首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 994 毫秒
1.
Several theoretical studies propose that biodiversity buffers ecosystem functioning against environmental fluctuations, but virtually all of these studies concern a single trophic level, the primary producers. Changes in biodiversity also affect ecosystem processes through trophic interactions. Therefore, it is important to understand how trophic interactions affect the relationship between biodiversity and the stability of ecosystem processes. Here we present two models to investigate this issue in ecosystems with two trophic levels. The first is an analytically tractable symmetrical plant-herbivore model under random environmental fluctuations, while the second is a mechanistic ecosystem model under periodic environmental fluctuations. Our analysis shows that when diversity affects net species interaction strength, species interactions--both competition among plants and plant-herbivore interactions--have a strong impact on the relationships between diversity and the temporal variability of total biomass of the various trophic levels. More intense plant competition leads to a stronger decrease or a lower increase in variability of total plant biomass, but plant-herbivore interactions always have a destabilizing effect on total plant biomass. Despite the complexity generated by trophic interactions, biodiversity should still act as biological insurance for ecosystem processes, except when mean trophic interaction strength increases strongly with diversity.  相似文献   

2.
Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators--larvae of the pitcher-plant mosquito--indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species.  相似文献   

3.
Plant diversity effects on ecosystem functioning usually have been studied from a plant perspective. However, the mechanisms underlying biodiversity–ecosystem functioning relationships may also depend on positive or negative interactions between plants and other biotic and abiotic factors, which remain poorly understood. Here we assessed whether plant–herbivore and/or plant–detritivore interactions modify the biodiversity–ecosystem functioning relationship and the mechanisms underlying biodiversity effects, including complementarity and selection effects, biomass allocation, vertical distribution of roots, and plant survival using a microcosm experiment. We also evaluated to what extent trophic and non‐trophic interactions are affected by abiotic conditions by studying drought effects. Our results show that biotic and abiotic conditions influence the shape of the biodiversity–ecosystem function relationship, varying from hump‐shaped to linear. For instance, total biomass increased linearly with plant richness in the presence of detritivores, but not in the absence of detritivores. Moreover, detritivore effects on belowground plant productivity were highly context dependent, varying in the presence of herbivores. Plant interactions with soil biota, especially with herbivores, influenced the mechanisms underlying diversity effects. Herbivores increased plant complementarity and modified biomass allocation and vertical distribution of roots. Furthermore, biotic–abiotic interactions influenced plant productivity differently across plant functional groups. Our findings emphasize the importance of complex biotic interactions underlying biodiversity effects, and that these biotic interactions may change with abiotic conditions. Despite minor changes in productivity in the short‐term, soil biota‐induced changes in plant–plant interactions and plant survival are likely to have significant long‐term consequences for ecosystem functioning. Considering the context‐dependency of multichannel interactions may contribute to reconciling differences among observed patterns in biodiversity studies. Further, abiotic conditions modified the effects of biotic interactions, suggesting that changes in environmental conditions may not only affect ecosystems directly, but also change the biotic composition of and dynamics within ecosystems.  相似文献   

4.
Research into the relationship between biodiversity and ecosystem functioning has mainly focused on the effects of species diversity on ecosystem properties in plant communities and, more recently, in food webs. Although there is growing recognition of the significance of nontrophic interactions in ecology, these interactions are still poorly studied theoretically, and their impact on biodiversity and ecosystem functioning is largely unknown. Existing models of mutualism usually consider only one type of species interaction and do not satisfy mass balance constraints. Here, we present a model of an interaction web that includes both trophic and nontrophic interactions and that respects the principle of mass conservation. Nontrophic interactions are represented in the form of interaction modifications. We use this model to study the relationship between biodiversity and ecosystem properties that emerges from the assembly of entire interaction webs. We show that ecosystem properties such as biomass and production depend not only on species diversity but also on species interactions, in particular on the connectance and magnitude of nontrophic interactions, and that the nature, prevalence, and strength of species interactions in turn depend on species diversity. Nontrophic interactions alter the shape of the relationship between biodiversity and biomass and can profoundly influence ecosystem processes.  相似文献   

