首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 896 毫秒
1.
Anaerobic oxidation of phenylalanine and phenylacetate proceeds via α-oxidation of phenylacetyl-CoA to phenylglyoxylate. This four-electron oxidation system was studied in the denitrifying bacterium Thauera aromatica. It is membrane-bound and was solubilized with Triton X-100. The system used dichlorophenolindophenol as an artificial electron acceptor; a spectrophotometric assay was developed. No other products besides phenylglyoxylate and coenzyme A were observed. The enzyme was quite oxygen-insensitive and was inactivated by low concentrations of cyanide. Enzyme activity was induced under denitrifying conditions with phenylalanine and phenylacetate, it was low in cells grown with phenylglyoxylate, and it was virtually absent in cells grown with benzoate and nitrate or after aerobic growth with phenylacetate. Received: 15 January 1998 / Accepted: 3 March 1998  相似文献   

2.
Anaerobic degradation of (4-hydroxy)phenylacetate in denitrifying Pseudomonas sp. was investigated. Evidence is presented for -oxidation of the coenzyme A (CoA)-activated carboxymethyl side chain, a reaction which has not been described. The C6–C2 compounds are degraded to benzoyl-CoA and furtheron to CO2 via the following intermediates: Phenylacetyl-CoA, phenylglyoxylate, benzoyl-CoA plus CO2; 4-hydroxyphenylacetyl-CoA, 4-hydroxyphenylglyoxylate, 4-hydroxybenzoyl-CoA plus CO2, benzoyl-CoA. Trace amounts of mandelate possibly derived from mandelyl-CoA were detected during phenylacetate degradation in vitro. The reactions are catalyzed by (i) phenylacetate-CoA ligase which converts phenylacetate to phenylacetyl-CoA and by a second enzyme for 4-hydroxyphenylacetate; (ii) a (4-hydroxy)-phenylacetyl-CoA dehydrogenase system which oxidizes phenylacetyl-CoA to (4-hydroxy)phenylglyoxylate plus CoA; and (iii) (4-hydroxy)phenylglyoxylate: acceptor oxidoreductase (CoA acylating) which catalyzes the oxidative decarboxylation of (4-hydroxy)phenylglyoxylate to (4-hydroxy)benzoyl-CoA and CO2. (iv) The degradation of 4-hydroxyphenylacetate in addition requires the reductive dehydroxylation of 4-hydroxybenzoyl-CoA to benzoyl-CoA, catalyzed by 4-hydroxybenzoyl-CoA reductase (dehydroxylating). The whole cell regulation of these enzyme activities supports the proposed pathway. An ionic mechanism for anaerobic -oxidation of the CoA-activated carboxymethyl side chain is proposed. Phenylacetic acids are plant constituents and in addition are formed from a large variety of natural aromatic compounds by microorganisms; their degradation therefore plays a significant role in nature, as illustrated in the preceding paper (Mohamed and Fuchs 1993). We have investigated and purified an enzyme which catalyzes the first step in the anaerobic degradation of phenylacetate in a denitrifying Pseudomonas sp. Phenylacetate is converted to phenylacetyl-CoA by phenylacetate-CoA ligase (AMP forming). The postulated function of this enzyme is corroborated by the strict regulation of its expression. 4-Hydroxyphenylacetate appears to be similarly activated by an independent enzyme prior to further degradation.We have suggested before that phenylacetyl-CoA is anaerobically converted by -oxidation of the side chain to phenylglyoxylate1, which is oxidatively decarboxylated to benzoyl-CoA plus CO2 (Seyfried et al. 1991; Dangel et al. 1991). 4-Hydroxyphenylacetate was proposed to be similarly oxidized to 4-hydroxybenzoyl-CoA plus CO2, followed by reductive dehydroxylation to benzoyl-CoA. The evidence was not presented in full, and the crucial -oxidation was not demonstrated in vitro. We present here ample evidence for this pathway. A hypothetical mechanism is proposed by which the oxidation of the -methylene group to an -carbonyl group may occur.  相似文献   

