首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We have investigated the mechanism of the changes in the profile of metabolic enzyme expression that occur in association with fast-to-slow transformation of rabbit skeletal muscle. The hypotheses assessed are: do 1) lowered intracellular ATP concentration or 2) reduction of the muscular glycogen stores act as triggers of metabolic transformation? We find that 3 days of decreased cytosolic ATP content have no impact on the investigated metabolic markers, whereas incubation of the cells with little or no glucose leads to decreases in glycogen in conjunction with decreases in glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter activity, GAPDH mRNA and specific GAPDH enzyme activity (indicators of the anaerobic glycolytic pathway), and furthermore to increases in mitochondrial acetoacetyl-CoA thiolase (MAT, also known as ACAT) promoter activity, peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) expression and citrate synthase (CS) specific enzyme activity (all indicators of oxidative metabolic pathways). The AMP-activated protein kinase (AMPK) activity under these conditions is reduced compared to controls. In experiments with two inhibitors of glycogen degradation we show that the observed metabolic transformation caused by low glucose takes place even if intracellular glycogen content is high. These findings for the first time provide evidence that metabolic adaptation of skeletal muscle cells from rabbit in primary culture can be induced not only by elevation of intracellular calcium concentration or by a rise of AMPK activity, but also by reduction of glucose supply. Contrary to expectations, neither an increase in phospho-AMPK nor a reduction of muscular glycogen content are crucial events in the glucose-dependent induction of metabolic transformation in the muscle cell culture system studied.  相似文献   

2.
Energetics of Anaerobic Sodium Transport by the Fresh Water Turtle Bladder   总被引:4,自引:1,他引:3  
Certain of the metabolic events associated with anaerobic sodium transport by the isolated bladder of the fresh water turtle have been investigated. The data suggest that energy for this transport arises from glycolysis and that endogenous glycogen was the major and perhaps the sole source of substrate. The rate of anaerobic glycolysis, as determined by lactate formation, correlates well with the rate as determined by glycogen utilization. Using lactate formation as the index of anaerobic glycolysis, a linear relationship was observed between glycolysis and net anaerobic sodium transport. In the absence of sodium transport, glycolysis decreased by approximately 45 per cent. Tissue ATP concentrations were maintained at about the same level under anaerobic as under aerobic conditions. Finally if it is assumed that in the conversion of glycogen to lactate anaerobically, 3 moles of ATP are generated per mole of glucose residue, an average of over 15 equivalents of sodium were transported for every mole of ATP generated.  相似文献   

3.
The main role of muscular oxygen-independent glycolysis, starting from glycogen as the initial substrate, is the production of three ATP molecules from ADP and Pi per glucosyl moiety transformed into two lactate molecules. During this catabolic process not only there is no proton release, but one proton is consumed. Metabolic acidosis occurs because the three ATP molecules are immediately hydrolysed by myosin ATPase back to 3Pi and 3ADP, to sustain contraction. As a consequence of this ATP turnover, the ATP pool (~5?mmol?kg?1 wet weight) should remain constant. However, a bulk of experimental evidence has clearly shown that depletion of the muscular ATP pool, and accumulation of ATP catabolites occur even during short sprint bouts. In the present article the interrelationship between glycogen and ATP catabolism in anaerobic contracting muscle is discussed. It is shown how myosin ATPase plays a role not only in the mechanisms of ATP recycling through glycogen anaerobic catabolism, but also in the process of ATP depletion.  相似文献   