5.
Hundreds of studies that have explored how biodiversity affects the productivity and stability of ecosystems have produced a consensus that communities composed of more species tend to have higher biomass that is more stable through time. However, the majority of this work stems from studies performed using highly simplified food webs, often composed of just primary producers competing for inorganic resources in the absence of trophic interactions. When studies have incorporated trophic interactions, diversity‐function relationships have been more variable, leaving open the question of how biodiversity affects the functioning of ecosystems with more trophic levels. Here we report the results of a laboratory experiment that used freshwater microcosms to test for effects of algal diversity (one or four species) on community biomass and temporal variability in the presence and absence of two different herbivore species (cladocerans Ceriodaphnia dubia and Daphnia pulex). When no herbivores were present, we found the classic pattern observed in hundreds of other studies – as species richness of algae increased, algal biomass increased, and the temporal variation in biomass decreased. This pattern was retained when one of the herbivores (C. dubia) was present. Ceriodaphnia dubia exhibited weak and non‐selective grazing on the focal algae, leaving the effect of diversity on biomass and variability essentially intact. In contrast, D. pulex exhibited strong and selective grazing in algal polycultures that qualitatively altered both diversity–function relationships. As algal richness increased, total algal biomass decreased and variation through time increased. These changes were coupled with larger and less variable populations of D. pulex. Our results show that herbivory leads to a richer array of diversity–function relationships than often observed in studies focused on just one trophic level, and suggests trophic interactions should be given more attention in work that seeks to determine how biodiversity impacts the functioning of ecosystems.  相似文献   

6.
Understanding how biodiversity affects functioning of ecosystems requires integrating diversity within trophic levels (horizontal diversity) and across trophic levels (vertical diversity, including food chain length and omnivory). We review theoretical and experimental progress toward this goal. Generally, experiments show that biomass and resource use increase similarly with horizontal diversity of either producers or consumers. Among prey, higher diversity often increases resistance to predation, due to increased probability of including inedible species and reduced efficiency of specialist predators confronted with diverse prey. Among predators, changing diversity can cascade to affect plant biomass, but the strength and sign of this effect depend on the degree of omnivory and prey behaviour. Horizontal and vertical diversity also interact: adding a trophic level can qualitatively change diversity effects at adjacent levels. Multitrophic interactions produce a richer variety of diversity-functioning relationships than the monotonic changes predicted for single trophic levels. This complexity depends on the degree of consumer dietary generalism, trade-offs between competitive ability and resistance to predation, intraguild predation and openness to migration. Although complementarity and selection effects occur in both animals and plants, few studies have conclusively documented the mechanisms mediating diversity effects. Understanding how biodiversity affects functioning of complex ecosystems will benefit from integrating theory and experiments with simulations and network-based approaches.  相似文献   

7.
Tests of the biodiversity and ecosystem functioning (BEF) relationship have focused little attention on the importance of interactions between species diversity and other attributes of ecological communities such as community biomass. Moreover, BEF research has been mainly derived from studies measuring a single ecosystem process that often represents resource consumption within a given habitat. Focus on single processes has prevented us from exploring the characteristics of ecosystem processes that can be critical in helping us to identify how novel pathways throughout BEF mechanisms may operate. Here, we investigated whether and how the effects of biodiversity mediated by non-trophic interactions among benthic bioturbator species vary according to community biomass and ecosystem processes. We hypothesized that (1) bioturbator biomass and species richness interact to affect the rates of benthic nutrient regeneration [dissolved inorganic nitrogen (DIN) and total dissolved phosphorus (TDP)] and consequently bacterioplankton production (BP) and that (2) the complementarity effects of diversity will be stronger on BP than on nutrient regeneration because the former represents a more integrative process that can be mediated by multivariate nutrient complementarity. We show that the effects of bioturbator diversity on nutrient regeneration increased BP via multivariate nutrient complementarity. Consistent with our prediction, the complementarity effects were significantly stronger on BP than on DIN and TDP. The effects of the biomass-species richness interaction on complementarity varied among the individual processes, but the aggregated measures of complementarity over all ecosystem processes were significantly higher at the highest community biomass level. Our results suggest that the complementarity effects of biodiversity can be stronger on more integrative ecosystem processes, which integrate subsidiary “simpler” processes, via multivariate complementarity. In addition, reductions in community biomass may decrease the strength of interspecific interactions so that the enhanced effects of biodiversity on ecosystem processes can disappear well before species become extinct.  相似文献   