3.
Phenylacetic acids are common intermediates in the microbial metabolism of various aromatic substrates including phenylalanine. In the denitrifying bacterium Thauera aromatica phenylacetate is oxidized, under anoxic conditions, to the common intermediate benzoyl-CoA via the intermediates phenylacetyl-CoA and phenylglyoxylate (benzoylformate). The enzyme that catalyzes the four-electron oxidation of phenylacetyl-CoA has been purified from this bacterium and studied. The enzyme preparation catalyzes the reaction phenylacetyl-CoA + 2 quinone + 2 H2O --> phenylglyoxylate + 2 quinone H2 + CoASH. Phenylacetyl-CoA:acceptor oxidoreductase is a membrane-bound molybdenum-iron-sulfur protein. The purest preparations contained three subunits of 93, 27, and 26 kDa. Ubiquinone is most likely to act as the electron acceptor, and the oxygen atom introduced into the product is derived from water. The protein preparations contained 0.66 mol Mo, 30 mol Fe, and 25 mol acid-labile sulfur per mol of native enzyme, assuming a native molecular mass of 280 kDa. Phenylglyoxylyl-CoA, but not mandelyl-CoA, was observed as a free intermediate. All enzyme preparations also catalyzed the subsequent hydrolytic release of coenzyme A from phenylglyoxylyl-CoA but not from phenylacetyl-CoA. The enzyme is reversibly inactivated by a low concentration of cyanide, but is remarkably stable with respect to oxygen. This new member of the molybdoproteins represents the first example of an enzyme which catalyzes the alpha-oxidation of a CoA-activated carboxylic acid without utilizing molecular oxygen.  相似文献   

4.
Anaerobic phenylalanine metabolism in the denitrifying betaproteobacterium Aromatoleum aromaticum is initiated by conversion of phenylalanine to phenylacetate, which is further metabolized via benzoyl-coenzyme A (CoA). The formation of phenylacetate is catalyzed by phenylalanine transaminase, phenylpyruvate decarboxylase, and a phenylacetaldehyde-oxidizing enzyme. The presence of these enzymes was detected in extracts of cells grown with phenylalanine and nitrate. We found that two distinct enzymes are involved in the oxidation of phenylacetaldehyde to phenylacetate, an aldehyde:ferredoxin oxidoreductase (AOR) and a phenylacetaldehyde dehydrogenase (PDH). Based on sequence comparison, growth studies with various tungstate concentrations, and metal analysis of the enriched enzyme, AOR was shown to be a tungsten-containing enzyme, necessitating specific cofactor biosynthetic pathways for molybdenum- and tungsten-dependent enzymes simultaneously. We predict from the genome sequence that most enzymes of molybdopterin biosynthesis are shared, while the molybdate/tungstate uptake systems are duplicated and specialized paralogs of the sulfur-inserting MoaD and the metal-inserting MoeA proteins seem to be involved in dedicating biosynthesis toward molybdenum or tungsten cofactors. We also characterized PDH biochemically and identified both NAD+ and NADP+ as electron acceptors. We identified the gene coding for the enzyme and purified a recombinant Strep-tagged PDH variant. The homotetrameric enzyme is highly specific for phenylacetaldehyde, has cooperative kinetics toward the substrate, and shows considerable substrate inhibition. Our data suggest that A. aromaticum utilizes PDH as the primary enzyme during anaerobic phenylalanine degradation, whereas AOR is not essential for the metabolic pathway. We hypothesize a function as a detoxifying enzyme if high aldehyde concentrations accumulate in the cytoplasm, which would lead to substrate inhibition of PDH.  相似文献   

5.
Aerobic metabolism of phenylalanine in most bacteria proceeds via oxidation to phenylacetate. Surprisingly, the further metabolism of phenylacetate has not been elucidated, even in well studied bacteria such as Escherichia coli. The only committed step is the conversion of phenylacetate into phenylacetyl-CoA. The paa operon of E. coli encodes 14 polypeptides involved in the catabolism of phenylacetate. We have found that E. coli K12 mutants with a deletion of the paaF, paaG, paaH, paaJ or paaZ gene are unable to grow with phenylacetate as carbon source. Incubation of a paaG mutant with [U-13C8]phenylacetate yielded ring-1,2-dihydroxy-1,2-dihydrophenylacetyl lactone as shown by NMR spectroscopy. Incubation of the paaF and paaH mutants with phenylacetate yielded delta3-dehydroadipate and 3-hydroxyadipate, respectively. The origin of the carbon atoms of these C6 compounds from the aromatic ring was shown using [ring-13C6]phenylacetate. The paaG and paaZ mutants also converted phenylacetate into ortho-hydroxyphenylacetate, which was previously identified as a dead end product of phenylacetate catabolism. These data, in conjunction with protein sequence data, suggest a novel catabolic pathway via CoA thioesters. According to this, phenylacetyl-CoA is attacked by a ring-oxygenase/reductase (PaaABCDE proteins), generating a hydroxylated and reduced derivative of phenylacetyl-CoA, which is not re-oxidized to a dihydroxylated aromatic intermediate, as in other known aromatic pathways. Rather, it is proposed that this nonaromatic intermediate CoA ester is further metabolized in a complex reaction sequence comprising enoyl-CoA isomerization/hydration, nonoxygenolytic ring opening, and dehydrogenation catalyzed by the PaaG and PaaZ proteins. The subsequent beta-oxidation-type degradation of the resulting CoA dicarboxylate via beta-ketoadipyl-CoA to succinyl-CoA and acetyl-CoA appears to be catalyzed by the PaaJ, PaaF and PaaH proteins.  相似文献   