4.
Summary Time course measurements of glycogen, lactate, creatine phosphate, the adenylates and ammonia contents were made during the transition from rest to various levels of activity in fish (Macrozoarces americanus) white muscle. The muscle was perturbed by direct electrical stimulation resulting in sustained tetanus, 60 contractions/min or 20 contractions/min. Increased ATP demand was invariably associated with decreases in creatine phosphate followed by increases in lactate levels. The contribution of creatine phosphate to anaerobic energy production was equivalent to that of anaerobic glycolysis. In addition, decreases in creatine phosphate content may play an important role in the facilitation of glycolytic flux presumably by relief of inhibition of phosphofructokinase. Under some conditions the work transition was associated with an initial transient increase in ATP content which could not be accounted for by decreases in ADP and AMP levels. Furthermore, ammonia content was noted to oscillate during the work period, a feature which is fundamentally different from that which occurs in mammalian muscle.  相似文献   

5.
Endogenous muscle glycogen represents a primary fuel source during large muscle group activity in the human. The depletion of this fuel source during submaximal exercise at intensities ranging between 60 and 85% of maximal aerobic power (Vo2max) is widely believed to be the cause of an inability to sustain exercise. Alterations of preexercise muscle glycogen reserves by dietary and exercise manipulations and changing the degree of dependency on endogenous glycogen during exercise by modifying the availability of other fuel sources have in general served to establish a close relationship between muscle glycogen and fatigue resistance. However, in spite of the evidence implicating glycogen depletion to fatigue, the mechanism remains elusive. The most popular theory is that glycogen is an essential substrate, the depletion of which results in a reduction in the rate of ATP regeneration and an inability to maintain energy supply to one or more of the processes involved in excitation and contraction in the muscle. As a consequence, the muscle is unable to translate the motor drive into an expected force and fatigue develops. However, there is little experimental evidence to support this theory. Most studies report no or only minimal changes in ATP concentration at fatigue with low glycogen and no further change in the by-products of ATP hydrolysis. These findings suggest that fatigue might be caused by other nonmetabolic factors. This review examines these other nonmetabolic factors and analyzes their potential role in fatigue during prolonged exercise with depletion of muscle glycogen reserves.  相似文献   

6.
The hypothesis that during intense muscle contraction induced by electrical stimulation, long chain fatty acids (LCFA) might reduce mitochondrial ATP/ADP ratio, raising the contribution of glycolysis for ATP production was examined. The effect of a lipid infusion (Lipovenus emulsion) on UCP-3 mRNA level, lactate, glucose-6-phosphate (G-6P) and glycogen content was investigated in rat. Blood samples for determination of free fatty acids and lactate were collected at 0, 30 and 60 min during rest and at 0, 10 and 20 min during muscle contraction. The content of lactate, glycogen and G-6P was also determined in soleus (SO), red gastrocnemius (RG) and white gastrocnemius (WG) muscles collected immediately after muscle contraction period. In addition, the force level was determined during muscle contractions. The effect of Lipovenus emulsion on respiration of mitochondria isolated from rat skeletal muscle, and content of UCP-3 and lactate in cultured skeletal muscle cells was also determined. The in vivo experiments showed that Lipovenus induced a significant increase of UCP-3 mRNA levels. After Lipovenus infusion, lactate level was increased in RG muscle only, whereas the contents of glycogen and G-6P were decreased in both RG and WG muscles (P < 0.05). Lipovenus infusion failed to exert any effect on muscle force performance (P > 0.05). The in vitro experiments showed that Lipovenus infusion induced a significant increase in mitochondrial respiration, but had no effect on UCP-3 content. Lactate concentration was significantly increased in the culture medium of stimulated cells in the control and Lipovenus groups compared with the respective not-stimulated cells (P< 0.05). We concluded that as mitochondrial function becomes limited by the FFA-uncoupling effect, the ATP demand is mainly supplied by anaerobic glucose metabolism preventing an expected decrease in muscle contraction performance.  相似文献   

