首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
At a site in Nicaragua with high population densities of the leafhopper Dalbulus maidis Delong & Wolcott, leafhopper densities were significantly lower in mixed stands of maize (Zea mays mays L.) varieties than would be expected by averaging the densities found in the pure stands of the component varieties. This response to genetic diversity appears to be due to a behavioral response during the period of colonization or establishment. The reduction in leafhopper abundance was not clearly reflected in a reduction in the incidence of the corn stunt pathogen transmitted by the leafhopper, probably because of increased leafhopper movement in mixed stands.
Résumé Deux champs du Nicaragua, très différents quant aux densités moyennes de la cicadelle, Dalbulus maidis, et à la fréquence du nanisme par spiroplasme du maïs, — dont la cicadelle est le vecteur —, ont servi à l'étude de l'influence de l'hétérogénéité génétique sur l'abondance de Dalbulus maidis Delong & Wolcott. La maïs a été semé en parcelles pures d'une seule variété ou en parcelles génétiquement hétérogènes avec mélange de 5 variétés. Dans la zone où D. maidis est très abondant, la densité de la cicadelle était significativement plus faible dans les parcelles hétérogènes que ne le laissaient prévoir les densités moyennes observées dans les parcelles des variétés pures intervenant dans le mélange. Cette réponse à l'hétérogénéité génétique semble due aux réactions comportementales pendant la période de colonisation ou d'installation. La diminution de l'abondance de D. maidis ne se traduit pas nettement par une réduction de la fréquence du nanisme du maïs, peutêtre par suite d'un accroissement des mouvements de cicadelles dans les parcelles hétérogènes.
  相似文献   

2.
Using D. maidis and pathogen isolates collected at three field sites along an altitudinal gradient in Mexico, we compared survival in leafhoppers exposed to healthy maize to those exposed to maize infected with one of four isolates of maize stunting pathogens: two isolates of the corn stunt spiroplasma (CSS, Spiroplasma kunkelii) and two of the maize busby stunt phytoplasma (MBSP). Survival improved after exposure to either plant pathogen under both the cooler and warmer environmental conditions D. maidis is likely to encounter during the dry season. Survival varied among leafhoppers from the different field sites, suggesting that gene flow between these populations is limited. The leafhoppers responded differently to the four isolates (i.e., we noted significant population by exposure interactions), but we found no difference between MBSP and CSS exposure. Finally, we found evidence of local adaptation in one leafhopper population to sympatric, as compared to allopatric, plant pathogens. We have shown with this and our earlier study that aspects of the interaction phenotype in the association between D. maidis and the plant pathogens are mutualistic and that this association has considerable potential as a model for studies of local adaptation.  相似文献   

3.
4.
Population genetic structuring is common among herbivorous insects and frequently is associated with divergent host plants, such as crops and their wild relatives. Previous studies showed population genetic structuring in corn leafhopper Dulbulus maidis in Mexico, such that the species consists of two sympatric, host plant-associated populations: an abundant and widespread "pestiferous” population on maize (Zea mays mays), and a small and localized "wild" population on perennial teosinte (Zea diploperennis). a maize wild relative with a limited distribution. This study addressed whether assortative mating and immigrant inviability mediate genetic structuring of corn leafliopper by comparing the mating and reproductive successes of pestiferous and wild females that colonize their nonassociated host plants against the successes of females colonizing their associated host plants. Assortative mating was assessed by comparing mating frequencies and premating and mating times among females of each population on each host plant: immigrant inviability was assessed by comparing, across two generations, the fecundity, survival, development time, sex ratio, and population growth rate among leafhopper populations and host plants. Our results showed that on maize, and compared to resident, pestiferous females, wild females were more likely to mate, and greater proportions of their offspring survived to adult stage and were daughters;consequently, the per-generation population growth rate on maize was greater for immigrant, wild leafhoppers compared to resident, pestiferous leafhoppers. Our results suggested that wild leafhoppers emigrating to maize have a fitness advantage over resident, pestiferous leafhoppers, while immigrant pestiferous and resident wild leafhoppers on teosinte have similar fitnesses.  相似文献   

