首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Viruses in the plankton of freshwater and saline Antarctic lakes   总被引:8,自引:1,他引:7  
1. Virus‐like particle (VLP) abundances in nine freshwater to saline lakes in the Vestfold Hills, Eastern Antarctica (68° S) were determined in December 1999. In the ultra‐oligotrophic to oligotrophic freshwater lakes, VLP abundances ranged from 1.01 to 3.28 × 106 mL–1 in the top 6 m of the water column. In the saline lakes the range was between 6.76 and 36.5 × 106 mL–1. The lowest value was found in meromictic Ace Lake and the highest value in hypersaline Lake Williams. Virus to bacteria ratios (VBR) were lowest in the freshwater lakes and highest in the saline lakes, with a maximum of 23.4 in the former and 50.3 in the latter. 2. A range of morphologies among VLP was observed, including phages with short (Podoviridae) and long tails, icosahedric viruses of up to 300 nm and star‐like particles of about 80 nm diameter. 3. In these microbially dominated ecosystems there was no correlation between VLP and either bacterial numbers or chlorophyll a. There was a significant correlation between VLP abundances and dissolved organic carbon concentration (r=0.845, P < 0.01). 4. The data suggested that viruses probably attack a spectrum of bacteria and protozoan species. Virus‐like particle numbers in the freshwater lakes were lower than values reported for lower latitude systems. Those in the saline lakes were comparable with abundances reported from other Antarctic lakes, and were higher than most values published for lower latitude lakes and many marine systems. Across the salinity spectrum from freshwater through brackish to hypersaline, VLP concentrations increased roughly in relation to increasing trophy. 5. Given that Antarctic lakes have a plankton almost entirely made up of bacteria and protists, and that VLP abundances are high, it is likely that viruses play a pivotal role in carbon cycling in these extreme ecosystems.  相似文献   

2.
1. Viral and microbial loop dynamics were investigated over an annual cycle in three contrasting saline Antarctic lakes – Highway Lake (salinity 4‰), Pendant Lake (salinity 19‰) and Ace Lake, a meromictic system (with a mixolimnion salinity of 18‰) in order to assess the importance of viruses in extreme, microbially dominated systems. 2. Virus like particles (VLP) showed no clear seasonal pattern, with high concentrations occurring in both winter and summer (range 0.89 × 107 ± 0.038 to 12.017 × 107 ± 1.28 mL?1). VLP abundances reflected lake productivity based on chlorophyll a concentrations. Bacterial abundances and biomass did not correlate with VLP numbers except in Pendant Lake, the most productive of the three lakes studied. 3. Pendant Lake supported the highest bacterial biomass (range Highway: 18.44 ± 1.35 to 59.43 ± 2.80 ng C mL?1; Ace: 14.42 ± 2.69 to 68.39 ± 2.95 ng C mL?1; Pendant: 31.36 ± 3.94 to 115.95 ± 4.49 ng C mL?1) so that virus to bacteria ratios (VBR) (range 30.48 ± 7.96 to 96.67 ± 8.21) were higher in Ace Lake (range 30.58 ± 3.98 to 80.037 ± 1.60) and Highway Lake (range 18.63 ± 3.12 to 126.74 ± 6.50). 4. Negative correlations occurred between VLP and cryptophytes (dominant phototrophic nanoflagellates), suggesting that they were not hosts to lytic viruses. Among the other protists only the heterotrophic nanoflagellates of Highway Lake (dominated by the marine choanoflagellate Diaphanoeca grandis) showed a positive correlation with VLP. 5. The VLP was negatively correlated with photosynthetically active radiation (PAR) and temperature, both of which increased with ice thinning and breakout, increasing viral decay. In winter VLP probably persisted in cold, dark water. 6. High VLP concentrations and high VBR (values at the upper end of those reported for marine and lacustrine systems) indicated that viruses, most of which were probably bacteriophage, are a major element within the microbial communities in extreme, saline lakes.  相似文献   

