numerous single-site mutants of the lumazine protein from Photobacterium leiognathi in complex with its fluorophore and with riboflavin, respectively. Only the L49N mutant in complex with riboflavin yielded suitable crystals, allowing X-ray structure determination to a resolution of 2.5 Å. The monomeric protein folds into two closely similar domains that are structurally related by pseudo-C2 symmetry, whereby the entire domain topology resembles that of riboflavin synthase. Riboflavin is bound to a shallow cavity in the N-terminal domain of lumazine protein, whereas the C-terminal domain lacks a ligand.  相似文献   

4.
Riboflavin is an essential cofactor in all organisms. Its direct biosynthetic precursor, 6,7-dimethyl-8-ribityllumazine, is synthesised by the enzyme 6,7-dimethyl-8-ribityllumazine synthase. Recently, we have found that the enzyme from Schizosaccharomyces pombe binds riboflavin, the final product of the pathway with a relatively high affinity with a KD of 1.2 microM. Here, we report on the crystal structure of lumazine synthase from S. pombe with bound riboflavin and compare the binding mode with those of the substrate analogue inhibitor 5-nitro-6-(D-ribitylamino)-2,4(1H,3H)-pyrimidinedione and of the product analogue 6-carboxyethyl-7-oxo-8-ribityllumazine. In all complexes the pyrimidinedione moieties of each respective ligand bind in a very similar orientation. Binding of riboflavin additionally involves a stacking interaction of the dimethylbenzene moiety with the side-chain of His94, a highly conserved residue in all lumazine synthases. The enzyme from Bacillus subtilis showed a KD of at least 1 mM whereas the very homologous enzyme from Saccharomyces cerevisiae had a comparable KD of 3.9 microM. Structural comparison of the S. cerevisiae, the S. pombe, and the mutant enzymes suggests that fine tuning of affinity is achieved by influencing this stacking interaction.  相似文献   

5.
The penultimate step in the biosynthesis of riboflavin (vitamin B2) involves the condensation of 3,4-dihydroxy-2-butanone 4-phosphate with 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione, which is catalyzed by 6,7-dimethyl-8-ribityllumazine synthase (lumazine synthase). Pathogenic Brucella species adapted to an intracellular lifestyle have two genes involved in riboflavin synthesis, ribH1 and ribH2, which are located on different chromosomes. The ribH2 gene was shown previously to specify a lumazine synthase (type II lumazine synthase) with an unusual decameric structure and a very high Km for 3,4-dihydroxy-2-butanone 4-phosphate. Moreover, the protein was found to be an immunodominant Brucella antigen and was able to generate strong humoral as well as cellular immunity against Brucella abortus in mice. We have now cloned and expressed the ribH1 gene, which is located inside a small riboflavin operon, together with two other putative riboflavin biosynthesis genes and the nusB gene, specifying an antitermination factor. The RibH1 protein (type I lumazine synthase) is a homopentamer catalyzing the formation of 6,7-dimethyl-8-ribityllumazine at a rate of 18 nmol mg(-1) min(-1). Sequence comparison of lumazine synthases from archaea, bacteria, plants, and fungi suggests a family of proteins comprising archaeal lumazine and riboflavin synthases, type I lumazine synthases, and the eubacterial type II lumazine synthases.  相似文献   

