首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Carlson  D Bok 《Biochemistry》1992,31(37):9056-9062
This study investigates whether the interphotoreceptor retinoid-binding protein (IRBP) is necessary for the release of 11-cis-retinaldehyde (RAL) or if the retinoid is constitutively released from the retinal pigment epithelium (RPE) following synthesis. The strategic location of IRBP in the interphotoreceptor matrix (IPM) and its retinoid-binding ability make it a candidate for a role in 11-cis-RAL release. Fetal bovine RPE cells were grown in permeable chambers, and their apical surfaces were incubated with medium containing either apo-IRBP, the apo form of cellular retinaldehyde-binding protein (CRALBP), the apo form of serum retinol-binding protein (RBP), or bovine serum albumin (BSA) or with medium devoid of binding proteins. [3H]-all-trans-Retinol (ROL) was delivered to the basal surface of the cells by RBP. High-performance liquid chromatography demonstrated that [3H]-11-cis-RAL was optimally released into the apical medium when apo-IRBP was present. The most surprising result was the diminished level of [3H]-11-cis-RAL when apo-CRALBP was in the apical medium. Circular dichroism demonstrated that CRALBP had not been denatured by the photobleaching required for endogenous ligand removal. Therefore, apo-CRALBP should have been able to bind [3H]-11-cis-RAL if it was constitutively released into the apical medium. In addition, when proteins other than apo-IRBP were present, or if the cells were incubated with medium alone, the observed decrease in apical [3H]-11-cis-RAL was concomitant with a buildup of intracellular [3H]-all-trans-retinyl palmitate and [3H]-all-trans-ROL in the basal culture medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Whole monkey retinas were incubated in short-term organ culture with either radiolabeled amino acids or glucosamine. Soluble retinal proteins and proteins in the culture medium were analyzed by SDS-poly-acrylamide gel electrophoresis. Fluorography showed that the interphotoreceptor retinoid-binding protein (IRBP), a 146,000 Mr glycoprotein localized in the extracellular matrix, is synthesized by the neural retina and rapidly secreted into the medium. Secretion is blocked by 10-5M monensin. No significant IRBP synthesis was observed in the pigment-epithelium-choroid complex. IRBP is thus the major component synthesized and secreted by the neural retina into the interphotoreceptor space. This, and its affinity for retinoid makes it a prime candidate for an extracellular retinoid transport vehicle.  相似文献   

3.
The regeneration of visual pigment in rod photoreceptors of the vertebrate retina requires an exchange of retinoids between the neural retina and the retinal pigment epithelium (RPE). It has been hypothesized that interphotoreceptor retinoid-binding protein (IRBP) functions as a two-way carrier of retinoid through the aqueous compartment (interphotoreceptor matrix) that separates the RPE and the photoreceptors. The first part of this review summarizes the cellular and molecular biology of IRBP. Work on the IRBP gene indicates that the protein contains a four-fold repeat structure that may be involved in binding multiple retinoid and fatty acid ligands. These repeats and other aspects of the gene structure indicate that the gene has had an active and complex evolutionary history. IRBP mRNA is detected only in retinal photoreceptors and in the pineal gland; expression is thus restricted to the two photosensitive tissues of vertebrate organisms. In the second part of this review, we consider the results obtained in experiments that have examined the activity of IRBP in the process of visual pigment regeneration. We also consider the results obtained on the bleaching and regeneration of rhodopsin in the acutely detached retina, as well as in experiments testing the ability of IRBP to protect its retinoid ligand from isomerization and oxidation. Taken together, the findings provide evidence that, in vivo, IRBP facilitates both the delivery of all-trans retinol to the RPE and the transfer of 11-cis retinal from the RPE to bleached rod photoreceptors, and thereby directly supports the regeneration of rhodopsin in the visual cycle.  相似文献   