3.
Virus production in oxic surface sediments and virioplankton sorption to suspended particles was estimated across three stations in the Southern California region (33.4°N, 118.6°W). Viriobenthos production was estimated using a sterile sediment and filtered porewater dilution technique that targeted production from both attached bacteria and bacteria living free in the porewater, and attached bacteria alone. Potential virus production rates by bacteria free in the porewater ranged from 1.7 to 4.6 × 108 VLP cm–3 h–1, while attached bacteria had slower potential production rates of between 0.4 and 1.1 × 108 VLP cm–3 h–1, suggesting turnover rates of viruses in sediments (1–5 h) which are significantly higher than those of virioplankton (~24–48 h). Virioplankton adsorbed to small (<150 µm) suspended sediments at stations with high ambient suspended solid concentrations. Virioplankton scavenging rates combined with published sedimentation rates demonstrate that this mechanism of virus arrival could only account for 0.01% of daily benthic virus production. Calculated mortality rates of benthic bacteria (4–14% h–1) suggest viruses may play an important role in sediment carbon cycling.  相似文献   

4.
The short-term dynamics of virus-like particles (VLPs) abundance, bacterioplankton, ciliates and flagellates were analyzed in a small tropical lake, during a rainy day (June 9–10, 2003) and a dry day (February 18–19, 2004), with intervals of 3 h between the samplings. Frequent sampling in intervals of 15 min were conducted. During the rainy day, the VLP mean abundance was 7.0×108 mL−1 and bacterial density was 5.75×107 mL−1. During the dry day, VLP and bacterial mean were 5.78×108 and 4.1×107 mL−1, respectively. The virus/bacterium rate (VBR) varied from 11 to 18 on the rainy day and from 4 to 22 on the dry day. The density of VLP was higher during the night, especially on the dry day, suggesting a virucidal action of the solar radiation on them. When registered in intervals of 15 min, the densities were not associated with the fluctuations of bacteria or chlorophyll a (Chl a), but a strong negative correlation between VLP and protozooplankton was observed (Spearman: R=−0.71; p=0.04), possibly associated with the occurrence of viral lyses on these organisms. The variations of VBR in the system, indicate that the elevated densities and fluctuations of VLP is suggestive of an active and important participation of these biological entities in the dynamics of the microbial communities in the studied environment.  相似文献   

5.
Mono Lake is a large (180 km2), alkaline (pH ~10), moderately hypersaline (70–85 g kg–1) lake lying at the western edge of the Great Basin. An episode of persistent chemical stratification (meromixis) was initiated in 1995 and has resulted in depletion of oxygen and accumulation of ammonia and sulfide beneath the chemocline. Although previous studies have documented high bacterial abundances and marked seasonal changes in phytoplankton abundance and community composition, there have been no previous reports on the occurrence of viruses in this unique lake. Based on the high concentrations and diversity of microbial life in this lake, we hypothesized that planktonic viruses are also abundant and diverse. To examine the abundance and distribution of viruses and bacteria, water samples were collected from four stations along 5 to 15 vertical depths at each station. Viral abundance ranged from 1 × 108 to 1 × 109 mL–1, among the highest observed in any natural aquatic system examined so far. Increases (p < 0.1) in viral densities were observed in the anoxic bottom water at multiple stations. However, regression analysis indicated that viral abundance could not be predicted by any single environmental parameter. Pulsed field gel electrophoresis revealed a diverse viral community in Mono Lake with genome sizes ranging from ~14 to >400 kb with most of the DNA in the 30 to 60 kb size range. Cluster analysis grouped the anoxic bottom-water viral community into a unique cluster differentiating it from surface and mid-water viral communities. A hybridization study using an indigenous viral isolate as a probe revealed an episodic pattern of temporal phage distribution with strong niche stratification between oxic and anoxic waters.  相似文献   