7.
The effect of age on skeletal muscle anaerobic energy metabolism was investigated in adult (11 mo) and aged (25 mo) Fischer 344 rats. Hindlimb skeletal muscles innervated by the sciatic nerve were stimulated to contract with trains of supramaximal impulses (100 ms, 80 Hz) at a train rate of 1 Hz for 60 s, with an occluded circulation. Soleus, plantaris, and red and white gastrocnemius (WG) were sampled from control and stimulated limbs. All muscle masses were reduced with age (9-13%). Peak isometric tensions, normalized per gram of wet muscle, were lower throughout the stimulation in the aged animals (28%). The potential for anaerobic ATP provision was unaltered with age in all muscles, because resting high-energy phosphates and glycogen contents were similar to adult values. Anaerobic ATP provision during stimulation was unaltered by aging in soleus, plantaris, and red gastrocnemius muscles. In the WG, containing mainly fast glycolytic (FG) fibers, ATP and phosphocreatine contents were depleted less in aged muscle. In situ glycogenolysis and glycolysis were 90.0 +/- 4.8 and 69.3 +/- 2.6 mumol/g dry muscle (dm) in adult WG and reduced to 62.3 +/- 6.9 and 51.5 +/- 5.5 mumol/g dm, respectively, in aged WG. Consequently, total anaerobic ATP provision was lower in aged WG (224.5 +/- 20.9 mumol/g dm) vs. adult (292.6 +/- 7.6 mumol/g dm) WG muscle. In summary, the decreased tetanic tension production in aged animals was associated with a decreased anaerobic energy production in FG fibers. Reduced high-energy phosphate use and a greater energy charge potential after stimulation suggested that the energy demand was reduced in aged FG fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Rats were fed on a diet containing 1% beta-guanidinopropionic acid (GPA), a creatine substrate analogue, for 6-10 weeks to deplete their muscle of creatine. This manipulation was previously shown to give a 90% decrease in [phosphocreatine] in skeletal and cardiac muscle and a 50% decrease in [ATP] in skeletal muscle only. Maximal activities of creatine kinase and of representative enzymes of aerobic and anaerobic energy metabolism were measured in the superficial white, medial and deep red portions of the gastrocnemius muscle, in the soleus and plantaris muscle and in the heart. Fast-twitch muscles were smaller in GPA-fed animals than in controls, but the size of the soleus muscle was unchanged. The activities of aerobic enzymes increased by 30-40% in all fast-twitch muscle regions except the superficial gastrocnemius, but were unchanged in the soleus muscle. The activities of creatine kinase and phosphofructokinase decreased by 20-50% in all skeletal-muscle regions except the deep gastrocnemius, and the activity of glycogen phosphorylase generally paralleled these changes. There were no significant changes in the activities of any of the enzymes measured in the heart. The glycogen content of the gastrocnemius-plantaris complex was increased by 185% in GPA-fed rats. The proportion of Type I fibres in the soleus muscle increased from 81% in control rats to 100% in GPA-fed rats, consistent with a previous report of altered isometric twitch characteristics and a decrease in the maximum velocity of shortening in this muscle [Petrofsky & Fitch (1980) Pflugers Arch. 384, 123-129]. We conclude that fast-twitch muscles adapt by a combination of decreasing diffusion distances, increasing aerobic capacity and decreasing glycolytic potential. Slow-twitch muscles decrease glycolytic potential and become slower, thus decreasing energy demand. These results suggest that persistent changes in the [phosphocreatine] and [ATP] are alone sufficient to alter the expression of enzyme proteins and proteins of the contractile apparatus, and that fibre-type-specific thresholds exist for the transformation response.  相似文献   

9.
The relationships between exercise and metabolites as well as between exercise and sarcoplasmic reticulum function were studied in gastrocnemius muscle of ovariectomized-trained rats. Prolonged moderate-intensity exercise, treadmill up-hill run for 90 min with a 10 degree incline, decreased the muscle glycogen content. Exercise until exhaustion further lowered the glycogen concentration to 13% of the control, together with a significant decrease of ATP and glucose-6-phosphate concentrations. Also, Ag+-induced Ca2+ release, measured in whole muscle homogenate, showed a 30% reduction on exhaustion, while Ca2+ uptake was unaffected by this exercise. ATPase activities, of both homogenate and SR vesicles, and Ca2+ transport in the latter preparation were not altered on exhaustion. It could be concluded from these results that muscular fatigue in ovariectomized rats after aerobic exercise is caused by the change in energy supply and Ca2+ release from the SR, this latter possibly due to metabolites generated by the exercise.  相似文献   