4.
Uptake, transport and stabilization of xanthophylls in the human retina are important components of a complex multistep process that culminates in a non-uniform distribution of these important nutrients in the retina. The process is far from understood; here, we consider the potential role of interphotoreceptor retinoid-binding protein (IRBP) in this process. IRBP is thought to facilitate the exchange of 11-cis-retinal, 11-cis-retinol and all-trans-retinol between the retinal pigment epithelium (RPE), photoreceptors and Müller cells in the visual cycle. Structural and biochemical studies suggest that IRBP has a variety of nonequivalent ligand binding sites that function in this process. IRBP is multifunctional, being able to bind a variety of physiologically significant molecules including fatty acids in the subretinal space. This wide range of binding activities is of particular interest because it is unknown whether the lutein and zeaxanthin found in the macula originate from the choroidal or retinal circulations. If from the choroidal circulation, then IRBP is a likely mediator for their transport across the interphotoreceptor matrix. In this report, we explore the binding interactions of retinoids, fatty acids, and carotenoids with IRBP using surface plasmon resonance (SPR)-based biosensors. IRBP showed similar affinity toward retinoids and carotenoids (1–2 μM), while fatty acids had approximately 10 times less affinity. These results suggest that further studies should be carried out to evaluate whether IRBP has a physiologically relevant role in binding lutein and zeaxanthin in the interphotoreceptor matrix.  相似文献   

5.
Retinoids have many functions in the eye, including, perhaps, the visual guidance of ocular growth. Therefore, we identified where retinoid receptors, binding proteins, and biosynthetic enzymes are located in the ocular tissues of the chick as a step toward discovering where retinoids are generated and where they act. Using antibodies to interphotoreceptor retinoid binding protein (IRBP), cellular retinol binding protein (CRBP), cellular retinoic acid binding protein (CRABP), cellular retinaldehyde binding protein (CRALBP), retinaldehyde dehydrogenase (RALDH), and retinoic acid receptors (RAR and RXR), we localized these proteins to cells in the retina, retinal pigmented epithelium, choroid and sclera of the chick eye. IRBP was detected in the photoreceptor layer and pigmented epithelium; CRBP was in the pigmented epithelium; CRABP was in amacrine and bipolar cells in the retina; CRALBP was in Müller cells, pigmented epithelium, choroid, and fibrous sclera; RALDH was in retinal amacrine cells, pigmented epithelium, and choroid; RAR was in amacrine cells, choroid, and chondrocytes and fibroblasts in the sclera; and RXR was in amacrine and ganglion cells, bipolar cell nuclei, choroid, and chondrocytes. We also found that the growth-modulating toxins colchicine and quisqualate destroyed selectively different subsets of CRABP-containing amacrine cells. We conclude that the distribution of proteins involved in retinoid metabolism is consistent with a role of retinoids not only in phototransduction, but also in maintenance of cellular phenotype and visual guidance of ocular growth.  相似文献   

6.
Interphotoreceptor retinoid-binding protein (IRBP) is a large glycoprotein known to bind retinoids and found primarily in the interphotoreceptor matrix of the retina between the retinal pigment epithelium and the photoreceptor cells. It is thought to transport retinoids between the retinal pigment epithelium and the photoreceptors, a critical role in the visual process. We have used a 900-bp bovine IRBP cDNA fragment to map the corresponding gene, Rbp-3, to mouse chromosome 14 with somatic cell hybrids and have positioned the gene near Np-1 (nucleoside phosphorylase-1) by analysis of the progeny of an intersubspecific backcross. In the human genome, NP maps to human chromosome 14 and RBP3 to human chromosome 10. Thus, these two genes span the putative site of a chromosomal translocation which contributed to divergent karyotype evolution of man and mouse.  相似文献   

7.
We have utilized cDNA probes and in situ hybridization techniques to define the subcellular localization of interphotoreceptor retinoid-binding protein (IRBP) mRNA in bovine and monkey retinas. Results suggest that the mRNA is mainly localized in rod photoreceptor neurons within the outer nuclear layer of the retina. IRBP mRNA is also abundant in cells of the pineal gland, strengthening the analogy between rod photoreceptor cells and pinealocytes.  相似文献   

8.
Interphotoreceptor retinoid-binding protein (IRBP) is a large glycoprotein known to bind retinoids and found primarily in the interphotoreceptor matrix of the retina between the retinal pigment epithelium and the photoreceptor cells. It is thought to transport retinoids between the retinal pigment epithelium and the photoreceptors, a critical role in the visual process. We have used a 900-bp bovine IRBP cDNA fragment to map the corresponding gene, Rbp-3, to mouse chromosome 14 with somatic cell hybrids and have positioned the gene near Np-1 (nucleoside phosphorylase-1) by analysis of the progeny of an intersubspecific backcross. In the human genome, NP maps to human chromosome 14 and RBP3 to human chromosome 10. Thus, these two genes span the putative site of a chromosomal translocation which contributed to divergent karyotype evolution of man and mouse.  相似文献   