6.
The Azoarcus evansii gene which codes for phenylacetate-CoA ligase, an enzyme involved in the aerobic degradation of phenylacetate, was isolated from a genomic library, using as the probe a fragment of the gene which encodes the isoenzyme that is induced under anaerobic conditions. By this means both the gene and its flanking sequences were recovered. The gene is homologous to the phenylacetate-CoA ligase genes of Pseudomonas putida U and Escherichia coli W. Induction by phenylacetate under aerobic growth conditions was demonstrated using lacZ fusions. Western analysis showed that phenylacetate-CoA ligase is involved in the degradation of the aromatic amino acid phenylalanine. Genes coding for the phenylacetate-CoA ligase and for the putative hydroxylating enzyme were expressed in E. coli. Detection of 2-hydroxyphenylacetate in the recombinant E. coli strain indicated hydroxylation of phenylacetyl-CoA. The gene pacL, which codes for the putative ring-opening enzyme was mutated to enable the isolation of intermediates in aerobic phenylacetic acid degradation, which were characterized by GC-MS and NMR analyses.  相似文献   

7.
The enzyme catalysing the first step in the anaerobic degradation pathway of phenylacetate was purified from a denitrifying Pseudomonas strain KB 740. It catalyses the reaction phenylacetate+CoA+ATP phenylacetyl-CoA+AMP+PPi and requires Mg2+. Phenylacetate-CoA ligase (AMP forming) was found in cells grown anaerobically with phenylacetate and nitrate. Maximal specific enzyme activity was 0.048 mol min-1 x mg-1 protein in the mid-exponential growth phase. After 640-fold purification with 18% yield, a specific activity of 24.4 mol min-1 mg-1 protein was achieved. The enzyme is a single polypeptide with Mr of 52 ±2 kDa. The purified enzyme shows high specificity towards the aromatic inducer substrate phenylacetate and uses ATP preferentially; Mn2+ can substitute for Mg2+. The apparent K m values for phenylacetate, CoA, and ATP are 60, 150, and 290 M, respectively. The soluble enzyme has an optimum pH of 8.5, is insensitive to oxygen, but is rather labile and requires the presence of glycerol and/or phenylacetate for stabilization. The N-terminal amino acid sequence showed no homology to other reported CoA-ligases. The expression of the enzye was studied by immunodetection. It is present in cells grown anaerobically with phenylacetate, but not with mandelate, phenylglyoxylate, benzoate; small amounts were detected in cells grown aerobically with phenylacetate.  相似文献   

8.
C Lochmeyer  J Koch    G Fuchs 《Journal of bacteriology》1992,174(11):3621-3628
The enzymes catalyzing the initial reactions in the anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) were studied with a denitrifying Pseudomonas sp. anaerobically grown with 2-aminobenzoate and nitrate as the sole carbon and energy sources. Cells grown on 2-aminobenzoate are simultaneously adapted to growth with benzoate, whereas cells grown on benzoate degrade 2-aminobenzoate several times less efficiently than benzoate. Evidence for a new reductive pathway of aromatic metabolism and for four enzymes catalyzing the initial steps is presented. The organism contains 2-aminobenzoate-coenzyme A ligase (2-aminobenzoate-CoA ligase), which forms 2-aminobenzoyl-CoA. 2-Aminobenzoyl-CoA is then reductively deaminated to benzoyl-CoA by an oxygen-sensitive enzyme, 2-aminobenzoyl-CoA reductase (deaminating), which requires a low potential reductant [Ti(III)]. The specific activity is 15 nmol of 2-aminobenzoyl-CoA reduced min-1 mg-1 of protein at an optimal pH of 7. The two enzymes are induced by the substrate under anaerobic conditions only. Benzoyl-CoA is further converted in vitro by reduction with Ti(III) to six products; the same products are formed when benzoyl-CoA or 2-aminobenzoyl-CoA is incubated under reducing conditions. Two of them were identified preliminarily. One product is cyclohex-1-enecarboxyl-CoA, the other is trans-2-hydroxycyclohexane-carboxyl-CoA. The complex transformation of benzoyl-CoA is ascribed to at least two enzymes, benzoyl-CoA reductase (aromatic ring reducing) and cyclohex-1-enecarboxyl-CoA hydratase. The reduction of benzoyl-CoA to alicyclic compounds is catalyzed by extracts from cells grown anaerobically on either 2-aminobenzoate or benzoate at almost the same rate (10 to 15 nmol min-1 mg-1 of protein). In contrast, extracts from cells grown anaerobically on acetate or grown aerobically on benzoate or 2-aminobenzoate are inactive. This suggests a sequential induction of the enzymes.  相似文献   