10.
The muscle contents of high-energy phosphates and their derivatives [ATP, ADP, AMP, creatine phosphate (CrP), and creatine], glycogen, some glycolytic intermediates, pyruvate, and lactate were compared in 11 dogs performing prolonged heavy exercise until exhaustion (at ambient temperature 20.0 +/- 1.0 degrees C) without and with trunk cooling using ice packs. Without cooling, dogs were able to run for 57 +/- 8 min, and their rectal (Tre) and muscle (Tm) temperatures increased to 41.8 +/- 0.2 and 43.0 +/- 0.2 degrees C, respectively. Compared with noncooling, duration of exercise with cooling was longer by approximately 45% while Tre and Tm at the time corresponding to the end of exercise without cooling were lower by 1.1 +/- 0.2 and 1.2 +/- 0.2 degrees C, respectively. The muscle contents of high-energy phosphates (ATP + CrP) decreased less, the rate of glycogen depletion was lower, and the increases in the contents of AMP, pyruvate, and lactate as well as in the muscle-to-blood lactate ratio were smaller. The muscle content of lactate was positively correlated with Tm. The data indicate that with higher body temperature equilibrium between high-energy phosphate breakdown and resynthesis was shifted to the lower values of ATP and CrP and glycolysis was accelerated. The results suggest that hyperthermia developing during prolonged muscular work exerts an adverse effect on muscle metabolism that may be relevant to limitation of endurance.  相似文献   

11.
The adenosine triphosphate (ATP) content of pea root tips is about 0.40 mmole/kg fresh weight. The effects of partial and complete anaerobiosis, and of carbon monoxide and hydrogen cyanide, on the ATP level are described. The ATP content was shown to correspond closely to the oxygen uptake under these conditions. However, there was no relation between the ATP level and the rate of mitosis, a situation which is in contrast with that in sea urchin eggs. In anaerobic conditions, mitoses in pea root tips could continue at a reduced rate, even though the ATP content had fallen to 1.5 per cent of the normal value in air The ATP level in anaerobic conditions corresponded closely to the expected rate of ATP regeneration from known anaerobic sources of energy. Calculations show that even this severely restricted supply of energy would be more than adequate to drive the anaphase chromosome movements, so it is suggested that the concept of a mitotic energy reservoir is superfluous in root tips. No evidence could be found for the involvement during mitosis in sea urchin eggs of a non-respiratory ferrous complex such as occurs in pea root tips. Hence the dilemma remains, that whereas mitoses in both sea urchin eggs and pea root tips are arrested by respiratory inhibitors, yet the biochemical mechanisms of the arrest in the two types of cell are totally distinct.  相似文献   

12.
Muscle contents of ATP, ADP, AMP, creatine phosphate and creatine as well as glycogen, some glycolytic intermediates, pyruvate and lactate were compared in the intact, thyroidectomized and triiodothyronine (T3) treated dogs under resting conditions. After thyroidectomy muscle glycogen, glucose 1-phosphate and glucose 6-phosphate contents were significantly elevated while in T3-treated animals these variables were decreased in comparison with control dogs. Muscle free glucose was not altered by thyroidectomy but T3 treatment significantly increased its content. Muscle lactate content was elevated both in hypo- and hyperthyroid animals. Muscle ATP and total adenine nucleotide contents were significantly increased in hyperthyroid dogs while no differences were found between the three groups in the muscle creatine phosphate content. It is assumed that in T3-treated animals carbohydrate catabolism is enhanced in the resting skeletal muscle in spite of high tissue ATP content. Muscle metabolite alterations in hypothyroid dogs seem to reflect the hypometabolism accompanied by a diminished rate of glycogenolysis with inhibited rate of pyruvate oxidation or decreased rate of lactate removal from the cells.  相似文献   