5.
Investigating how crop domestication and early farming mediated crop attributes, distributions, and interactions with antagonists may shed light on today's agricultural pest problems. Crop domestication generally involved artificial selection for traits desirable to early farmers, for example, in creased productivity or yield, and enhanced qualities, though invariably it altered the interactions between crops and insects, and expanded the geographical ranges of crops. Thus, some studies suggest that with crop domestication and spread, insect populations on wild crop ancestors gave rise to pestiferous insect populations on crops. Here, we addressed whether the emergence of corn leafhopper (Dalbulus ma id is) as an agricultural pest may be associated with domestication and early spread of maize (Zea mays mays). We used AFLP markers and mitochondrial COI sequences to assess population genetic structuring and haplotype relationships among corn leafhopper samples from maize and its wild relative Zea diploperennis from multiple locations in Mexico and Argentina. We uncovered seven corn leafhopper haplotypes contained within two haplogroups, one haplogroup containing haplotypes associated with maize and the other containing haplotypes associated with Z. diploperennis in a mountainous habitat. Within the first haplogroup, one haplotype was predominant across Mexican locations, and another across Argentinean locations;both were considered pestiferous. We suggested that the divergence times of the maize-associated haplogroup and of the "pestiferous" haplotypes are correlated with the chronology of maize spread following its domestication. Overall, our results support a hypothesis positing that maize domestication favored corn leafhopper genotypes preadapted for exploiting maize so that they became pestiferous, and that with the geographical expansi on of maize farming, corn leafhopper colonized Z. diploperennis, a host exclusive to secluded habitats that serves as a refuge for archaic corn leafhopper genotypic diversity. Broadly, our results help explain the extents to which crop domestication and early spread may have mediated the emergence of today's agricultural pests.  相似文献   

6.
7.
Despite the importance of Dalbulus maidis (DeLong & Wolcott) (Hemiptera: Cicadellidae) as a vector of maize‐stunting pathogens, it is not understood how this leafhopper survives the maize off‐season in regions where overwintering hosts do not occur. We investigated migration and the use of alternate hosts as possible survival mechanisms for D. maidis during maize off‐season in Brazil. Dalbulus maidis populations were monitored with yellow sticky cards for 16–29 months in Anastácio (Mato Grosso do Sul State), in two farms with perennial pastures (Pasture1 and Pasture2), where maize had not been planted for >5 years, in a subsistence farm >20 km distant, where maize was annually planted (spring) (Maize1), and in Piracicaba (São Paulo State), where maize was grown year round (Maize2). RAPD‐PCR analysis of leafhoppers sampled on maize in two plots (Maize1 and Pasture1) at 15–20 and 110–120 days after germination was performed. Dalbulus maidis was trapped in the maize plots of all areas, but not in weedy or woody vegetation adjacent to the plots. Higher numbers were trapped throughout the year in Piracicaba, where maize was continuously grown under irrigation, and in the subsistence farm of Anastácio, where volunteer maize plants were available for long periods in the maize off‐season. In Anastácio farms, some population peaks were recorded in the absence of maize from midwinter to early spring, especially after soil plowing. RAPD‐PCR analysis showed that D. maidis populations sampled were genetically similar. Our data suggest that D. maidis uses a mixed strategy to survive the over‐season period in Brazil, in which part of the population overwinters locally on volunteer maize plants or nearby irrigated maize crops, whereas the other individuals migrate to colonize new maize crops in distant areas or regions. We hypothesize that immigrant D. maidis uses the contrast between plowed and vegetated soil as a visual cue for locating new maize crops.  相似文献   

8.
Maize bushy stunt mycoplasma (MBSM), a mycoplasma-like organism, is transmitted in a persistent manner by the corn leafhopper, Dalbulus maidis, to maize (Zea mays). The influence of the duration of acquisition access and inoculation access periods on the transmission of MBSM by D. maidis was investigated. The proportion of plants infected by D. maidis increased significantly from 0 to 0.51 as the inoculation access time to a plant increased from 10 min to 72 h (X2= 101.5, P < 0.001). Likewise, the proportion of insects acquiring MBSM from infected plants increased from 0 to 0.19 as the acquisition access time to the source plant increased from 10 min to 72 h (X2= 53.2, P < 0.001). The data were fitted to a loglinear regression model. No significant association was found between the sex of the insects and vector ability.  相似文献   