9.
The anaerobic degradation of toluene has been studied with whole cells and by measuring enzyme activities. Cultures of Pseudomonas strain K 172 were grown in mineral medium up to a cell density of 0.5 g of dry cells per liter in fed-batch culture with toluene and nitrate as the sole carbon and energy sources. A molar growth yield of 57 g of cell dry matter formed per mol toluene totally consumed was determined. The mean generation time was 24 h. The redox balance between toluene consumed (oxidation and cell material synthesis) and nitrate consumed (reduction to nitrogen gas and assimilation as NH3) was 77% of expectation if toluene was completely oxidized; this indicated that the major amount of toluene was mineralized to CO2. It was tested whether the initial reaction in anaerobic toluene degradation was a carboxylation or a dehydrogenation (anaerobic hydroxylation); the hypothetical carboxylated or hydroxylated intermediates were tested with whole cells applying the method of simultanous adaptation: cells pregrown on toluene degraded benzyl alcohol, benzaldehyde, and benzoic acid without lag, 4-hydroxybenzoate and p-cresol with a 90 min lag phase and phenylacetate after a 200 min lag phase. The cells were not at all adapted to degrade 2-methylbenzoate, 4-methylbenzoate, o-cresol, and m-cresol, nor did these compounds support growth within a few days after inoculation with cells grown on toluene. In extracts of cells anaerobically grown on toluene, benzyl alcohol dehydrogenase, benzaldehyde dehydrogenase, and benzoyl-CoA synthetase (AMP forming) activities were present. The data (1) conclusively show anaerobic growth of a pure culture on tolucne; (2) suggest that toluene is anaerobically degraded via benzoyl-CoA; (3) imply that water functions as the source of the hydroxyl group in a toluene methylhydroxylase reaction.  相似文献   

10.
The anaerobic metabolism of 2-hydroxybenzoic acid (salicylic acid) was studied in a denitrifying bacterium. Cells grown with 2-hydroxybenzoate were simultaneously adapted to degrade benzoate. Extract of these cells formed benzoate or benzoyl-CoA when incubated under reducing conditions with salicylate, MgATP, and coenzyme A, suggesting a degradation of 2-hydroxybenzoate via benzoate or benzoyl-CoA. This suggestion was supported by enzyme activity measurements. In extracts of 2-hydroxybenzoate-grown cells, the following enzyme activities were detected: two CoA ligases, one specific for 2-hydroxybenzoate, the other for benzoate, and two different enzyme activities catalyzing the reductive transformation of 2-hydroxybenzoyl-CoA. These findings suggest a degradation of salicylic acid by two new enzymes, 2-hydroxybenzoate-CoA ligase (AMP-forming) and 2-hydroxybenzoyl-CoA reductase (dehydroxylating), catalyzing (1) 2-hydroxybenzoate + MgATP + CoASH → 2-hydroxybenzoyl-CoA + MgAMP + PPi (2) 2-hydroxybenzoyl-CoA + 2[H] → benzoyl-CoA + H2O Benzoyl-CoA was dearomatized by reduction of the ring. This represents another case in which benzoyl-CoA is a central intermediate in anaerobic aromatic metabolism. Received: 1 February 1996 / Accepted: 24 February 1996  相似文献   