9.
Cultures of dissociated retinal neurons and photoreceptors from homozygous wild-type, heterozygous rd/+ and homozygous rd/rd retinas have been used to investigate the capacity of isolated photoreceptor cells to synthesize and secrete the interphotoreceptor retinoid-binding protein (IRBP). Retinal cells were dissociated on postnatal day 2 and grown in chemically defined medium in the absence of glial and pigmented epithelial cells. Expression of IRBP immunoreactive materials in these cultures was cell type-specific and developmentally regulated. Thus increasing numbers of rod photoreceptor cells showed immunoreactivity during the first week in culture, whereas nonphotoreceptor cell types remained consistently negative. Photoreceptor immunoreactivity could be detected in permeated (detergent-treated) as well as in unpermeated preparations, the latter suggesting that some IRBP is associated with the photoreceptor cell surface. These materials appeared to be loosely bound to the photoreceptors, since they disappeared when the cultures were exposed for 6 hr to IRBP-free medium but not when they were exposed to IRBP-containing medium. IRBP synthesis and secretion could be demonstrated by analyzing either cell extracts or conditioned medium by "slot blot" and Western blot techniques using affinity purified antibodies against bovine IRBP as well as by fluorographic analysis after metabolic labeling of the cultures with 35S-methionine. Comparisons of cultures from the different genotypes showed many similarities, including the abundance of IRBP-immunoreactive photoreceptors in 7 day cultures. However, immunochemical analysis showed lower conditioned medium/cell extract IRBP ratios in rd/rd cultures, an observation consistent with previous reports suggesting that IRBP secretion may be deficient in rd/rd photoreceptor cells.  相似文献   

10.
Smith  S. B  Mcclung  J  Wiggert  B. N  Nir  I 《Brain Cell Biology》1997,26(9):605-613
Rhodopsin regeneration requires attachment between the retinal pigment epithelium (RPE) and rod outer segments; however, in experimentally induced retinal detachment, rhodopsin regeneration can be restored partially upon addition of IRBP (interphotoreceptor retinoid binding protein). The mivit/mivit (vitiligo) mutant mouse, a model of slowly progressing photoreceptor cell degeneration, has a marked elevation of IRBP at 4 weeks as well as progressive detachment of the retina. The purpose of this study was to determine whether this mutant is capable of regenerating rhodopsin within a few hours following an intense light bleach. Rhodopsin regeneration was determined spectrophotometrically in mice after an intense one hour light bleach followed by 0, 1, 2, 4 or 24 h of dark recovery. IRBP was localized immunohistochemically in fixed frozen tissue at the light microscopic level and in LR Gold embedded tissue at the ultrastructural level. Rhodopsin regeneration experiments indicated that rhodopsin levels following 0, 1, 2 and 4 h dark-recovery were significantly less in mivit/mivit mutants compared with controls. Immunohistochemical detection of IRBP indicated an altered distribution of the protein in the mutant mice compared with controls. There was accumulation in the region of the inner segments in mutant retinas rather than distribution only to the RPE/OS apical regions as in controls. The data suggest that regeneration of rhodopsin is reduced by 4 weeks postnatally in the mivit/mivit mouse. There is partial detachment of the retina at this age; and IRBP, thought to be essential for proper functioning of the visual cycle, is aberrantly distributed in this mutant.  相似文献   