9.
Rayado fino virus (RFV) of maize (Zea mays) was transmitted by the leaf-hopper Dalbulus maidis in a manner characteristic of viruses that multiply in their insect vectors. Individual insects fed on infected plants transmitted the virus after incubation periods of 8–22 days; males had shorter incubation periods than females but died sooner. Insects retained infectivity for 1–20 days. Transmission by most insects was intermittent. Inoculativity by D. maidis decreased with time, but the virus was recovered from insects that had lost their ability to transmit. Extracts of plants infected with RFV and viruliferous insects were injected into healthy insects, which became viruli-ferous. Infectivity of the extracts was not affected by tetracycline hydrochloride (Achromycin). D. maidis was able to transmit simultaneously RFV and the corn stunt agent. Other than maize, Teosinte (Euchlaena mexicana) was the only plant susceptible to the virus, among a number of species of Gramineae tested.  相似文献   

10.
Mixed cropping systems in tropical America have been shown to be less prone than monocultures to damage from pathogens carried by insects. This finding formed the basis for a series of experiments conducted in Costa Rica to evaluate the hypothesis that mixed cropping systems create a physical environment that influences vector movement and consequently the spread of leafhopper-borne pathogens. The principle finding of the study is that both the mixture of plants and planting density have little influence on the spread of pathogens by Dalbulus maidis, an oligophagus leafhopper which prefers maize, within maize and bean single and mixed cropping systems. Leafhopper flight activity proved similar for high and low density monocultures and bicultures. The number of leafhoppers immigrating to and emigrating from a field appears dependent on the size of the field, not the density of maize plants. Single and mixed crops with the same density of maize plants were equally prone to damage by pathogens carried by leafhoppers. The lower percentage infection in high density than in low density maize treatments resulted from fewer vectors per plant in the former.  相似文献   

11.
Corn leaf aphid Rhopalosiphum maidis (Fitch) can feed on various cereal crops and transmit viruses that may cause serious economic losses. To test the impact of both host plant species and age on R. maidis, as well as the proteomic difference of diverse populations, we first investigated the survival and reproduction of six R. maidis populations (i.e., LF, HF, GZ, DY, BJ, and MS) via a direct observation method in the laboratory on 10 and 50 cm high maize seedlings, and 10 cm high barley seedlings. Then a proteomic approach was implemented to identify the differentially expressed proteins from both aphids and endosymbionts of BJ and MS populations. Results indicated that the BJ population performed significantly better than the others on both barley and 50 cm high maize seedlings, while no population could survive on 10 cm high maize seedlings. The proteomic results demonstrated that the expression levels of myosin heavy chain (muscle isoform X12) (spot 781) and peroxidase (spot 1383) were upregulated, while ATP-dependent protease Hsp 100 (spot 2137) from Hamiltonella defensa and protein SYMBAF (spot 2703) from Serratia symbiotica were downregulated in the BJ population when compared to expression levels of the MS population. We hypothesize that the fatalness observed on 10 cm high maize seedlings may be caused by secondary metabolites that are synthesized by the seedlings and the MS population of R. maidis should be more stress-resistant than the BJ population. Our results also provide insights for understanding the interaction between host plants and aphids.  相似文献   

