首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Five subunits (-, -, -, - and -subunits) of the six -and -subunits) in the F1 portion (F1ATPase) of sweet potato (Ipomoea batatas) mitochondrial adenosine triphosphatase were isolated by an electrophoretic method. The - and -subunits were not distinguishable immunologically but showed completely different tryptic peptide maps, indicating that they were different molecular species. In vitro protein synthesis with isolated sweet potato root mitochondria produced only the -subunit when analyzed with anti-sweet potato F1ATPase antibody reacting with all the subunits except the -subunit. Sweet potato root poly(A)+RNA directed the synthesis of six polypeptides which were immunoprecipitated by the antibody: two of them immunologically related to the -subunit and the others to the - and -subunits. We conclude that the -subunit of the F1ATPase is synthesized only in the mitochondria and the -, - and -subunits are in the cytoplasm.  相似文献   

2.
Minimal photosynthetic catalytic F1() core complexes, containing equimolar ratios of the and subunits, were isolated from membrane-bound spinach chloroplast CF1 and Rhodospirillum rubrum chromatophore RrF1. A CF1-33 hexamer and RrF1-11 dimer, which were purified from the respective F1() complexes, exhibit lower rates and different properties from their parent F1-ATPases. Most interesting is their complete resistance to inhibition by the general F1 inhibitor azide and the specific CF1 inhibitor tentoxin. These inhibitors were earlier reported to inhibit multisite, but not unisite, catalysis in all sensitive F1-ATPases and were therefore suggested to block catalytic site cooperativity. The absence of this typical property of all F1-ATPases in the 11 dimer is consistant with the view that the dimer contains only a single catalytic site. The 33 hexamer contains however all F1 catalytic sites. Therefore the observation that CF1-33 can bind tentoxin and is stimulated by it suggests that the F1 subunit, which is required for obtaining inhibition by tentoxin as well as azide, plays an important role in the cooperative interactions between the F1-catalytic sites.Abbreviations CF0F1 chloroplast F0F1 - CF1 chloroplast F1 - CF1 chloroplast F1 subunit - CF1 chloroplast F1 subunit - CF1() a complex containing equal amounts of the CF1 and subunits - MF1 mitochondrial F1 - RrF0F1 Rhodospirillum rubrum F0F1 - RrF1 R. rubrum F1 - RrF1 R. rubrum F1 subunit - RrF1 R. rubrum F1 subunit - RrF1() a complex containing equal amounts of the RrF1 and subunits - Rubisco Ribulose-1,5-bisphosphate carboxylase - TF1 thermophilic bacterium PS3 F1  相似文献   

3.
The inheritance of host plant resistance and its effect on the relative infection efficiency for leaf blast was studied in the crosses IR36/CO39 (partially resistant × highly susceptible) and IR36/IR64 (both partially resistant). On the natural scale, gene action appeared multiplicative. After log transformation, additive effects described most of the genetic variation in the cross IR36/CO39, while additive and dominance effects were about equal in magnitude in the cross IR36/IR64. Dominance was towards increased resistance. No transgressive segregation occurred in the cross IR36/CO39. The number of genes that reduce lesion number was estimated to be zero in CO39 and five or more in IR36. The cross IR36/IR64 showed transgressive segregation in both directions, and IR36 and IR64 each contain at least one gene that is not present in the other cultivar. The heritabilities (narrow sense) in the F2 were low (range 0.06–0.16), while narrow sense heritabilities based on F3 lines were much higher (range 0.41–0.68). Lesion numbers in F3 lines were reasonably correlated with those in F5 progenies derived from the same F2 plant (r was±0.6 in both crosses). Partial resistance can be effectively improved by selecting the most resistant plants from the most resistant F3 lines.  相似文献   

4.
The basic structures of the catalytic portion (F1, 33) of ATP synthase are the 33 hexamer (oligomer with cooperativity) and 11 heterodimer (protomer). These were reconstituted from the and subunits of thermophilic F1 (TF1), and the 33 hexamer was crystallized. On electrophoresis, both the dimer and hexamer showed bands with ATPase activity. Using the dimer and hexamer, we studied the nucleotide-dependent rapid molecular dynamics. The formation of the hexamer required neither nucleotide nor Mg. The hexamer was dissociated into the dimer in the presence of MgADP, while the dimer was associated into the hexamer in the presence of MgATP. The hexamer, like mitochondrial F1 and TF1, showed two kinds of ATPase activity: one was cooperative and was inhibited by only one BzADP per hexamer, and the other was inhibited by three BzADP per hexamer.  相似文献   

5.
Exchange-out of amide tritium from labeled -subunit of 33 complex of F0F1-ATP synthase was not accelerated by ATP, suggesting that hemagglutinin-type transition of coiled-coil structure did not occur in -subunit. Local topology of nucleotide binding site and switch II region of G-protein resemble those of F1- subunit and other proteins which catalyze ATP-triggered reactions. Probably, binding of nucleotide to F0F1-ATP synthase induces conformational change of the switch II-like region with transforming subunit structure from open to closed form and this transformation results in loss of hydrogen bonds with the subunit, thus enabling the subunit to move.  相似文献   