13.
Changes in the energy state of tissues in spontaneously hypertensive rats]   总被引:1,自引:0,他引:1  
The contents of adenine nucleotides (ATP, ADP, AMP), phosphocreatine (PCr) and creatine (Cr) in the heart, skeletal muscle, liver and spleen in spontaneously hypertensive (SHR) and normotensive (WKY) rats. The ATP/ADP ratio in cardiac tissue was lower in SHR compared with WKY, while myocardial contents of adenine nucleotides, PCr and Cr did not differ significantly between the groups. A lower ATP/ADP ratio in the skeletal muscle SHR of was accompanied by a reduction of PCr content comparing with these indices in WKY rats. The liver and spleen of SHR exhibited lower ATP contents and higher ADP and AMP levels compared with those ones in WKY rats, despite of the close values of adenine nucleotide pools (sigma AN = ATP + ADP + AMP). This redistribution of tissue adenine nucleotides was corresponded to lower energy charges (EC = (ATP + 0.5 ADP)/sigma AN) and ATP/ADP ratios in SHR group. The reduction of the energy state of tissues in SHR rats increased in the following rank: heart > skeletal muscle > liver > spleen, thus, reflecting progressive decrease of intensity of oxidative metabolism. The results suggest changes in the balance of rates of ATP formation and hydrolysis occur at the system level in primary hypertension. Probably, consequences of such rearrangement in energy metabolism are functional disturbances of plasma membrane and sacroplasmic reticulum well-documented in a number of experimental and clinical studies.  相似文献   

14.
Relating intramuscular fuel use to endurance in juvenile rainbow trout   总被引:5,自引:0,他引:5  
This study examined fuel depletion in white muscle of juvenile rainbow trout sprinted to fatigue to determine whether the onset of fatigue is associated with a measurable metabolic change within the muscle and whether muscle glycogen levels influence endurance. In this study, "fuels" refer to any energy-supplying compounds and include glycogen, phosphocreatine (PCr), and ATP. Fuel depletion in white muscle was estimated by the calculation of the anaerobic energy expenditure (AEE; in micromol ATP equivalents g(-1)) from the reduction of PCr and ATP and the accumulation of lactate. Progression of fuel use during sprinting was examined by sampling fish before they showed signs of fatigue and following fatigue. Most of the AEE before fatigue was due to PCr depletion. However, at the first signs of fatigue, there was a 32% drop in ATP. Similarly, when fish were slowly accelerated to a fatiguing velocity, the only significant change at fatigue was a 30% drop in ATP levels. Muscle glycogen levels were manipulated by altering ration (1% vs. 4% body weight ration per day) combined with either daily or no exercise. Higher ration alone led to significantly greater muscle glycogen but had no effect on sprint performance, whereas sprint training led to higher glycogen and an average threefold improvement in sprint performance. In contrast, periodic chasing produced a similar increase in glycogen but had no effect on sprint performance. Taken together, these observations suggest that (i) a reduction in ATP in white muscle could act as a proximate signal for fatigue during prolonged exercise in fish and (ii) availability of muscle glycogen does not limit endurance.  相似文献   