11.
Vitamin A and fatty acids are critical to photoreceptor structure, function, and development. The transport of these nutrients between the pigment epithelium and neural retina is mediated by interphotoreceptor retinoid-binding protein (IRBP). IRBP, a 133-kDa (human) glycolipoprotein, is the major protein component of the extracellular matrix separating these two cell layers. In amphibians and mammals, IRBP consists of four homologous repeats of about 300 amino acids which form two retinol and four fatty acid-binding sites. Here we show that IRBP in teleosts is a simpler protein composed of only two repeats. Western blot analysis shows that goldfish IRBP is half the size (70 kDa) of IRBP in higher vertebrates. Metabolic labeling studies employing Brefeldin A taken together with in situ hybridization studies and the presence of a signal peptide show that goldfish IRBP is secreted by the cone photoreceptors. The translated amino acid sequence has a calculated molecular weight of 66.7 kDa. The primary structure consists of only two homologous repeats with a similarity score of 52.5%. The last repeats of human and goldfish IRBPs are 69.1% similar with hydrophobic regions being the most similar. These data suggest that two repeats were lost during the evolution of the ray-finned fish (Actinopterygii), or that the IRBP gene duplicated between the emergence of bony fish (Osteichthyes) and amphibians. Acquisition of a multirepeat structure may reflect evolutionary pressure to efficiently transport higher levels of hydrophobic molecules within a finite space. Quadruplication of an ancestral IRBP gene may have been an important event in the evolution of photoreceptors in higher vertebrates. Correspondence to: F. Gonzalez-Fernandez  相似文献   

12.
We have developed a cell culture procedure that can produce large quantities of confluent monolayers of primary human fetal retinal pigment epithelium (hfRPE) cultures with morphological, physiological and genetic characteristics of native human RPE. These hfRPE cell cultures exhibit heavy pigmentation, and electron microscopy show extensive apical membrane microvilli. The junctional complexes were identified with immunofluorescence labeling of various tight junction proteins. Epithelial polarity and function of these easily reproducible primary cultures closely resemble previously studied mammalian models of native RPE, including human. These results were extended by the development of therapeutic interventions in several animal models of human eye disease. We have focused on strategies for the removal of abnormal fluid accumulation in the retina or subretinal space. The extracellular subretinal space separates the photoreceptor outer segments and the apical membrane of the RPE and is critical for maintenance of retinal attachments and a whole host of RPE/retina interactions.  相似文献   

13.
Cellular retinaldehyde-binding protein (CRALBP) is abundant in the retinal pigment epithelium (RPE) and Müller cells of the retina where it is thought to function in retinoid metabolism and visual pigment regeneration. The protein carries 11-cis-retinal and/or 11-cis-retinol as endogenous ligands in the RPE and retina and mutations in human CRALBP that destroy retinoid binding functionality have been linked to autosomal recessive retinitis pigmentosa. CRALBP is also present in brain without endogenous retinoids, suggesting other ligands and physiological roles exist for the protein. Human recombinant cellular retinaldehyde-binding protein (rCRALBP) has been over expressed as non-fusion and fusion proteins in Escherichia coli from pET3a and pET19b vectors, respectively. The recombinant proteins typically constitute 15-20% of the soluble bacterial lysate protein and after purification, yield about 3-8 mg per liter of bacterial culture. Liquid chromatography electrospray mass spectrometry, amino acid analysis, and Edman degradation were used to demonstrate that rCRALBP exhibits the correct primary structure and mass. Circular dichroism, retinoid HPLC, UV-visible absorption spectroscopy, and solution state 19F-NMR were used to characterize the secondary structure and retinoid binding properties of rCRALBP. Human rCRALBP appears virtually identical to bovine retinal CRALBP in terms of secondary structure, thermal stability, and stereoselective retinoid-binding properties. Ligand-dependent conformational changes appear to influence a newly detected difference in the bathochromic shift exhibited by bovine and human CRALBP when complexed with 9-cis-retinal. These recombinant preparations provide valid models for human CRALBP structure-function studies.  相似文献   

14.
We generated a mouse model (cKO) with a conditional deletion of TGF-beta signaling in the retinal neurons by crossing TGF-beta receptor I (TGF-beta RI) floxed mice with nestin-Cre mice. Almost all of the newborn cKO mice had retinal detachment at the retinal pigment epithelium (RPE)/photoreceptor layer junction of the neurosensory retina (NSR). The immunostaining for chondroitin-6-sulfate showed a very weak reaction in cKO mice in contrast to intense staining in the photoreceptor layer in wild-type mice. Macroscopic cataracts, in one or both eyes, were observed in 50% of the mice by 6 months of age, starting as early as the first month after birth. The cKO mouse model demonstrates that the TGF-beta signaling deficiency in retinal cells leads to decreased levels of chondroitin sulfate proteoglycan in the retinal interphotoreceptor matrix. This in turn causes retinal detachment due to the loss of adhesion of the NSR to RPE.  相似文献   