8.
Understanding non‐trophic interactions is critical to mechanistically linking community structure and ecosystem functioning. Despite the widespread occurrence of territoriality across animal taxa and ecosystems, the cascading ecological consequences of non‐trophic interactions between territorial animals and intruders have been poorly studied. We experimentally investigated the non‐trophic interaction between territorial ants and members of a dung decomposer community (i.e. predatory arthropods, maggots and coprophagous beetles) in an alpine meadow. We further examined how this non‐trophic interaction cascaded to influence ecosystem properties including dung removal rate, soil nutrient status and aboveground plant biomass surrounding dung pats. Results indicated that territorial interference of ants on key decomposers cascaded to affect plant growth. Specifically, ants significantly decreased the abundance of coprophagous beetles at the time of their peak‐abundance and hence decreased dung removal rates and soil nitrogen concentrations, ultimately decreasing aboveground plant biomass. The strength of this non‐trophic cascading effect was comparable to those reported in studies addressing trophic cascades triggered by predator–prey interactions. Our findings suggest that the non‐trophic interactions and associated cascading effects stemming from territorial behavior should be incorporated into ecological network modeling and research addressing biodiversity–ecosystem functioning relationships.  相似文献   

9.
Biodiversity and food chain length each can strongly influence ecosystem functioning, yet their interactions rarely have been tested. We manipulated grazer diversity in seagrass mesocosms with and without a generalist predator and monitored community development. Changing food chain length altered biodiversity effects: higher grazer diversity enhanced secondary production, epiphyte grazing, and seagrass biomass only with predators present. Conversely, changing diversity altered top‐down control: predator impacts on grazer and seagrass biomass were weaker in mixed‐grazer assemblages. These interactions resulted in part from among‐species trade‐offs between predation resistance and competitive ability. Despite weak impact on grazer abundance at high diversity, predators nevertheless enhanced algal biomass through a behaviourally mediated trophic cascade. Moreover, predators influenced every measured variable except total plant biomass, suggesting that the latter is an insensitive metric of ecosystem functioning. Thus, biodiversity and trophic structure interactively influence ecosystem functioning, and neither factor's impact is predictable in isolation.  相似文献   

10.
Global change is predicted to cause non-random species loss in plant communities, with consequences for ecosystem functioning. However, beyond the simple effects of plant species richness, little is known about how plant diversity and its loss influence higher trophic levels, which are crucial to the functioning of many species-rich ecosystems. We analyzed to what extent woody plant phylogenetic diversity and species richness contribute to explaining the biomass and abundance of herbivorous and predatory arthropods in a species-rich forest in subtropical China. The biomass and abundance of leaf-chewing herbivores, and the biomass dispersion of herbivores within plots, increased with woody plant phylogenetic diversity. Woody plant species richness had much weaker effects on arthropods, but interacted with plant phylogenetic diversity to negatively affect the ratio of predator to herbivore biomass. Overall, our results point to a strong bottom–up control of functionally important herbivores mediated particularly by plant phylogenetic diversity, but do not support the general expectation that top–down predator effects increase with plant diversity. The observed effects appear to be driven primarily by increasing resource diversity rather than diversity-dependent primary productivity, as the latter did not affect arthropods. The strong effects of plant phylogenetic diversity and the overall weaker effects of plant species richness show that the diversity-dependence of ecosystem processes and interactions across trophic levels can depend fundamentally on non-random species associations. This has important implications for the regulation of ecosystem functions via trophic interaction pathways and for the way species loss may impact these pathways in species-rich forests.  相似文献   

11.
The biodiversity–ecosystem functioning (BEF) relationship is central in community ecology. Its drivers in competitive systems (sampling effect and functional complementarity) are intuitive and elegant, but we lack an integrative understanding of these drivers in complex ecosystems. Because networks encompass two key components of the BEF relationship (species richness and biomass flow), they provide a key to identify these drivers, assuming that we have a meaningful measure of functional complementarity. In a network, diversity can be defined by species richness, the number of trophic levels, but perhaps more importantly, the diversity of interactions. In this paper, we define the concept of trophic complementarity (TC), which emerges through exploitative and apparent competition processes, and study its contribution to ecosystem functioning. Using a model of trophic community dynamics, we show that TC predicts various measures of ecosystem functioning, and generate a range of testable predictions. We find that, in addition to the number of species, the structure of their interactions needs to be accounted for to predict ecosystem productivity.  相似文献   