11.
Li Y  Wu J  Wang W  Ding P  Feng L 《Journal of Proteomics》2012,75(4):1201-1210
Geobacillus thermodenitrificans NG80-2 is a crude oil-degrading thermophilic bacterium isolated from an oil reservoir in China. In this study, the gene clusters and pathways for the degradation of benzoate (via benzoyl-CoA), phenylacetate (via phenylacetyl-CoA), 4-hydroxyphenylacetate (via 3,4-dihydroxyphenylacetate) and anthranilate (via 3-hydroxyanthranilate) were confirmed using combined in silico analysis and proteomics approaches. It was observed that synthesis of the enzymes catalyzing initial activation, ring oxidation and ring cleavage reactions were generally induced specifically by their respective substrates, while many of the enzymes catalyzing downstream reactions exhibited broader substrate specificities. Novel genes encoding benzoyl-CoA epoxidase and 3,4-dihydroxyphenylacetate 2,3-dioxygenase, and a paaX homologue that serves as a positive regulator of benzoate degradation were proposed. Downregulation of the glycolysis pathway, along with upregulation of the gluconeogenesis pathway and the glyoxylate bypass (phenylacetate) were detected in association with the utilization of the aromatics. This novel proteomics approach confirmed the presence of multiple metabolic pathways for aromatic compounds in NG80-2, which is highly advantageous to the survival of this thermophilic bacterium under reservoir conditions.  相似文献   

12.
The aerobic metabolism of benzoate in the proteobacterium Azoarcus evansii was reinvestigated. The known pathways leading to catechol or protocatechuate do not operate in this bacterium. The presumed degradation via 3-hydroxybenzoyl-coenzyme A (CoA) and gentisate could not be confirmed. The first committed step is the activation of benzoate to benzoyl-CoA by a specifically induced benzoate-CoA ligase (AMP forming). This enzyme was purified and shown to differ from an isoenzyme catalyzing the same reaction under anaerobic conditions. The second step postulated involves the hydroxylation of benzoyl-CoA to a so far unknown product by a novel benzoyl-CoA oxygenase, presumably a multicomponent enzyme system. An iron-sulfur flavoprotein, which may be a component of this system, was purified and characterized. The homodimeric enzyme had a native molecular mass of 98 kDa as determined by gel filtration and contained 0.72 mol flavin adenine dinucleotide (FAD), 10.4 to 18.4 mol of Fe, and 13.3 to 17.9 mol of acid-labile sulfur per mol of native protein, depending on the method of protein determination. This benzoate-induced enzyme catalyzed a benzoyl-CoA-, FAD-, and O2-dependent NADPH oxidation surprisingly without hydroxylation of the aromatic ring; however, H2O2 was formed. The gene (boxA, for benzoate oxidation) coding for this protein was cloned and sequenced. It coded for a protein of 46 kDa with two amino acid consensus sequences for two [4Fe-4S] centers at the N terminus. The deduced amino acid sequence showed homology with subunits of ferredoxin-NADP reductase, nitric oxide synthase, NADPH-cytochrome P450 reductase, and phenol hydroxylase. Upstream of the boxA gene, another gene, boxB, encoding a protein of 55 kDa was found. The boxB gene exhibited homology to open reading frames in various other bacteria which code for components of a putative aerobic phenylacetyl-CoA oxidizing system. The boxB gene product was one of at least five proteins induced when A. evansii was grown on benzoate.  相似文献   

13.
Differential induction of enzymes involved in anaerobic metabolism of aromatic substrates was studied in the denitrifying bacterium Thauera aromatica. This metabolism is divided into (1) peripheral reactions transforming the aromatic growth substrates to the common intermediate benzoyl-CoA, (2) the central benzoyl-CoA pathway comprising ring-reduction of benzoyl-CoA and subsequent β-oxidation to 3-hydroxypimelyl-CoA, and (3) the pathway of β-oxidation of 3-hydroxypimelyl-CoA to three acetyl-CoA and CO2. Regulation was studied by three methods. 1. Determination of protein patterns of cells grown on different substrates. This revealed several strongly substrate-induced polypeptides that were missing in cells grown on benzoate or other intermediates of the respective metabolic pathways. 2. Measurement of activities of known enzymes involved in this metabolism in cells grown on different substrates. The enzyme pattern found is consistent with the regulatory pattern deduced from simultaneous adaptation of cells to utilisation of other aromatic substrates. 3. Immunological detection of catabolic enzymes in cells grown on different substrates. Benzoate-CoA ligase and 4-hydroxybenzoate-CoA ligase were detected only in cells yielding the respective enzyme activity. However, presence of the subunits of benzoyl-CoA reductase and 4-hydroxybenzoyl-CoA reductase was also recorded in some cell batches lacking enzyme activity. This possibly indicates an additional level of regulation on protein level for these two reductases. Received: 22 December 1997 / Accepted: 12 May 1998  相似文献   