15.
Retinas of 4-, 10-, and 20-year-old monkeys were studied by light microscopy, electron microscopy, and scanning electron microscopy. Sections from the midperipheral region of every retina were selected for comparison. Although no significant differences were found between 4- and 10-year-old retinas, four major changes were found in 20-year-old monkey retinas: (i) increased number of displaced photoreceptor cells (DPC), (ii) increased number of macrophages of different morphology in subretinal space, (iii) increase in pigment granules in retinal pigment epithelium (RPE) cells, and (iv) altered morphology of Muller cells. DPC included both rods and cones. Their location and morphology depended on the stage of their displacement. These cells were usually oval or rounded in shape and were found either among the outer segments of other photoreceptor cells, having stalks extending into the outer nuclear layer, or were located in the subretinal space and had no stalk. A narrow space around the DPC stalks, indicating a change in the intercellular connection between photoreceptor cells and Muller cells, was observed. Furthermore, the Muller cells related to DPC had shortened and markedly reduced microvilli. Two types of macrophages were found in the subretinal space of aged monkey retinas. One type was similar in morphology to RPE cells. Some of these cells were noticed detaching from RPE. Other types of macrophages were nonpigmented. The modifications in RPE were closely related to the changes in the associated neuroretina. The RPE cells in aged retina were devoid of microvilli or had a few thin microvilli. The pleomorphic pigment granules were dispersed throughout the cytoplasm. These cells varied in their size, shape, and surface features. These changes could significantly alter the retinal metabolic equilibrium and may be indicative of age related degenerative processes.  相似文献   

16.
BACKGROUND: We wanted to investigate the ability of recombinant equine infectious anemia virus (EIAV) vectors to transduce photoreceptor cells by developing a series of photoreceptor-specific promoters that drive strong gene expression in photoreceptor cells. METHODS: Promoter fragments derived from the rhodopsin (RHO), the beta phosphodiesterase (PDE) and the retinitis pigmentosa (RP1) genes were cloned in combination with an enhancer element, derived from the interphotoreceptor retinoid-binding protein gene (IRBP), into luciferase reporter plasmids. An in vitro transient reporter assay was carried out in the human Y-79 retinoblastoma cell line. The optimal promoters from this screen were then cloned into the recombinant EIAV vector for evaluation in vivo following subretinal delivery into mice. RESULTS: All promoters maintained a photoreceptor-specific expression profile in vitro and the gene expression was further enhanced in combination with the IRBP enhancer. The use of IRBP-combined RHO or PDE promoters showed modest but exclusive expression in photoreceptors following subretinal delivery to mice. By contrast an EIAV vector containing the cytomegalovirus (CMV) promoter drove reporter gene expression in both photoreceptors and retinal pigment epithelium. CONCLUSIONS: It may be possible to use recombinant EIAV vectors containing photoreceptor-specific promoters to drive therapeutic gene expression to treat a range of retinal degenerative diseases where the photoreceptor cell is the primary disease target.  相似文献   

17.
Interstitial retinol-binding protein (IRBP) is a soluble glycoprotein in the interphotoreceptor matrix of bovine, human, monkey, and rat eyes. It may transport retinol between the retinal pigment epithelium and the neural retina. In light-reared Royal College of Surgeons (RCS) and RCS retinal dystrophy gene (rdy)+ rats, the amount of IRBP in the interphotoreceptor matrix increased in corresponding proportion to the amount of total rhodopsin through postnatal day 22 (P22). In the RCS-rdy+ rats, the amount increased slightly after P23. However, in the RCS rats there was a rapid fall in the quantity of IRBP as the photoreceptors degenerated between P23 and P29. No IRBP was detected by immunocytochemistry in rats at P28. The amount of rhodopsin fell more slowly. Although retinas from young RCS and RCS-rdy+ rats were able to synthesize and secrete IRBP, this ability was lost in retinas from older RCS rats (P51, P88) but not their congenic controls. The photoreceptor cells have degenerated at these ages in the RCS animals, and may therefore be the retinal cells responsible for IRBP synthesis. The putative function of IRBP in the extracellular transport of retinoids during the visual cycle is consistent with a defect in retinol transport in the RCS rat reported by others.  相似文献   