12.
Loss of plant diversity influences essential ecosystem processes as aboveground productivity, and can have cascading effects on the arthropod communities in adjacent trophic levels. However, few studies have examined how those changes in arthropod communities can have additional impacts on ecosystem processes caused by them (e.g. pollination, bioturbation, predation, decomposition, herbivory). Therefore, including arthropod effects in predictions of the impact of plant diversity loss on such ecosystem processes is an important but little studied piece of information. In a grassland biodiversity experiment, we addressed this gap by assessing aboveground decomposer and herbivore communities and linking their abundance and diversity to rates of decomposition and herbivory. Path analyses showed that increasing plant diversity led to higher abundance and diversity of decomposing arthropods through higher plant biomass. Higher species richness of decomposers, in turn, enhanced decomposition. Similarly, species-rich plant communities hosted a higher abundance and diversity of herbivores through elevated plant biomass and C:N ratio, leading to higher herbivory rates. Integrating trophic interactions into the study of biodiversity effects is required to understand the multiple pathways by which biodiversity affects ecosystem functioning.  相似文献   

13.
Predator diversity and abundance are under strong human pressure in all types of ecosystems. Whereas predator potentially control standing biomass and species interactions in food webs, their effects on prey biomass and especially prey biodiversity have not yet been systematically quantified. Here, we test the effects of predation in a cross‐system meta‐analysis of prey diversity and biomass responses to local manipulation of predator presence. We found 291 predator removal experiments from 87 studies assessing both diversity and biomass responses. Across ecosystem types, predator presence significantly decreased both biomass and diversity of prey across ecosystems. Predation effects were highly similar between ecosystem types, whereas previous studies had shown that herbivory or decomposition effects differed fundamentally between terrestrial and aquatic systems based on different stoichiometry of plant material. Such stoichiometric differences between systems are unlikely for carnivorous predators, where effect sizes on species richness strongly correlated to effect sizes on biomass. However, the negative predation effect on prey biomass was ameliorated significantly with increasing prey richness and increasing species richness of the manipulated predator assemblage. Moreover, with increasing richness of the predator assemblage present, the overall negative effects of predation on prey richness switched to positive effects. Our meta‐analysis revealed strong general relationships between predator diversity, prey diversity and the interaction strength between trophic levels in terms of biomass. This study indicates that anthropogenic changes in predator abundance and diversity will potentially have strong effects on trophic interactions across ecosystems. Synthesis The past centuries we have experienced a dramatic loss of top–predator abundance and diversity in most types of ecosystems. To understand the direct consequences of predator loss on a global scale, we quantitatively summarized experiments testing predation effects on prey communities in a cross‐system meta‐analysis. Across ecosystem types, predator presence significantly decreased both biomass and diversity of prey, and predation effects were highly similar. However, with increasing predator richness, the overall negative effects of predation on prey richness switched to positive ones. Anthropogenic changes in predator communities will potentially have strong effects on prey diversity, biomass, and trophic interactions across ecosystems.  相似文献   

14.
Ecological complexity of species interactions and habitat heterogeneity creates and maintains biodiversity at a trophic level in an ecosystem. This biodiversity simultaneously serves as raw material on which selective forces for organizing ecosystems operate. As a result of this organization process, differences in structure and functioning of ecosystems (diversity at ecosystem level) are generated. Although understanding diversity at the ecosystem level has attracted great interest, recent theoretical advances toward this aim have not been fully appreciated yet. Following Higashi et al. (1993), this report presents a theoretical framework that deals with the organization process of an ecosystem as a consequence of the interactions among its biotic components and their modification of ecological traits. Specifically, the ecosystem organization process of a terrestrial ecosystem is analyzed, including primary producers and decomposers. This model sheds new insight into the differences between temperate and tropical forest ecosystems.  相似文献   

15.
土壤动物多样性及其生态功能   总被引:17,自引:0,他引:17  
土壤无脊椎动物生物量通常小于土壤生物总生物量的10%,但它们种类丰富,取食行为及生活史策略多种多样,且土壤动物之间,土壤动物与微生物之间存在着复杂的相互作用关系。土壤动物的生态功能主要通过取食作用(trophic effect)和非取食作用(non-trophic effect)来实现。原生动物数量大、周转快,故原生动物本身的代谢活动(即取食作用)对碳氮矿化的贡献可以接近甚至超过细菌的贡献;然而大多数中小型土壤动物的本身代谢过程对碳氮矿化的贡献远低于土壤微生物,但它们可以通过取食作用来调节微生物进而影响碳氮的矿化。大型节肢动物中的蜘蛛和地表甲虫等捕食者经常活跃于地表,它们常常会通过级联效应对土壤生态系统产生重要的影响。蚯蚓、白蚁等大型土壤动物除可以通过取食作用以外,还可以通过非取食作用调控土壤微生物,进而显著影响土壤碳氮过程。土壤动物取食行为的多样性和复杂的非营养关系的存在造就了多维度的土壤食物网,给土壤动物的生态功能研究带来了巨大的挑战。介绍了土壤动物的多样性及主要的生态功能,并对研究的热点和前沿问题进行了探讨,以期引起关于土壤动物多样性及其生态功能的深入思考。  相似文献   