14.
The aerobic benzoate metabolism in Azoarcus evansii follows an unusual route. The intermediates of the pathway are processed as coenzyme A (CoA) thioesters and the cleavage of the aromatic ring is non-oxygenolytic. The enzymes of this pathway are encoded by the box gene cluster which harbors a gene, orf1, coding for a putative thioesterase. Benzoyl-CoA thioesterase activity (20 nmol min−1 mg−1 protein) was present in cells grown aerobically on benzoate, but was lacking in cells grown on other aromatic or aliphatic substrates under oxic or anoxic conditions. The gene was cloned and overexpressed in Escherichia coli to produce a C-terminal His-tag fusion protein. The recombinant enzyme was a homotetramer of 16 kDa subunits. It catalyzed not only the hydrolysis of benzoyl-CoA, but also of 2,3-dihydro-2,3-dihydroxybenzoyl-CoA, the second intermediate in the pathway. The enzyme exhibited higher activity with mono-substituted derivatives of benzoyl-CoA, showing highest activity with 4-hydroxybenzoyl-CoA. Di-substituted derivatives of benzoyl-CoA, phenylacetyl-CoA, and aliphatic CoA thioesters were not hydrolyzed but some acted as inhibitors. The thioesterase appears to protect the cell from CoA pool depletion. It may constitute the prototype of a new subfamily within the hotdog fold enzyme superfamily.  相似文献   

15.
R Gl?ckler  A Tschech  G Fuchs 《FEBS letters》1989,251(1-2):237-240
The initial reactions in anaerobic degradation of phenol to CO2 have been studied in vitro with a denitrifying Pseudomonas strain grown with phenol and nitrate in the absence of molecular oxygen. Phenol has been proposed to be carboxylated to 4-hydroxybenzoate [(1987) Arch. Microbiol. 148, 213-217]. 4-Hydroxybenzoate was activated to 4-hydroxybenzoyl-CoA by a coenzyme A ligase. Cell extracts also catalyzed the reductive dehydroxylation of 4-hydroxybenzoyl-CoA to benzoyl-CoA with reduced benzyl viologen as electron donor. This enzyme, benzoyl-CoA:(acceptor) 4-oxidoreductase (hydroxylating) (EC 1.3.99.-), has not been reported before. The data suggest that phenol and 4-hydroxybenzoate are anaerobically metabolized by this strain via benzoyl-CoA.  相似文献   

16.
17.
Production of the antibiotic tropodithietic acid (TDA) depends on the central phenylacetate catabolic pathway, specifically on the oxygenase PaaABCDE, which catalyzes epoxidation of phenylacetyl-coenzyme A (CoA). Our study was focused on genes of the upper part of this pathway leading to phenylacetyl-CoA as precursor for TDA. Phaeobacter gallaeciensis DSM 17395 encodes two genes with homology to phenylacetyl-CoA ligases (paaK1 and paaK2), which were shown to be essential for phenylacetate catabolism but not for TDA biosynthesis and phenylalanine degradation. Thus, in P. gallaeciensis another enzyme must produce phenylacetyl-CoA from phenylalanine. Using random transposon insertion mutagenesis of a paaK1-paaK2 double mutant we identified a gene (ior1) with similarity to iorA and iorB in archaea, encoding an indolepyruvate:ferredoxin oxidoreductase (IOR). The ior1 mutant was unable to grow on phenylalanine, and production of TDA was significantly reduced compared to the wild-type level (60%). Nuclear magnetic resonance (NMR) spectroscopic investigations using (13)C-labeled phenylalanine isotopomers demonstrated that phenylalanine is transformed into phenylacetyl-CoA by Ior1. Using quantitative real-time PCR, we could show that expression of ior1 depends on the adjacent regulator IorR. Growth on phenylalanine promotes production of TDA, induces expression of ior1 (27-fold) and paaK1 (61-fold), and regulates the production of TDA. Phylogenetic analysis showed that the aerobic type of IOR as found in many roseobacters is common within a number of different phylogenetic groups of aerobic bacteria such as Burkholderia, Cupriavidis, and Rhizobia, where it may also contribute to the degradation of phenylalanine.  相似文献   