6.
Seasonal cycle of the microbial plankton in Crooked Lake,Antarctica   总被引:3,自引:0,他引:3  
Summary Changes in the abundance of the components of the microbial plankton between July 1990 and March 1991 in Crooked Lake, one of the largest and deepest freshwater lakes in Antarctica, are described. Chlorophyll a concentration is low (0.2–0.4g·1–1) and there is no discernable spring increase. The phytoplankton is largely dominated by flagellates. Bacterioplankton exhibits a seasonal pattern of abundance ranging from 1.0 × 108·1–1 in July to 3.25 × 108·1–1 in September. Changes in bacterial abundance probably relate to temperature and grazing by heterotrophic and mixotrophic flagellates. Total flagellated protozoan concentrations ranged between 25–136 × 102·l–1. Autotrophic and heterotrophic flagellate abundances were coupled and peaks in their abundance oscillated with peaks in bacterioplankton concentration. Four species of ciliated protozoa, dominated by oligotrichs, particularly the plastidic Strombidium, inhabit the lake. The plankton is characterised by the presence of floes which act as loci for bacteria, flagellates and amoebae and feeding sites for the ciliates and the two sparce metazoan components of the plankton. Crooked Lake is extremely oligotrophic but nonetheless supports a plankton community with a low species diversity and simple trophodynamics.  相似文献   

7.
The influence of biotic and environmental variables on the abundance of virus-like particles (VLP) and lysogeny was investigated by examining 10 Antarctic lakes in the Vestfold Hills, Antarctica, in the Austral Spring. Abundances of viruses and bacteria and bacterial metabolic activity were estimated using SYBR Gold (Molecular Probes), Baclight (Molecular Probes) and 6-carboxy fluorescein diacetate (6CFDA). Total bacterial abundances among the lakes ranged between 0.12 and 0.47 x 10(9) cells L(-1). The proportion of intact bacteria (SYTO 9-stained cells) ranged from 13.5% to 83.5% of the total while active (6CFDA-stained) bacteria ranged from 33% to 116%. Lysogeny, as determined with Mitomycin C, was only detected in one of the lakes surveyed, indicating that viral replication was occurring predominantly via the lytic cycle. Principal component analysis and confirmatory correlation analysis of individual variables showed that high abundances of VLP occurred in lakes of high conductivity with high concentrations of soluble reactive phosphorus and dissolved organic carbon. These lakes supported high concentrations of chlorophyll a, intact bacteria, rates of bacterial production and virus to bacteria ratios. Thus, it was suggested that viral abundance in the Antarctic lakes was determined by the trophic status of the lake and the resultant abundance of intact bacterial hosts.  相似文献   

8.
The cell numbers and ecological characteristics of the distribution of certain species of butyric acid bacteria (BABs) of the genus Clostridium in the bottom sediments of inland basins of different types were studied using the optimal nutrient media. The seasonal dynamics of clostridial vegetative cells and spores in sediments with different ecological conditions were revealed. The cell numbers of the dominant BAB species were shown to depend on the redox potential of the sediments, the amount and composition of Corg, and the trophic state of the basin in general. C. pasteurianum was found to predominate in eutrophic lakes and reservoirs (5–11 × 106 cells/cm3), C. butyricum and C. felsineum predominated in mesotrophic ones (2–11 × 106 cells/cm3), and C. acetobutylicum was predominant in acidic chthonioeutrophic lakes and reservoirs (0.1–0.5 × 106 cells/cm3). The lowest cell numbers of BABs were found in river sediments, whereas the highest numbers were recorded in the sediments of polysaprobic zones (0.1–1.0 × 103 and 0.5–2.0 × 107 cells/cm3 respectively).Translated from Mikrobiologiya, Vol. 74, No. 1, 2005, pp. 119–125.Original Russian Text Copyright © 2005 by Dzyuban.  相似文献   