6.
D J O'Kane  J Lee 《Biochemistry》1985,24(6):1467-1475
The properties of lumazine proteins purified from the marine bioluminescent bacteria Photobacterium phosphoreum, a psychrophile, and Photobacterium leiognathi, a relatively thermophilic species, are compared. An accurate 1:1 stoichiometry of binding of the ligand 6,7-dimethyl-8-ribityllumazine to each lumazine protein is established by back-titration of the apoprotein with the authentic ligand, using both fluorescence and absorption measurements. Neither protein contains metal cofactors, organic phosphorus, or carbohydrate. Both proteins are anionic and hydrophilic. They each contain a single Trp residue and have blocked amino terminals but otherwise differ in amino acid composition and other properties (P. phosphoreum and P. leiognathi, respectively): Met (internal), 1, 2; Cys, 2, 1; Arg, 4, 7; pI, 4.78 and 4.83, 4.38 and 4.45; Mr, 19 750, 21 300. In the P. phosphoreum protein both Cys residues are accessible, but in the P. leiognathi protein the single Cys is "buried". Modification of this buried Cys and at least one Cys in the P. phosphoreum protein prevents binding of the ligand. The UV and visible absorption spectra of both lumazine proteins denatured in 6 M guanidine hydrochloride can be accurately modeled by using the number of equivalents of the lumazine derivative and blocked aromatic amino acid model compounds determined by chemical and spectrophotometric analyses for Trp, Tyr, and Phe.  相似文献   

7.
We studied the incorporation of [1-13C]ribose and [1,3-13C2]glycerol into the riboflavin precursor 6,7-dimethyl-8-ribityllumazine, using a riboflavin-deficient mutant of Bacillus subtilis. The formation of the pyrazine ring requires the addition of a four-carbon moiety to a pyrimidine precursor. The results show that C-6 alpha, C-6, C-7, and C-7 alpha of 6,7-dimethyl-8-ribityllumazine were biosynthetically equivalent to C-1, C-2, C-3, and C-5 of a pentose phosphate. C-4 of the pentose precursor was lost through an intramolecular skeletal rearrangement. Thus, the last steps in the biosynthesis of 6,7-dimethyl-8-ribityllumazine apparently involve the same mechanism in bacteria as in fungi.  相似文献   

8.
6,7-dimethyl-8-ribityllumazine synthase (lumazine synthase) catalyzes the condensation of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione and 3,4-dihydroxy-2-butanone 4-phosphate. Presteady state kinetic experiments using the enzyme from the hyperthermophilic bacterium Aquifex aeolicus were monitored by multiwavelength photometry. An early optical transient absorbing around 330 nm is interpreted as a Schiff base intermediate obtained by reaction of the position 5 amino group of the heterocyclic substrate with the carbonyl group of 3,4-dihydroxy-2-butanone 4-phosphate. A second transient with an absorption maximum at 445 nm represents an intermediate resulting from the elimination of orthophosphate from the Schiff base. The rate-determining step is the subsequent formation of the 7-exomethylene type anion of 6,7-dimethyl-8-ribityllumazine. The rate constants for the three partial reactions identified by the stopped flow experiments show linear Arrhenius relations in the temperature range of 15-70 degrees C.  相似文献   

9.
Studies were carried out to determine possible intermediates involved in the biosynthetic pathway of riboflavin, using resting cells of a riboflavin-adenine-deficient mutant, Bacillus subtilis AJ1988. The cells excreted 6,7-dimethyl-8-ribityllumazine, the end product in the biosynthetic pathway, into the incubation medium in large amounts. The addition of glyoxal caused a large accumulation of a green fluorescent compound; an inverse relation was observed between the formation of the lumazine and the concentration of glyoxal. Furthermore, added [2-14C]guanine effectively incorporated into the lumazine and the fluorescent compound in the same specific activity during incubation. The fluorescent compound was isolated, purified, and identified by paper chromatographic, fluorometric, and spectrophotometric analyses. It was proved to be 8-(1'-D-ribityl)lumazine, which appeared to have been formed by a reaction between glyoxal and a possible intermediate in the cells. Accordingly, 4-(1'-D-ribitylamino)-5-amino-2,6-dihydroxypyrimidine was concluded to be an immediate precursor of 6,7-dimethyl-8-ribityllumazine.  相似文献   