16.
Species diversity affects the functioning of ecosystems, including the efficiency by which communities capture limited resources, produce biomass, recycle and retain biologically essential nutrients. These ecological functions ultimately support the ecosystem services upon which humanity depends. Despite hundreds of experimental tests of the effect of biodiversity on ecosystem function (BEF), it remains unclear whether diversity effects are sufficiently general that we can use a single relationship to quantitatively predict how changes in species richness alter an ecosystem function across trophic levels, ecosystems and ecological conditions. Our objective here is to determine whether a general relationship exists between biodiversity and standing biomass. We used hierarchical mixed effects models, based on a power function between species richness and biomass production (Y = a × Sb), and a database of 374 published experiments to estimate the BEF relationship (the change in biomass with the addition of species), and its associated uncertainty, in the context of environmental factors. We found that the mean relationship (b = 0.26, 95% CI: 0.16, 0.37) characterized the vast majority of observations, was robust to differences in experimental design, and was independent of the range of species richness levels considered. However, the richness–biomass relationship varied by trophic level and among ecosystems; in aquatic systems b was nearly twice as large for consumers (herbivores and detritivores) compared to primary producers; in terrestrial ecosystems, b for detritivores was negative but depended on few studies. We estimated changes in biomass expected for a range of changes in species richness, highlighting that species loss has greater implications than species gains, skewing a distribution of biomass change relative to observed species richness change. When biomass provides a good proxy for processes that underpin ecosystem services, this relationship could be used as a step in modeling the production of ecosystem services and their dependence on biodiversity.  相似文献   

17.
BACKGROUND: Recent investigations suggest that biodiversity loss might impair the functioning and sustainability of ecosystems. Although deep-sea ecosystems are the most extensive on Earth, represent the largest reservoir of biomass, and host a large proportion of undiscovered biodiversity, the data needed to evaluate the consequences of biodiversity loss on the ocean floor are completely lacking. RESULTS: Here, we present a global-scale study based on 116 deep-sea sites that relates benthic biodiversity to several independent indicators of ecosystem functioning and efficiency. We show that deep-sea ecosystem functioning is exponentially related to deep-sea biodiversity and that ecosystem efficiency is also exponentially linked to functional biodiversity. These results suggest that a higher biodiversity supports higher rates of ecosystem processes and an increased efficiency with which these processes are performed. The exponential relationships presented here, being consistent across a wide range of deep-sea ecosystems, suggest that mutually positive functional interactions (ecological facilitation) can be common in the largest biome of our biosphere. CONCLUSIONS: Our results suggest that a biodiversity loss in deep-sea ecosystems might be associated with exponential reductions of their functions. Because the deep sea plays a key role in ecological and biogeochemical processes at a global scale, this study provides scientific evidence that the conservation of deep-sea biodiversity is a priority for a sustainable functioning of the worlds' oceans.  相似文献   