9.
Antarctic lakes are extreme ecosystems with microbially dominated food webs, in which viruses may be important in controlling community dynamics. A year long investigation of two Antarctic saline lakes (Ace and Pendant Lakes) revealed high concentrations of virus like particles (VLP) (0.20–1.26 × 108 ml−1), high VLP: bacteria ratios (maximum 70.6) and a seasonal pattern of lysogeny differing from that seen at lower latitudes. Highest rates of lysogeny (up to 32% in Pendant Lake and 71% in Ace Lake) occurred in winter and spring, with low or no lysogeny in summer. Rates of virus production (range 0.176–0.823 × 106 viruses ml−1 h−1) were comparable to lower latitude freshwater lakes. In Ace Lake VLP did not correlate with bacterial cell concentration or bacterial production but correlated positively with primary production, while in Pendant Lake VLP abundance correlated positively with both bacterial cell numbers and bacterial production but not with primary production. In terms of virus and bacterial dynamics the two saline Antarctic lakes studied appear distinct from other aquatic ecosystems investigated so far, in having very high viral to bacterial ratios (VBR) and a very high occurrence of lysogeny in winter.  相似文献   

10.
The depth-dependent, seasonal, and diel variability of virus numbers, dissolved DNA (D-DNA), and other microbial parameters was investigated in the northern Adriatic Sea. During periods of water stratification, we found higher virus abundances and virus/bacterium ratios (VBRs) as well as a larger variability of D-DNA concentrations at the thermocline, probably as a result of higher microbial biomass. At the two investigated stations, virus densities were highest in summer and autumn (up to 9.5 × 1010 1–1) and lowest in winter (< 109 1–1); D-DNA concentrations were highest in summer and lowest in winter. The VBR as well as an estimated proportion of viral DNA on total D-DNA showed a strong seasonal variability. VBR averaged 15.0 (range, 0.9–89.1), and the percentage of viral DNA in total D-DNA averaged 18.3% (range, 0.1–96.1%). An estimation of the percentage of bacteria lysed by viruses, based on 2-h sample intervals in situ, ranged from 39.6 to 212.2% d–1 in 5 m and from 19.9 to 157.2% d–1 in 22 m. The estimated contribution of virus-mediated bacterial DNA release to the D-DNA pool ranged from 32.9 to 161% d–1 in 5 m and from 10.3 to 74.2% d–1 in 22 m. Multiple regression analysis and the diel dynamics of microbial parameters indicate that viral lysis occasionally could be more important in regulating bacterial abundances than grazing by heterotrophic nanoflagellates. Correspondence to: M.G. Weinbauer  相似文献   

11.
The aims of this study were to document the mainly chemical behaviour of two linked artificial lakes used for both stormwater management and recreation in the new town of Craigavon. Further, the understanding of their behaviour should help in their management and the design of other similar lakes.The lake mean total phosphorus (73 µg P l–1), nitrate (0.50 mg N l–1) and chlorophyll a (25 µg l–1) concentrations, Secchi depth (1.2 m) and the estimated total phosphorus loading (1.98 g m–2 a–1) all classify the main lake as eutrophic. An important source of the phosphorus load on the lakes is the urban area of Craigavon (52% of the total load). The interrelationships between total phosphorus, chlorophyll a and Secchi depth in the main lake are similar to those in natural ones. In addition, the lake follows the total phosphorus load — trophic state relationships (lake total phosphorus and chlorophyll a concentrations and Secchi depth) found to apply elsewhere. These two points indicate that the artificial lakes in Craigavon behave similarly to natural ones.  相似文献   