10.
Phosphotransferase from carrot is shown to catalyze the phosphorylation of 6,7-dimethyl-8-ribityllumazine specifically at position 5' of the ribityl side chain. The lumazine 5'-phosphate is neither a substrate nor an inhibitor of riboflavin synthase from Bacillus subtilis and Escherichia coli. It follows that the obligatory product of riboflavin synthase is riboflavin and not FMN.  相似文献   

11.
Riboflavin synthase of Escherichia coli is a homotrimer of 23.4 kDa subunits catalyzing the formation of the carbocyclic ring of the vitamin, riboflavin, by dismutation of 6,7-dimethyl-8-ribityllumazine. Intramolecular sequence similarity suggested that each subunit folds into two topologically similar domains. In order to test this hypothesis, sequence segments comprising amino-acid residues 1-97 or 101-213 were expressed in recombinant E. coli strains. The recombinant N-terminal domain forms a homodimer that can bind riboflavin, 6,7-dimethyl-8-ribityllumazine and trifluoromethyl-substituted 8-ribityllumazine derivatives as shown by absorbance, circular dichroism, and NMR spectroscopy. Most notably, the recombinant domain dimer displays the same diastereoselectivity for ligands as the full length protein. The minimum N-terminal peptide segment required for ligand binding comprises amino-acid residues 1-87. The recombinant C-terminal domain comprising amino-acid residues 101-213 is relatively unstable and was shown not to bind riboflavin but to differentiate between certain diastereomeric trifluoromethyl-8-ribityllumazine derivatives. The data show that a single domain comprises the intact binding site for one substrate molecule. The enzyme-catalyzed dismutation requires two substrate molecules to be bound in close proximity, and each active site of the enzyme appears to be located at the interface of an N-terminal and C-terminal domain.  相似文献   

12.
The dismutation of 6,7-dimethyl-8-ribityllumazine catalyzed by riboflavin synthase affords riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione. A pentacyclic adduct of two 6,7-dimethyl-8-ribityllumazines has been identified earlier as a catalytically competent reaction intermediate of the Escherichia coli enzyme. Acid quenching of reaction mixtures of riboflavin synthase of Methanococcus jannaschii, a paralog of 6,7-dimethyl-8-ribityllumazine synthase devoid of similarity with riboflavin synthases of eubacteria and eukaryotes, afforded a compound whose optical absorption and NMR spectra resemble that of the pentacyclic E. coli riboflavin synthase intermediate, whereas the circular dichroism spectra of the two compounds have similar envelopes but opposite signs. Each of the compounds could serve as a catalytically competent intermediate for the enzyme by which it was produced, but not vice versa. All available data indicate that the respective pentacyclic intermediates of the M. jannaschii and E. coli enzymes are diastereomers.  相似文献   

13.
Phosphotransferase from carrot is shown to catalyze the phosphorylation of 6,7-dimethyl-8-ribityllumazine specifically at position 5′ of the ribityl side chain. The lumazine 5′-phosphate is neither a substrate nor an inhibitor of riboflavin synthase from Bacillus subtilis and Escherichia coli. It follows that the obligatory product of riboflavin synthase is riboflavin and not FMN.  相似文献   

14.
The amino acid residue tryptophan 27 of 6,7-dimethyl-8-ribityllumazine synthase of the yeast Schizosaccharomyces pombe was replaced by tyrosine. The structures of the W27Y mutant protein in complex with riboflavin, the substrate analogue 5-nitroso-6-ribitylamino-2,4(1H,3H)-pyrimidinedione, and the product analogue 6-carboxyethyl-7-oxo-8-ribityllumazine, were determined by X-ray crystallography at resolutions of 2.7-2.8 A. Whereas the indole system of W27 forms a coplanar pi-complex with riboflavin, the corresponding phenyl ring in the W27Y mutant establishes only peripheral contact with the heterocyclic ring system of the bound riboflavin. These findings provide an explanation for the absence of the long wavelength shift in optical absorption spectra of riboflavin bound to the mutant enzyme. The structures of the mutants are important tools for the interpretation of the unusual physical properties of riboflavin in complex with lumazine synthase.  相似文献   