12.
The corn planthopper, Peregrinus maidis (Ashmead) (Homoptera: Delphacidae) causes serious economic losses in corn and sorghum. The insect occurs mostly at humid low elevations in the tropics and coastal areas of subtropical and temperate regions of all continents, the Caribbean Islands, and islands in the Atlantic, Indian, and Pacific Oceans. This review provides a detailed compilation on the chronological progress made in basic and strategic aspects of research on the interactions between P. maidis and various host plants. The nature of damage by P. maidis and its economic impact, ecobiology in relation to host diversity, abiotic, and seasonal interactions; and life tables and alary polymorphism are discussed. Host plant resistance studies indicate that very few sources of resistance to P. maidis have been identified in maize, sorghum, or pearl millet, warranting a need to standardize rapid and reliable screening methods. The behavioral responses vis-à-vis mechanisms of resistance show the predominance of antixenosis for colonization and/or oviposition with variable degrees of antibiosis affecting life cycle parameters of P. maidis on maize and sorghum. The role of morphological traits, physiological mechanisms, and biochemical factors governing resistance are described. Population dynamics based on density-dependent and density-independent interactions are also discussed. In addition, aspects of P. maidis on chemical control, biological control, and trophobiosis interactions are listed. Future thrusts on research approaches are also discussed. Genetic engineering techniques involving lectin genes in the development of transgenic plants, and the molecular mapping of genes conferring resistance to both P. maidis and its transmitted virus diseases may stimulate further research and lead to better understanding of P. maidis—host plant interactions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
  • 1 Plant patch shape may affect the abundance of herbivorous insects. Patches of the same size but longer or irregular have a higher perimeter/area relationship (P/A) than square or regular ones, which may determine the immigration, emigration and abundance of individuals in the patch.
  • 2 Only specialist species should be affected by plant patch shape. Those species that are more abundant in smaller patches should be more abundant in patches with higher P/A, whereas those that are more abundant in larger patches should be more abundant in patches with lower P/A.
  • 3 We studied the density of eggs, larvae and pupae of Pieris brassicae, Plutella xylostella and Trichoplusia ni in square (low P/A) and I‐shaped (high P/A) patches of 144 plants of Brassica oleracea. We also estimated their immigration to these patches, and the final plant weight.
  • 4 Plant patch shape affected the abundance, but not the distribution, of the two specialist species. Whereas P. brassicae was denser in I‐shaped patches, P. xylostella was more abundant in square patches. The generalist T. ni was not affected by patch shape. Immigration of P. brassicae was higher in I‐shaped patches, but immigration of P. xylostella and T. ni was not affected by patch shape. Plants were heavier in the centre of square patches.
  • 5 Our results suggest that plant patch shape affects the density of herbivorous insects and should be considered independently from other plant patch variables when studying the population dynamics of these organisms.
  相似文献   

14.
Homopteran vectors (e.g., leafhoppers) of plant pathogens are vessels for reproduction of cell wall‐free bacteria. These vectors also serve as hosts for larval parasitoid dipterans, hymenopterans, and strepsipterans. However, no study has explored the relationship among these wall‐free bacteria and parasitoid larvae within the insect host. We studied the corn stunt spiroplasma (CSS), Spiroplasma kunkelii Whitcomb (Mycoplasmatales: Spiroplasmataceae), a bacterium that originated from secondary symbionts that cause corn stunt disease in maize, Zea mays L., and its reproduction in the haemolymph of the corn leafhopper, Dalbulus maidis (Delong and Wolcott) (Homoptera: Cicadellidae). We also studied the dryinid parasitoid Gonatopus bartletti Olmi (Hymenoptera: Dryinidae), the larva of which feeds in the corn leafhopper haemolymph. Our results showed that when CSS and the wasp coexisted in D. maidis, the development of the parasitoid was not affected by S. kunkelii. Parasitoid development was successfully completed when leafhoppers acquired S. kunkelii before or after parasitism and when CSS had median (10 days) and long (20 days) incubation periods in the leafhopper before parasitization. The presence of S. kunkelii did not affect parasitoid development to the adult stage. However, polymerase chain reaction showed that the presence (survival) of S. kunkelii in the leafhopper was negatively affected by the parasitoid larva. Fewer leafhoppers had CSS before and after parasitization compared with leafhoppers that only acquired the CSS. This negative effect helps to explain the high parasitism rate by G. bartletti in D. maidis and the low presence of S. kunkelii in the corn leafhopper when CSS and the wasp parasitoid overlap throughout their geographic distribution. The parasitoid larva may negatively affect S. kunkelii by (1) producing antibacterial peptides that are toxic to CSS; (2) producing teratocytes that take nutrients from the host for larval development, but these nutrients are required by CSS; (3) affecting, indirectly, CSS through other symbiotic microorganisms; and (4) producing proteins with antibacterial activity that are present in the venom of the wasp parasitoid.  相似文献   