15.
31P-nuclear magnetic resonance was applied to living muscles of bullfrogs, and the time courses of metabolic changes of ATP, creatine phosphate, inorganic phosphate, and sugar phosphates were studied under anaerobic and aerobic conditions. A decrease in creatine phosphate was observed in the resting muscle under anaerobic conditions with a concomitant decrease in the intracellular pH, while the ATP level remained constant. With the use of 2,4-dinitro-1-fluorobenzene and iodoacetic acid, ATP disappeared quickly. When the resting muscle was perfused with oxygen-saturated glucose-Ringer's solution, the amount of creatine phosphate increased gradually. These findings indicate that anaerobic glycolysis is insufficient for even the resting energy consumption whereas oxidative phosphorylation is sufficient. The effects of tetanic stimulation on living muscles were also studied. When glycolysis and oxidative phosphorylation were suppressed, the intracellular energy store was depleted by the tetanic contraction. Anaerobic glycolysis produced rapid recovery of the energy store level, although it was insufficient to reach the initial level. Aerobic oxidative phosphorylation produced sufficient energy to reach the initial level, and this level was never exceeded. This finding suggests the existence of a regulatory mechanism for the energy store level.  相似文献   

16.
Information about anaerobic energy production and mechanical efficiency that occurs over time during short-lasting maximal exercise is scarce and controversial. Bilateral leg press is an interesting muscle contraction model to estimate anaerobic energy production and mechanical efficiency during maximal exercise because it largely differs from the models used until now. This study examined the changes in muscle metabolite concentration and power output production during the first and the second half of a set of 10 repetitions to failure (10RM) of bilateral leg press exercise. On two separate days, muscle biopsies were obtained from vastus lateralis prior and immediately after a set of 5 or a set of 10 repetitions. During the second set of 5 repetitions, mean power production decreased by 19% and the average ATP utilisation accounted for by phosphagen decreased from 54% to 19%, whereas ATP utilisation from anaerobic glycolysis increased from 46 to 81%. Changes in contraction time and power output were correlated to the changes in muscle Phosphocreatine (PCr; r = −0.76; P<0.01) and lactate (r = −0.91; P<0.01), respectively, and were accompanied by parallel decreases (P<0.01-0.05) in muscle energy charge (0.6%), muscle ATP/ADP (8%) and ATP/AMP (19%) ratios, as well as by increases in ADP content (7%). The estimated average rate of ATP utilisation from anaerobic sources during the final 5 repetitions fell to 83% whereas total anaerobic ATP production increased by 9% due to a 30% longer average duration of exercise (18.4±4.0 vs 14.2±2.1 s). These data indicate that during a set of 10RM of bilateral leg press exercise there is a decrease in power output which is associated with a decrease in the contribution of PCr and/or an increase in muscle lactate. The higher energy cost per repetition during the second 5 repetitions is suggestive of decreased mechanical efficiency.  相似文献   

17.
目的:观察一次性力竭运动后大鼠脑、心、骨骼肌组织和线粒体中PHB1含量的变化及对大鼠线粒体功能的影响,探寻PHB1与线粒体功能和能量代谢的关系。方法:健康雄性SD大鼠40只,随机分为2组(n=20):对照组和一次性力竭运动组,大鼠进行一次性急性跑台运动建立力竭运动模型。收集各组大鼠的心、脑和骨骼肌组织样品并提取线粒体,检测其呼吸功能和ROS的变化。用Western blot方法检测组织和线粒体中PHB1蛋白表达水平;用分光光度计检测各器官中ATP含量以及线粒体中复合体V活性(ATP合酶活性)。结果:①一次性力竭运动后脑、心肌、骨骼肌中ATP含量显著性降低;②一次性力竭运动后脑、心肌、骨骼肌线粒体中复合体V活性、RCR、ROS显著性降低,ST4均显著性升高,ST3无显著性差异。③一次性力竭运动后心、脑、骨骼肌线粒体中PHB1的表达显著性减少。④通过相关性分析得出:一次性力竭运动后心、脑、骨骼肌中ATP含量与心、脑、骨骼肌中复合体V活性呈正相关;心、脑、骨骼肌中ATP含量和心、脑骨骼肌中PHB1的表达呈正相关。结论:一次性力竭运动后,降低线粒体氧化磷酸化功能,使大鼠脑、骨骼肌线粒体内ROS生成增加,PHB1的表达、ATP含量和复合体V活性均下降。一次性力竭运动使得大鼠线粒体内PHB1表达降低,线粒体功能减弱,机体能量代谢降低。  相似文献   