12.
Toxic dinoflagellates are important in natural ecosystems and are ofglobal economic significance because of the impact of toxic blooms onaquaculture and human health. Both the organisms and the toxins they producehave potential for biotechnology applications. We investigated autotrophicgrowth of a toxic dinoflagellate, Alexandrium minutum, inthree different high biomass culture systems, assessing growth, productivityandtoxin production. The systems used were: aerated and non-aerated2-L Erlenmeyer flasks; 0.5-L glass aerated tubes; anda 4-L laboratory scale alveolar panel photobioreactor. A range ofindicators was used to assess growth in these systems. Alexandriumminutum grew well in all culture conditions investigated, with amarked increase in both biomass and productivity in response to aeration. Thehighest cell concentration (4.9 × 105 cellsmL–1) and productivity (2.6 ×104cells mL–1d–1) was achieved inthe aerated glass culture tubes. Stable growth of A.minutum in the laboratory scale alveolar panel photobioreactor wasmaintained over a period of five months, with a maximum cell concentration of3.3 × 105 cells mL–1, a meanproductivity of 1.4 × 104 cells mL–1d–1, and toxin production of approximately 20g L–1 d–1 with weeklyharvesting.  相似文献   

13.
The population growth pattern and related changes in both the nitrogen and phosphorus contents in the cell of the dinoflagellate Peridinium penardii (Lemm.) Lemm., which formed a freshwater red tide in a reservoir, were studied in situ. An exponential increase with time in population density was found. A specific growth rate of 0.25 d–1 was observed. The cellular content of phosphorus per cell decreased from 6.0 × 10–5 µg to 9.2 × 10–6 µg along with an increase in population density from 8.0 × 102 cells ml–1 to 2.5 × 104 cells ml–1. A prominent change in the cellular nitrogen did not occur. Decreasing cell content and continuous uptake of phosphorus were advantageous for P. penardii to form a freshwater red tide under P-limited conditions.  相似文献   

14.
Abundance and Diversity of Viruses in Six Delaware Soils   总被引:9,自引:3,他引:6       下载免费PDF全文
The importance of viruses in marine microbial ecology has been established over the past decade. Specifically, viruses influence bacterial abundance and community composition through lysis and alter bacterial genetic diversity through transduction and lysogenic conversion. By contrast, the abundance and distribution of viruses in soils are almost completely unknown. This study describes the abundance and diversity of autochthonous viruses in six Delaware soils: two agricultural soils, two coastal plain forest soils, and two piedmont forest soils. Viral abundance was measured using epifluorescence microscopy, while viral diversity was assessed from morphological data obtained through transmission electron microscopy. Extracted soil virus communities were dominated by bacteriophages that demonstrated a wide range of capsid diameters (20 nm to 160 nm) and morphologies, including filamentous forms and phages with elongated capsids. The reciprocal Simpson's index suggests that forest soils harbor more diverse assemblages of viruses, particularly in terms of morphological distribution. Repeated extractions of virus-like particles (VLPs) from soils indicated that the initial round of extraction removes approximately 70% of extractable viruses. Higher VLP abundances were observed in forest soils (1.31 × 109 to 4.17 × 109 g−1 dry weight) than in agricultural soils (8.7 × 108 to 1.1 × 109 g−1 dry weight). Soil VLP abundance was significantly correlated to moisture content (r = 0.988) but not to soil texture. Land use (agricultural or forested) was significantly correlated to both bacterial (r = 0.885) and viral (r = 0.812) abundances, as were soil organic matter and water content. Thus, land use is a significant factor influencing viral abundance and diversity in soils.  相似文献   

15.
The study on 10 lakes within the Ethiopian Rift Valley during March–May 1991 covered a range of conductivity (K25) between 286 and 49100 µS cm–1. HCO3 — CO inf3 sup2– and Na+ were the dominant ions in all the lakes. Concentrations of K+, Cl and SO inf4 sup2– increased with increasing salinity and alkalinity, whereas Ca2+ and Mg2+ decreased. Comparison of these data with previous records showed that a ten-fold dilution of total ionic concentration occurred over 30 years in Lake Metahara and about three-fold increase occurred over 65 years in Lake Abijata. Concentrations of soluble silica were generally high (12–222 mg SiO2 1–1) and increased with increasing salinity, except for Lake Chamo which showed SiO2 depletion (to < 1 mg SiO2 1 –1) over the past three decades.The relationship between ionic concentration and phosphorus was irregular although high phosphorus concentrations generally corresponded with increasing salinity. Fitting data to the Dillon & Rigler (1974) chlorophyll a — total phosphorus relationship suggested that lakes Zwai, Awassa and Chamo are phosphorus-limited, whereas others have surplus phosphorus.  相似文献   