15.
Adult survival and fecundity of three Dalbulus leafhopper species were determined at constant temperatures of 20, 23, 26 and 29°C. Survival was measured by quartiles (i.e. time to 75%, 50% and 25% survival) and estimated parameters of the Weibull model fitted to the survival distributions. D. gelbus lived as long or significantly (P= 0.05) longer than the other species at all temperatures. D. maidis (the corn leafhopper) had survival times equal to or significantly shorter than D. elimatus (the Mexican corn leafhopper) at all temperatures except 29°C where D. maidis lived the longest. The shape of the survival curves did not vary among species or change with temperature. The fecundity of D. gelbus, as measured by the average number of eggs laid per female per generation, was equal to or significantly lower than the other species at all temperatures. D. maidis and D. elimatus had similar fecundity at all temperatures except 29°C, where D. maidis produced significantly more eggs. The mean development time from egg to adult declined with temperature between 17 and 29°C. At all temperatures, D. maidis developed the fastest, D. gelbus the slowest, and D. elimatus was intermediate. The results can be explained on the basis of the geographic distribution, plant host species, and life-history strategies of the leafhoppers. Models for describing the population dynamics of leafhoppers are evaluated and discussed.  相似文献   

16.
Plant anti‐herbivore defenses are known to be affected by life‐history evolution, as well as by domestication and breeding in the case of crop species. A suite of plants from the maize genus Zea (Poaceae) and the specialist herbivore Dalbulus maidis (DeLong & Wolcott) (Hemiptera: Cicadellidae) were used to test the hypothesis that anti‐herbivore defenses are affected by plant life‐history evolution and human intervention through domestication and breeding for high yield. The suite of plants included a maize (Zea mays ssp. mays L.) commercial hybrid, a maize landrace, two populations of the annual Balsas teosinte (Z. mays ssp. parviglumis Iltis & Doebley), and perennial teosinte (Z. diploperennis Iltis, Doebley & Guzman). Leaf toughness, pubescence, and oviposition preference were compared among the suite of host plants looking for effects of transitions in life history (i.e., from perennial to annual life cycle), domestication (i.e., from wild annual to domesticated annual), and breeding (i.e., from landrace to hybrid maize) on defense against D. maidis. Results on leaf toughness suggested that the life‐history and domestication transitions weakened the plant's resistance to penetration by the mouthparts and ovipositor of D. maidis, whereas results on pubescence suggested that this putative defense was strengthened with the breeding transition, contrary to expectations. Results on oviposition preference of D. maidis coincided with the expectation that life‐history and domestication transitions would lead to preference for Balsas teosinte over perennial teosinte, and of landrace maize over Balsas teosinte. Also, a negative correlation suggested that oviposition preference is significantly influenced by leaf toughness. Overall, the results suggested that Zea defenses against the specialist herbivore D. maidis were variably affected by plant life‐history evolution, domestication, and breeding, and that chemical defense may play a role in Zea defense against D. maidis because leaf toughness and pubescence only partially explained its host preferences.  相似文献   

17.
ABSTRACT.
  • 1 The butterfly Sandia xami (Reakirt) has a very clumped yearly pattern of oviposition on its food plant Echeveria gibbiflora D.C., and the mean number of eggs per plant is always very low.
  • 2 Three features of host plants are highly associated with the probability of being oviposited upon: height of plant; degree of conspicuousness; and degree of isolation from conspecific plants.
  • 3 The relative importance of these factors as predictors of the probability of oviposition change according to the time scale considered: height and conspicuousness are more important over short (weekly) time intervals whilst isolation takes precedence over longer (yearly) periods.
  • 4 It is hypothesized that the clumped pattern of oviposition is responsible for the low numbers of the butterflies relative to their very abundant food plant.
  相似文献   