18.
Biodiversity and ecosystem functioning in naturally assembled communities   总被引:1,自引:0,他引:1  
Approximately 25 years ago, ecologists became increasingly interested in the question of whether ongoing biodiversity loss matters for the functioning of ecosystems. As such, a new ecological subfield on Biodiversity and Ecosystem Functioning (BEF) was born. This subfield was initially dominated by theoretical studies and by experiments in which biodiversity was manipulated, and responses of ecosystem functions such as biomass production, decomposition rates, carbon sequestration, trophic interactions and pollination were assessed. More recently, an increasing number of studies have investigated BEF relationships in non‐manipulated ecosystems, but reviews synthesizing our knowledge on the importance of real‐world biodiversity are still largely missing. I performed a systematic review in order to assess how biodiversity drives ecosystem functioning in both terrestrial and aquatic, naturally assembled communities, and on how important biodiversity is compared to other factors, including other aspects of community composition and abiotic conditions. The outcomes of 258 published studies, which reported 726 BEF relationships, revealed that in many cases, biodiversity promotes average biomass production and its temporal stability, and pollination success. For decomposition rates and ecosystem multifunctionality, positive effects of biodiversity outnumbered negative effects, but neutral relationships were even more common. Similarly, negative effects of prey biodiversity on pathogen and herbivore damage outnumbered positive effects, but were less common than neutral relationships. Finally, there was no evidence that biodiversity is related to soil carbon storage. Most BEF studies focused on the effects of taxonomic diversity, however, metrics of functional diversity were generally stronger predictors of ecosystem functioning. Furthermore, in most studies, abiotic factors and functional composition (e.g. the presence of a certain functional group) were stronger drivers of ecosystem functioning than biodiversity per se. While experiments suggest that positive biodiversity effects become stronger at larger spatial scales, in naturally assembled communities this idea is too poorly studied to draw general conclusions. In summary, a high biodiversity in naturally assembled communities positively drives various ecosystem functions. At the same time, the strength and direction of these effects vary highly among studies, and factors other than biodiversity can be even more important in driving ecosystem functioning. Thus, to promote those ecosystem functions that underpin human well‐being, conservation should not only promote biodiversity per se, but also the abiotic conditions favouring species with suitable trait combinations.  相似文献   

19.
Most research that demonstrates enhancement and stabilization of ecosystem functioning due to biodiversity is based on biodiversity manipulations within one trophic level and measuring changes in ecosystem functions provided by that same trophic level. However, it is less understood whether and how modifications of biodiversity at one trophic level propagate vertically to affect those functions supplied by connected trophic levels or by the whole ecosystem. Moreover, most experimental designs in biodiversity–ecosystem functioning research assume random species loss, which may be of little relevance to non‐randomly assembled communities. Here, we used data from a published ecotoxicological experiment in which an insecticide gradient was applied as an environmental filter to shape consumer biodiversity. We tested how non‐random consumer diversity loss affected gross primary production (an ecosystem function provided by producers) and respiration (an ecosystem function provided by the ecosystem as whole) in species‐rich multitrophic freshwater communities (total of 128 macroinvertebrate and 59 zooplankton species across treatments). The insecticide decreased and destabilized macroinvertebrate and, to a lesser extent, zooplankton diversity. However, these effects on biodiversity neither affected nor destabilized any of the two studied ecosystem functions. The main reason for this result was that species susceptible to environmental filtering were different from those most strongly contributing to ecosystem functioning. The insecticide negatively affected the most abundant species, whereas much less abundant species had the strongest effects on ecosystem functioning. The latter finding may be explained by differences in body size and feeding guild membership. Our results indicate that biodiversity modifications within one trophic level induced by non‐random species loss do not necessarily translate into changes in ecosystem functioning supported by other trophic levels or by the whole community in the case of limited overlap between sensitivity and functionality.  相似文献   

20.
The functional role of producer diversity in ecosystems   总被引:6,自引:0,他引:6  
Over the past several decades, a rapidly expanding field of research known as biodiversity and ecosystem functioning has begun to quantify how the world's biological diversity can, as an independent variable, control ecological processes that are both essential for, and fundamental to, the functioning of ecosystems. Research in this area has often been justified on grounds that (1) loss of biological diversity ranks among the most pronounced changes to the global environment and that (2) reductions in diversity, and corresponding changes in species composition, could alter important services that ecosystems provide to humanity (e.g., food production, pest/disease control, water purification). Here we review over two decades of experiments that have examined how species richness of primary producers influences the suite of ecological processes that are controlled by plants and algae in terrestrial, marine, and freshwater ecosystems. Using formal meta-analyses, we assess the balance of evidence for eight fundamental questions and corresponding hypotheses about the functional role of producer diversity in ecosystems. These include questions about how primary producer diversity influences the efficiency of resource use and biomass production in ecosystems, how primary producer diversity influences the transfer and recycling of biomass to other trophic groups in a food web, and the number of species and spatial /temporal scales at which diversity effects are most apparent. After summarizing the balance of evidence and stating our own confidence in the conclusions, we outline several new questions that must now be addressed if this field is going to evolve into a predictive science that can help conserve and manage ecological processes in ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号