16.
Biomass and activity of planktonic bacteria were investigated during a one year study in a shallow sandpit lake. The shallowness of the lake helped keep the water column homogeneous regarding bacterioplankton. Small free-living bacteria (0.03 µm3 cell–1) dominated the populations throughout the period studied. Bacterial abundances varied from 1 to 11 × 106 cells ml–1. Kinetic parameters (V max, K + S and T) were determined with 14C labelled compounds (glucose and amino acids mixture). V max values were high and averaged 0.056 and 0.050 µgCl–1 h–1 for glucose and amino acids respectively. Maximal V max values were observed in summer at the highest temperatures, but also in early spring. T values were much greater in winter. K + S values were significantly higher for amino acids (3 µg Cl–1) than for glucose (1 µg Cl–1). A low percentage of mineralization (about 25% for both tracers) could be the expression of the high growth efficiency expected when bacteria are growing at the expense of low molecular weight compounds as phytoplankton exudates.  相似文献   

17.
Flow cytometry (FCM) was used to assess microbial community abundances and patterns in three natural, large and deep peri-alpine hydrosystems, i.e., lakes Annecy (oligotrophic), Bourget, and Geneva (mesotrophic). Picocyanobacteria, small eukaryotic autotrophs, heterotrophic prokaryotes, and viruses were studied in the 0–50 m surface layers to highlight the impact of both physical and chemical parameters as well as possible biotic interactions on the functioning of microbial communities. Some specificities were recorded according to the trophic status of each ecosystem such as the higher number of viruses and heterotrophic bacteria in mesotrophic environments (i.e., Lakes Geneva and Bourget) or the higher abundance of picocyanobacteria in the oligotrophic Lake Annecy. However, both seasonal (temperature) and spatial (depth) variations were comparatively more important than the trophic status in driving the microbial communities’ abundances in these three lakes, as revealed by principal component analysis (PCA). A strong viral termination of the heterotrophic bacterial blooms could be observed in autumn for each lake, in parallel to the mixing of the upper lit layers. As virus to bacteria ratio (VBR) was indeed very high at this period with values varying between 87 and 114, such important relationships between viruses and bacteria were likely. The magnitudes of seasonal variations in VBR, with the highest values ever reported so far, were largely greater than the magnitude of theoretical variations due to the trophic status, suggesting also a strong seasonality in virioplankton production associated to prokaryotic dynamics. FCM analyses allowed discriminating several viral groups. Virus-Like Particles group 1 (VLP1) and group 2 (VLP2) were always observed and significantly correlated to bacteria for the former and chlorophyll a and picocyanobacteria for the latter, suggesting that most of VLP1 and VLP2 could be bacteriophages and cyanophages, respectively. On the basis of these results, new ways of investigation emerge concerning the study of relationships between specific picoplanktonic groups; and overall these results provide new evidence of the necessity to consider further viruses for a better understanding of lake plankton ecology. Handling editor: Luigi Naselli-Flores  相似文献   