6.
F1-ATPases are large multimeric proteins that can be isolated from the membrane bound system that catalyzes the phosphorylation of ADP by inorganic phosphate in bacteria, plants, and mitochondria. They can be visualized in electron micrographs of the inner mitochondrial membranes where they appear as large protruding spheres 90 Å in diameter. The purified F1-ATPases have a molecular weight of 320,000 to 400,000 daltons and are composed of five non-identical subunits (, , , and ). The stoichiometry of these subunits in the complex is still unknown but compositions of the type 33 and 22222 were found to be consistent with some of the available experimental data. This review discusses the recent data and the experimental approaches utilized for the structural characterization of F1-ATPases.  相似文献   

7.
Summary This work reports on the production and yield assessment of F1 wheat hybrids from crosses between cytoplasmic male sterile lines, with Triticum timopheevi cytoplasm, and cultivars with fertility restoring genes.In four years of trials conducted between 1974 and 1977, only three F1 hybrids out of a total of 168 yielded significantly more than the control variety Maris Huntsman, which currently occupies a substantial proportion of the area planted with winter wheat in the UK. Because of the rapid increase in yield of conventional wheat varieties, which has already led to varieties which outyielded Maris Huntsman, the yield advantage of these F1 hybrids is insufficient for them to be developed as commercial varieties.The efficient production of uncontaminated male sterile and F1 seed presents problems of isolation and a difficult biological problem in increasing the cross breeding potential of maintainer and restorer lines. These together with selection for other parental characters such as restoration, short straw and resistance to sprouting make the development of F1 hybrids more difficult and expensive than that of conventional varieties.  相似文献   

8.
The structural and functional connection between the peripheral catalytic F1 sector and theproton-translocating membrane sector F0 of the mitochondrial ATP synthase is reviewed. Theobservations examined show that the N-terminus of subunit , the carboxy-terminal and centralregion of F0I-PVP(b), OSCP, and part of subunit d constitute a continuous structure, the lateralstalk, which connects the peripheries of F1 to F0 and surrounds the central element of thestalk, constituted by subunits and . The ATPase inhibitor protein (IF1) binds at one sideof the F1F0 connection. The carboxy-terminal segment of IF1 apparently binds to OSCP. The42L-58K segment of IF1, which is per se the most active domain of the protein, binds at thesurface of one of the three / pairs of F1, thus preventing the cyclic interconversion of thecatalytic sites required for ATP hydrolysis.  相似文献   

9.
Summary Industrial fermentation media are normally sterilized with steam to destroy the indigenous microbial population prior to inoculation with a specific microorganism. Because biological validation of each sterilization cycle is impractical, an overkill approach is commonly employed on the basis that alteration of heat-sensitive nutrients is less detrimental than survival of indigenous microbes. However, the heat destruction of microbes is known to be a probability function amenable to calculation. A computer has been programmed to calculate the on-line heat input asF 0 values during sterilization of media in stirred bioreactors. The accumulation ofF 0 values is then announced verbally to bioreactor operators by a communications controller with voice synthesizer.  相似文献   

10.
The structural organization and overall dimensions of the Escherichia coli F1-ATPase in solutionhas been analyzed by synchroton X-ray scattering. Using an independent ab initio approach,the low-resolution shape of the hydrated enzyme was determined at 3.2 nm resolution. Theshape permitted unequivocal identification of the volume occupied by the 3 3 complex ofthe atomic model of the ECF1-ATPase. The position of the ^ and subunits were found byinteractive fitting of the solution scattering data and by cross-linking studies. Laser-inducedcovalent incorporation of 2-azido-ATP established a direct relationship between nucleotidebinding affinity and the different interactions between the stalk subunits and with the threecatalytic subunits () of the F1-ATPase. Mutants of the ECF1-ATPase with the introductionof Trp-for-Tyr replacement in the catalytic site of the complex made it possible to monitorthe activated state for ATP synthesis (ATP conformation) in which the and subunits arein close proximity to the subunits and the ADP conformation, with the stalk subunits arelinked to the subunit.  相似文献   

11.
In liver mitochondria isolated from hypothyroid rats, the rate of ATP synthesis is lower than in mitochondria from normal rats. Oligomycin-sensitive ATP hydrolase activity and passive proton permeability were significantly lower in submitochondrial particles from hypothyroid rats compared to those isolated from normal rats. In mitochondria from hypothyroid rats, the changes in catalytic activities of F0F1-ATP synthase are accompanied by a decrease in the amount of immunodetected -F1, F01-PVP, and OSCP subunits of the complex. Northern blot hybridization shows a decrease in the relative cytosolic content of mRNA for -F1 subunit in liver of hypothyroid rats. Administration of 3,5,3-triodo-L-thyronine to the hypothyroid rats tends to remedy the functional and structural defects of F0F1-ATP synthase observed in the hypothyroid rats. The results obtained indicate that hypothyroidism leads to a decreased expression of F0F1-ATP synthase complex in liver mitochondria and this contributes to the decrease of the efficiency of oxidative phosphorylation.  相似文献   