18.
Habitat management (e.g., intercropping) may alter within‐field spatial distribution patterns of herbivores, from a typical pattern as observed in a monoculture, and may influence patterns of crop injury. Field trials were conducted to study the effect of intercropping maize, Zea mays L. (Poaceae), with sunn hemp, Crotalaria juncea L. (Fabaceae) strips on within‐field spatial distribution patterns of corn planthopper, Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae), and combined severity of hopperburn and Maize mosaic virus (MMV) (Rhabdoviridae: Nucleorhabdovirus) symptoms. In each field trial, spatially explicit data on P. maidis counts and ratings of severity of symptoms were obtained by sampling maize plants at weekly intervals. These data were used to examine the spatial patterns of P. maidis and severity of symptoms in maize‐intercropped and monoculture plots with Spatial Analysis for Distance IndicEs (SADIE) methodology. Spatial aggregation patterns of P. maidis in each treatment plot were not consistent among the field trials and tended to be mediated by their population densities. Interpolation of local cluster indices showed that P. maidis were more often aggregated at the field edges, irrespective of treatment. At times of MMV incidence in field trials (fall 2010 and spring 2011), the patch clusters of P. maidis and symptomatic plants were located at the field edges, but were spatially unassociated in both treatment plots. The results provided an approximation of the unpredictability of P. maidis spatial patterns at different population densities and their association with severity of symptoms in two maize‐cropping systems. However, the gap clusters of symptomatic plants were primarily located at the field interiors and were larger in intercropped than in monoculture plots. Such spatial pattern of symptomatic plants resulted in the reduced incidence of MMV in the intercropped plot compared with the monoculture plot, suggesting intercropping sunn hemp can be a useful tool in the management of MMV in maize fields.  相似文献   

19.
The corn leafhopper, Dalbulus maidis (DeLong), is the most important leafhopper pest of maize, Zea mays, in the Americas. A survey of the diversity of its egg parasitoids was carried out in northwestern Argentina. During summer from 2004 to 2007, the samples were collected, using sentinel eggs of D. maidis on corn leaves, exposed in 48 cornfields. Sixteen species belonging to four families of Chalcidoidea (Hymenoptera) were identified. Among the parasitoid groups, Trichogrammatidae was the most represented family with eight species, followed by Mymaridae with six species. The mymarid Anagrus incarnatus Haliday and the trichogrammatid Pseudoligosita longifrangiata (Viggiani) were the most abundant and frequent parasitoids. The mean percentage of parasitism of D. maidis eggs was 16.4% and varied greatly among the sites, ranging from 0 to 56.7%; generally, it was higher in Yungas and lower in Monte province sites. The species richness was higher in the localities within the Yungas, with 13 parasitoid species, of which two species were dominant, comprising 83.6% of the collected individuals. Monte was the province that showed the highest diversity index (H´ = 1.62). In addition, we present information on the distribution, known host associations of each parasitoid species and an identification key to all species of egg parasitoids of D. maidis in Argentina.  相似文献   

20.
  1. Viral insect-borne plant pathogens have devastating impacts in agroecosystems. Vector-borne pathogens are often transmitted by generalist insects that move between non-crop and crop hosts. Insect vectors can have wide diet breadths, but it is often unknown which hosts serve as pathogen reservoirs and which non-crop host harbours the highest density of vectors.
  2. In the Pacific Northwest USA, the pea aphid (Acyrthosiphon pisum) is a key virus vector in pulse crops. Despite pea aphid having a large number of potential non-crop plant hosts occuring in the region, no reservoir has yet been identified for the economically-costly pathogen Pea Enation Mosaic Virus (PEMV).
  3. We addressed these issues by linking field surveys of an aphid vector and plant virus with statistical models to develop risk assessments for common non-crop legumes; in 2018, we completed a 65-site survey where aphids were surveyed in weedy legumes within and outside dry pea fields.
  4. We quantified the abundance of pea aphids on 17 hosts, and plant tissue was tested for PEMV. Relatively high densities of A. pisum were found in habitats dominated by hairy vetch (Vicia villosa), which was the only legume other than cultivated dry pea where PEMV was detected.
  5. Our results indicate that V. villosa is a key alternative host for PEMV, and that pest management practices in this region should consider the distribution and abundance of this weedy host in viral disease mitigation efforts for pulses.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号