18.
The interphotoreceptor retinoid-binding protein (IRBP) has been isolated from monkey interphotoreceptor matrix (IPM). Following gentle washing of the IPM from the retinal surface, the protein was purified to homogeneity by concanavalin A-Sepharose affinity chromatography, ion-exchange high-performance liquid chromatography (HPLC), and size-exclusion HPLC. Bovine IRBP was purified similarly and compared with the monkey protein. Sedimentation equilibrium analysis yielded a molecular weight of 106 000 +/- 2900 for the native monkey protein. Sedimentation velocity analysis gave a sedimentation coefficient of 5.4 +/- 0.3 S and a frictional ratio of 1.59, indicating an asymmetrical molecular shape. IRBP contains neutral sugar, including fucose, and sialic acid; the glycoprotein nature of the proteins probably accounts for the microheterogeneity observed in the electrofocusing pattern of both bovine and monkey IRBP. Both IRBPs have isoelectric points between 6.0 and 7.0. The fluorescence emission lambda max of the bound ligand was 470 nm with excitation at 340 nm, while the excitation lambda max was 333 nm with emission at 470 nm, for monkey IRBP incubated with exogenous all-trans-retinol. The amino acid compositions of the monkey and bovine proteins are similar; nonpolar amino acids account for over 50% of the residues, which may explain the apparent hydrophobic nature of the isolated proteins. The amino-terminal analyses indicated considerable homology between the monkey and bovine IRBPs in this region and verified the purity of the isolated proteins. IRBP thus appears to be a unique, conserved glycoprotein of the retinal extracellular matrix that could serve as a retinoid-transport vehicle.  相似文献   

19.
A new, gentle technique has been developed for washing of the retinal interphotoreceptor space (IPS) to obtain soluble components of the extracellular matrix (ECM). Using this method, we have determined that the major soluble coustituent of monkey IPS is a 146,000 Mr glycoprotein, which binds [3H]retinol, sediments on sucrose gradients at 7S and has an Rf of 0.42 on native gel electrophoresis. Using size-exclusion high performance liquid chromatography, the apparent molecular weight of the native protein was calculated to be 250,000 daltons. In contrast to previous studies, no 15,000-dalton cellular retinol-binding protein (CRBP) or 33,000-dalton cellular retinaldehydebinding protein (CRALBP) was observed in the IPS wash, indicating that these proteins are probably not involved in retinol transport between retina and pigment epithelium (PE). In the supernatant fraction of retinal homogenates that contains soluble intracellular proteins as well as extracellular constituents, the 146,000 Mr protein was closely associated with a 93,000 Mr protein that could be separated on SDS-gel electrophoresis; the 93,000 Mr protein was not found in the IPS wash. The 146,000 Mr interphotoreceptor retinol-binding protein (IRBP) may function in extracellular retinol transport in the IPS.  相似文献   

20.
cDNA clones encoding bovine interphotoreceptor retinoid binding protein   总被引:1,自引:0,他引:1  
We have isolated a cDNA clone (lambda IRBP-1) for bovine interphotoreceptor retinoid-binding protein (IRBP) by immunological screening of a bovine retinal lambda gt11 cDNA expression library. This clone contained a cDNA insert 325 bp in length. A 250 bp fragment of this cDNA was used to screen a bovine retina lambda gt10 cDNA library, resulting in the isolation of two larger cDNA clones containing inserts of 2.5 kb (lambda IRBP-2) and 1.5 kb (lambda IRBP-3). Restriction endonuclease mapping revealed all three clones to have an EcoR I restriction site. The 250 bp fragment of lambda IRBP-1 and the 2000 bp fragment of lambda IRBP-2 both hybridized to a single bovine retinal mRNA species approximately 8 kb in length; there was no hybridization with either chicken lens or liver RNA. The amino acid sequence of a tryptic peptide from authentic IRBP has been obtained. The deduced amino acid sequence from the cDNA nucleotide sequence is the same as this authentic peptide. This definitively establishes the identity of the cDNA clones as encoding bovine IRBP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号