15.
The open reading frame MJ1184 of Methanococcus jannaschii with similarity to riboflavin synthase of Methanothermobacter thermoautotrophicus was cloned into an expression vector but was poorly expressed in an Escherichia coli host strain. However, a synthetic open reading frame that was optimized for expression in E.coli directed the synthesis of abundant amounts of a protein with an apparent subunit mass of 17.5 kDa. The protein was purified to apparent homogeneity. Hydrodynamic studies indicated a relative mass of 88 kDa suggesting a homopentamer structure. The enzyme was shown to catalyze the formation of riboflavin from 6,7-dimethyl-8-ribityllumazine at a rate of 24 nmol mg(-1) min(-1) at 40 degrees C. Divalent metal ions, preferably manganese or magnesium, are required for maximum activity. In contrast to pentameric archaeal type riboflavin synthases, orthologs from plants, fungi and eubacteria are trimeric proteins characterized by an internal sequence repeat with similar folding patterns. In these organisms the reaction is achieved by binding the two substrate molecules in an antiparallel orientation. With the enzyme of M.jannaschii, 13C NMR spectroscopy with 13C-labeled 6,7-dimethyl-8-ribityllumazine samples as substrates showed that the regiochemistry of the dismutation reaction is the same as observed in eubacteria and eukaryotes, however, in a non-pseudo-c2 symmetric environment. Whereas the riboflavin synthases of M.jannaschii and M.thermoautotrophicus are devoid of similarity with those of eubacteria and eukaryotes, they have significant sequence similarity with 6,7-dimethyl-8-ribityllumazine synthases catalyzing the penultimate step of riboflavin biosynthesis. 6,7-Dimethyl-8-ribityllumazine synthase and the archaeal riboflavin synthase appear to have diverged early in the evolution of Archaea from a common ancestor. Some Archaea have eubacterial type riboflavin synthases which may have been acquired by lateral gene transfer.  相似文献   

16.
Riboflavin synthase catalyses a mechanistically complex dismutation affording riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H )-pyrimidinedione from 6,7-dimethyl-8-ribityllumazine. A pentacyclic adduct (compound 2 ) of two substrate molecules was used as substrate for pre-steady-state kinetic analysis. Whereas the wild-type enzyme catalyses the decomposition of compound 2 into a mixture of riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H )-pyrimidinedione, as well as into two equivalents of 6,7-dimethyl-8-ribityllumazine, a H102Q mutant enzyme predominantly catalyses the former reaction. Stopped-flow experiments with this mutant enzyme failed to identify a reaction intermediate between compound 2 and riboflavin. However, the apparent rate constants for the formation of riboflavin as observed by stopped-flow and quenched-flow experiments were significantly different, thus suggesting that the reaction proceeds via a significantly populated intermediate, the absorbance of which is similar to that of compound 2 . An F2A mutant enzyme converts compound 2 predominantly into 6,7-dimethyl-8-ribityllumazine. Stopped-flow experiments using compound 2 as substrate indicated a slight and rapid initial increase in absorbance at 310 nm, followed by a slower decrease. This finding, in conjunction with different apparent rates for the formation of 6,7-dimethyl-8-ribityllumazine, suggests the involvement of a significantly populated intermediate in the transition between compound 2 and 6,7-dimethyl-8-ribityllumazine, the optical spectrum of which is similar to that of compound 1.  相似文献   