18.
The mid-summer phytoplankton communities of more than 100 Adirondack lakes ranging in pH from 4.0 to 7.2 were characterized in relation to 25 physical-chemical parameters. Phytoplankton species richness declined significantly with increasing acidity. Acidic lakes (pH < 5.0) averaged fewer than 20 species while more circumneutral waters (pH > 6.5) averaged more than 33 species. Phytoplankton abundance was not significantly correlated with any of the measured physical-chemical parameters, but standing crop parameters, i.e., chlorophyll a and phytoplankton biovolume, did correlate significantly with several parameters. Midsummer standing crop correlated best with total phosphorus concentration but acidity status affected the standing crop-phosphorus relationship. Circumneutral waters of low phosphorus content, i.e. < 10 µg·1–1 TP, averaged 3.62 µg·1–1 chlorophyll a whereas acidic lakes of the same phosphorus content averaged only 1.96 µg·1–1 chlorophyll a. The midsummer chlorophyll content of lakes of high phosphorus content, i.e. > 10 µg·1–1 TP, was not significantly affected by acidity status.Adirondack phytoplankton community composition changes with increasing acidity. The numbers of species in midsummer collections within all major taxonomic groups of algae are reduced with increasing acidity. The midsummer phytoplankton communities of acidic Adirondack lakes can generally be characterized into four broad types; 1) the depauperate clear water acid lake assemblage dominated by dinoflagellates, 2) the more diverse oligotrophic acid lake community dominated by cryptomonads, green algae, and chrysophytes, 3) the productive acid lake assemblage dominated by green algae, and 4) the chrysophyte dominated community. The major phytoplankton community types of acid lakes are associated with different levels of nutrients, aluminum concentrations, and humic influences.  相似文献   

19.
The bacterial populations of anoxic sediments in a eutrophic lake (Aydat, Puy-de-Dôme-France) were studied by phospholipid fatty acid analysis (PLFA) and also by culturing heterotrophic bacteria under strictly anaerobic conditions. The mean PLFA concentrations of prokaryotes and microeukaryotes were 5.7 ± 2.9 mgC g–1 DS and 9.6 ± 6.7 mgC g–1 DS, respectively. The analysis of bacterial PLFA markers was used to determine the dynamics of the Gram-positive and Gram-negative species of anaerobic bacteria, Clostridiae, and sulfate-reducing bacteria. Throughout the sampling period the concentrations of i15:0 (from 20 nmol g–1 DS to 130 nmol g–1 DS), markers of Gram-positive bacteria, were higher than those for Gram-negative bacteria. The dynamics of Clostridiae (Cy15:0) paralleled those of sulfate-reducing bacteria that were marked by i17:17. Partial 16S rDNA sequencing and the physiological study of the various fermenting strains, whose abundance in the superficial sediment layer was 1.1 ± 0.4 × 106 cells mL–1, showed that all the isolates belonged to the Clostridiae and related taxa (Lactosphaera pasteurii, Clostridium vincentii, C. butyricum, C. algidixylanolyticum, C. puniceum, C. lituseburense, and C. gasigenes). All the isolates were capable of metabolizing a wide range of organic substrates.  相似文献   

20.
1. We used flow cytometry to characterize freshwater photosynthetic picoplankton (PPP) and heterotrophic bacteria (HB) in Lake Kivu, one of the East‐African great lakes. Throughout three cruises run in different seasons, covering the four major basins, phycoerythrin‐rich cells dominated the PPP. Heterotrophic bacteria and PPP cell numbers were always high and spatial variations were modest. This represents an important difference from temperate and high latitude lakes that show high fluctuations in cell abundance over an annual cycle. 2. Three populations of picocyanobacteria were identified: one corresponded to single‐cells (identified as Synechococcus by epifluorescence microscopy, molecular methods and pigment content), and the two other that most probably correspond to two and four celled colonies of the same taxon. The proportion of these two subpopulations was greater under stratified conditions, with stronger nutrient limitation. 3. High PPP concentrations (c. 105 cell mL?1) relative to HB (c. 106 cell mL?1) were always found. Lake Kivu supports relatively less bacteria than phytoplankton biomass than temperate systems, probably as a consequence of factors such as temperature, oligotrophy, nutrient limitation and trophic structure. 4. A review of PPP concentration across aquatic systems suggests that the abundance of Synechococcus‐like cyanobacteria in large, oligotrophic, tropical lakes is very high. 5. Photosynthetic picoplankton cell abundances in the oligotrophic tropical lakes Kivu and Tanganyika are comparable to those of eutrophic temperate lakes. This apparently contradicts the view that PPP abundance increases with increasing eutrophy. More data on PPP in tropical lakes are needed to explore further this particular pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号