18.
Three subjects performed five successive isometric contractions to fatigue; the tension in any one experiment was constant at tensions varying from 20 to 80% of the maximal voluntary contraction (MVC). The interval between contractions was held constant at 11 min. Muscle biopsy specimens were obtained at the start of the experiment, after the first, fourth, and fifth, and before the second and fifth of the successive contractions. The concentrations of ATP, CP, glycogen, and lactate were measured in each sample of muscle. Changes in ATP and glycogen were insufficient to be held accountable for the development of isometric fatigue. Changes in CP and lactate were large after fatigue at intermediate tensions, but those of CP were considered unlikely to be responsible for the fatigue. At tensions of 30-50% MVC the increase in lactate could be responsible for fatigue either directly or by indirect changes in pH; at higher and lower tensions the possibility that lactate is directly implicated in the development of fatigue seems remote.  相似文献   

19.
Insulin resistance, altered lipid metabolism and mitochondrial dysfunction in skeletal muscle would play a major role in type 2 diabetes mellitus (T2DM) development, but the causal relationships between these events remain conflicting. To clarify this issue, gastrocnemius muscle function and energetics were investigated throughout a multidisciplinary approach combining in vivo and in vitro measurements in Goto-Kakizaki (GK) rats, a non-obese T2DM model developing peripheral insulin resistant without abnormal level of plasma non-esterified fatty acids (NEFA). Wistar rats were used as controls. Mechanical performance and energy metabolism were assessed strictly non-invasively using magnetic resonance (MR) imaging and 31-phosphorus MR spectroscopy (31P-MRS). Compared with control group, plasma insulin and glucose were respectively lower and higher in GK rats, but plasma NEFA level was normal. In resting GK muscle, phosphocreatine content was reduced whereas glucose content and intracellular pH were both higher. However, there were not differences between both groups for basal oxidative ATP synthesis rate, citrate synthase activity, and intramyocellular contents for lipids, glycogen, ATP and ADP (an important in vivo mitochondrial regulator). During a standardized fatiguing protocol (6 min of maximal repeated isometric contractions electrically induced at a frequency of 1.7 Hz), mechanical performance and glycolytic ATP production rate were reduced in diabetic animals whereas oxidative ATP production rate, maximal mitochondrial capacity and ATP cost of contraction were not changed. These findings provide in vivo evidence that insulin resistance is not caused by an impairment of mitochondrial function in this diabetic model.  相似文献   

20.
The objective of this study was to examine the muscle metabolic changes occurring during intense and prolonged, heavy-resistance exercise. Muscle biopsies were obtained from the vastus lateralis of 9 strength trained athletes before and 30 s after an exercise regimen comprising 5 sets each of front squats, back squats, leg presses and knee extensions using barbell or variable resistance machines. Each set was executed until muscle failure, which occurred within 6-12 muscle contractions. The exercise: rest ratio was approximately 1:2 and the total performance time was 30 min. Concentrations of adenosine triphosphate (ATP), creatine phosphate (CP), creatine, glycogen, glucose, glucose-6-phosphate (G-6-P), alpha-glycerophosphate (alpha-G-P) and lactate were determined on freeze-dried tissue samples using fluorometric assays. Blood samples were analyzed for lactate and glucose. The exercise produced significant reductions in ATP (p less than 0.01) and CP (p less than 0.001), while alpha-G-P more than doubled (p less than 0.05), glucose increased tenfold (p less than 0.001) and G-6-P fourfold (p less than 0.001). Muscle lactate concentration at cessation of exercise averaged 17.3 mmol X kg-1 w. w. Glycogen concentration decreased (p less than 0.001) from 160 to 118 mmol X kg-1 w. w. It is concluded that high intensity, heavy resistance exercise is associated with a high rate of energy utilization through phosphagen breakdown and activation of glycogenolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号