17.
In wild-type cells and some riboflavin-deficient mutants of P. guilliermondii GTP is transformed to the ribitylated intermediates 2,5-diamino-6-hydroxy-4-ribitylaminopyrimidine and 5-amino-2,6-dihydroxy-4-ribitylaminopyrimidine of the riboflavin biosynthetic path. We were able to show that these compounds were formed in vitro as well as in permeabilized cells by reactions including a reductive conversion of the product of GTP cyclohydrolase II action upon GTP. In order to analyse the pyrimidine derivates, 6,7-dimethyl-8-ribitylpterin and 6,7-dimethyl-8-ribityllumazine were synthesized by reaction of pyrimidines with diacetyl. The formation of ribitylated pyrimidines was shown to be strictly dependent on the presence of NADPH2. The data obtained indicate that the reductive step is catalyzed by a 2,5-diamino-6-hydroxy-4-ribosylaminopyrimidine-reductase. 6,7-Dimethyl-8-ribitylpterin and 6,7-dimethyl-8-ribityllumazine isolated from the incubation mixtures have been identified by chromatography and by their ultraviolet and fluorescence spectra.  相似文献   

18.
We have determined the three-dimensional structure of 6, 7-dimethyl-8-ribityllumazine synthase (lumazine synthase) from Brucella abortus, the infectious organism of the disease brucellosis in animals. This enzyme catalyses the formation of 6, 7-dimethyl-8-ribityllumazine, the penultimate product in the synthesis of riboflavin. The three-dimensional X-ray crystal structure of the enzyme from B. abortus has been solved and refined at 2.7 A resolution to a final R-value of 0.18 (R(free)=0.23). The macromolecular assembly of the enzyme differs from that of the enzyme from Bacillus subtilis, the only other lumazine synthase structure known. While the protein from B. subtilis assembles into a 60 subunit icosahedral capsid built from 12 pentameric units, the enzyme from B. abortus is pentameric in its crystalline form. Nonetheless, the active sites of the two enzymes are virtually identical indicating inhibitors to theses enzymes could be effective pharmaceuticals across a broad species range. Furthermore, we compare the structures of the enzyme from B. subtilis and B. abortus and describe the C teminus structure which accounts for the differences in quaternary structure.  相似文献   

19.
Whereas eubacterial and eukaryotic riboflavin synthases form homotrimers, archaeal riboflavin synthases from Methanocaldococcus jannaschii and Methanothermobacter thermoautrophicus are homopentamers with sequence similarity to the 6,7-dimethyl-8-ribityllumazine synthase catalyzing the penultimate step in riboflavin biosynthesis. Recently it could be shown that the complex dismutation reaction catalyzed by the pentameric M. jannaschii riboflavin synthase generates riboflavin with the same regiochemistry as observed for trimeric riboflavin synthases. Here we present crystal structures of the pentameric riboflavin synthase from M. jannaschii and its complex with the substrate analog inhibitor, 6,7-dioxo-8-ribityllumazine. The complex structure shows five active sites located between adjacent monomers of the pentamer. Each active site can accommodate two substrate analog molecules in anti-parallel orientation. The topology of the two bound ligands at the active site is well in line with the known stereochemistry of a pentacyclic adduct of 6,7-dimethyl-8-ribityllumazine that has been shown to serve as a kinetically competent intermediate. The pentacyclic intermediates of trimeric and pentameric riboflavin synthases are diastereomers.  相似文献   

20.
The biosynthesis of one riboflavin molecule requires one molecule of GTP and two molecules of ribulose 5-phosphate as substrates. GTP is hydrolytically opened, converted into 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione by a sequence of deamination, side chain reduction and dephosphorylation. Condensation with 3,4-dihydroxy-2-butanone 4-phosphate obtained from ribulose 5-phosphate leads to 6,7-dimethyl-8-ribityllumazine. The final step in the biosynthesis of the vitamin involves the dismutation of 6,7-dimethyl-8-ribityllumazine catalyzed by riboflavin synthase. The mechanistically unusual reaction involves the transfer of a four-carbon fragment between two identical substrate molecules. The second product, 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione, is recycled in the biosynthetic pathway by 6,7-dimethyl-8-ribityllumazine synthase. This article will review structures and reaction mechanisms of riboflavin synthases and related proteins up to 2007 and 122 references are cited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号