18.
The regulation of the expression of enzyme activities catalyzing initial reactions in the anoxic metabolism of various aromatic compounds was studied at the whole cell level in the denitrifying Pseudomonas strain K 172. The specific enzyme activities were determined after growth on six different aromatic substrates (phenol, 4-hydroxybenzoate, benzoate, p-cresol, phenylacetate, 4-hydroxyphenylacetate) all being proposed to be metabolized anaerobically via benzoyl-CoA. As a control cells were grown on acetate, or aerobically on benzoate. The expression of the following enzyme activities was determined.Phenol carboxylase, as studied by the isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate; 4-hydroxybenzoyl-CoA reductase (dehydroxylating); p-cresol methylhydroxylase; 4-hydroxybenzyl alcohol dehydrogenase; 4-hydroxybenzaldehyde dehydrogenase; coenzymeA ligases for the aromatic acids benzoate, 4-hydroxybenzoate, phenylacetate, and 4-hydroxyphenylacetate; phenylglyoxylate: acceptor oxidoreductase and 4-hydroxyphenylglyoxylate: acceptor oxidoreductase; aromatic alcohol and aldehyde dehydrogenases.The formation of most active enzymes is strictly regulated; they were only induced when required, the basic activities being almost zero. The observed whole cell regulation pattern supports the postulate that the enzyme activities play a role in anoxic aromatic metabolism and that the compounds are degraded via the following intermediates: Phenol 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; benzoate benzoyl-CoA; p-cresol 4-hydroxybenzaldehyde 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; phenylacetate phenylacetyl-CoA phenylglyoxylate benzoyl-CoA plus CO2; 4-hydroxyphenylacetate 4-hydroxyphenylacetyl-CoA 4-hydroxyphenylglyoxylate 4-hydroxybenzoyl-CoA plus CO2 benzoyl-CoA.  相似文献   

19.
Phenylacetate-CoA ligase (E.C. 6.2.1.30), the initial enzyme in the metabolism of phenylacetate, was studied in Thermus thermophilus strain HB27. Enzymatic activity was upregulated during growth on phenylacetate or phenylalanine. The phenylacetate-CoA ligase gene (paaK) was cloned and heterologously expressed in Escherichia coli and the recombinant protein was purified. The enzyme catalyzed phenylacetate + CoA + MgATP --> phenylacetyl-CoA + AMP + MgPP(i) with a V(max) of 24 micromol/min/mg protein at a temperature optimum of 75 degrees C. The apparent K(m) values for ATP, CoA, and phenylacetate were 6, 30, and 50 microM: , respectively. The protein was highly specific toward phenylacetate and showed only low activity with 4-hydroxyphenylacetate. Despite an amino acid sequence identity of >50% with its mesophilic homologues, phenylacetate-CoA ligase was heat stable. The genome contained further homologues of genes, which are postulated to be involved in the CoA ester-dependent metabolic pathway of phenylacetate (hybrid pathway). Enzymes of this thermophile are expected to be robust and might be useful for further studies of this yet unresolved pathway.  相似文献   

20.
Under anoxic conditions, most methoxylated mononuclear aromatic compounds are degraded by bacteria, with catechol being formed as an important intermediate. On the basis of our experiments with the sulfate-reducing bacterium Desulfobacterium sp. strain Cat2, we describe for the first time the enzymatic activities involved in the complete anaerobic oxidation of catechol and protocatechuate. Results obtained from experiments with dense cell suspensions of strain Cat2 demonstrated that all enzymes necessary for protocatechuate and benzoate degradation were induced during growth with catechol. In addition, anaerobic oxidation of catechol was found to be a CO2-dependent process. Phenol was not degraded in suspensions of cells grown with catechol. In cell extracts of Desulfobacterium sp. strain Cat2, protocatechuyl-coenzyme A (CoA) was formed from catechol, bicarbonate, and uncombined CoA. This oxygen-sensitive reaction requires high concentrations of both bicarbonate and protein, and only very low levels of enzyme were detected. In a second oxygen-sensitive step, protocatechuyl-CoA was reduced to 3-hydroxybenzoyl-CoA by reductive elimination of the p-hydroxyl group. Further dehydroxylation to benzoyl-CoA was not detectable. Key reactions described for anaerobic degradation of benzoate were catalyzed by cell extracts of strain Cat2, too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号