12.
F430 is the prosthetic group of the methylcoenzyme M reductase of methanogenic bacteria. The compound isolated from Methanosarcina barkeri appears to be identical to the one obtained from the only distinctly related Methanobacterium thermoautotrophicum. F430 is thermolabile and in the presence of acetonitrile or C10 in4 sup- two epimerization products are obtained upon heating; in the absence of these compounds F430 is oxidized to 12, 13-didehydro-F430. The latter is stereoselectively reduced under H2 atmosphere to F430 by cell-free extracts of M. barkeri or M. thermoautotrophicum. H2 may be replaced by the reduced methanogenic electron carrier coenzyme F420.Abbreviations CH3S-CoM methylcoenzyme M, 2-methylthioethanesulfonic acid - HS-CoM coenzyme M, 2-mercaptoethanesulfonic acid - F430 Ni(II) tetrahydro-(12, 13)-corphin with a uroporphinoid (III) ligand skeleton - 13-epi-F430 and 12,13-di-epi-F430 the 12, 13- and 12, 13-derivatives of F430 - 12, 13-didehydro-F430 F430 oxidized at C-12 and C-13 - coenzyme F420 7,8-didemethyl-8-hydroxy-5-deazaflavin derivative - coenzyme F420H2 reduced coenzyme F420 - MV+ methylviologen semiquinone - HPLC high-performance liquid chromatography  相似文献   

13.
Restriction fragment analysis was used to examine the inheritance of lentil mitochondrial DNA (mtDNA) in F1 and F5 progeny from intrasubspecific (Lens culinaris ssp. culinaris) crosses and in F1 progeny from intersubspecific (Lens culinaris ssp. orientalis x L. culinaris ssp. culinaris) crosses. Southern blots of digested parental and progeny DNA were hybridized to heterologous maize mtDNA probes specific to coxI and atp6 genes. Two restriction fragment polymorphisms separated L.c. ssp. culinaris Laird and Eston from L.c. ssp. culinaris ILL5588, and one restriction fragment polymorphism distinguished L.c. ssp. culinaris Laird and Eston from L.c. ssp. orientalis LO4. Twelve of 13 f1 progeny and all F5 progeny from the intrasubspecific crosses, and all F1 progeny from intersubspecific crosses had only maternal mtDNA restriction fragments. One f1 plant from an Eston x ILL5588 cross inherited mtDNA fragments from both parents. Nuclear DNA inheritance was biparental in all F1 progeny.NRCC No. 38451  相似文献   

14.
Monoclonal and polyclonal antibodies directed against peptides of F1-ATPase or F1F0-ATPase synthase provide new and efficient tools to study structure-function relationships and mechanisms of such complex membrane enzymes. This review summarizes the main results obtained using this approach. Antibodies have permitted the determination of the nature of subunits involved in the complex, their stoichiometry, their organization, neighboring interactions, and vectorial distribution within or on either face of the membrane. Moreover, in a few cases, amino acid sequences exposed on a face of the membrane or buried inside the complex have been identified. Antibodies are very useful for detecting the role of each subunit, especially for those subunits which appear to have no direct involvement in the catalytic mechanism. Concerning the mechanisms, the availability of monoclonal antibodies which inhibit (or activate) ATP hydrolysis or ATP synthesis, which modify nucleotide binding or regulation of activities, which detect specific conformations, etc. brings many new ways of understanding the precise functions. The specific recognition by monoclonal antibodies on the subunit of epitopes in the proximity of, or in the catalytic site, gives information on this site. The use of anti- monoclonal antibodies has shown asymmetry of in the complex as already shown for . In addition, the involvement of with respect to nucleotide site cooperativity has been detected. Finally, the formation of F1F0-antibody complexes of various masses, seems to exclude the functional rotation of F1 around F0 during catalysis.Abbreviations IF1 natural protein inhibitor of the ATPase-ATP synthase - OSCP oligomycin sensitivity-conferring protein - DCCD dicyclohexylcarbodiimide - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoreses - F1 F1-ATPase, coupling factor F1 of ATPase - F1F0 F1F0-ATP synthase, ATPase-ATP synthase complex  相似文献   

15.
The structure of theEscherichia coli ATP synthase has been studied by electron microscopy and a model developed in which the and subunits of the F1 part are arranged hexagonally (in top view) alternating with one another and surrounding a central cavity of around 35 Å at its widest point. The and subunits are interdigitated in side view for around 60 Å of the 90 Å length of the molecule. The F1 narrows and has three-fold symmetry at the end furthest from the F0 part. The F1 is linked to F0 by a stalk approximately 45 Å long and 25–30 Å in diameter. The F0 part is mostly buried in the lipid bilayer. The subunit provides a domain that extends into the central cavity of the F1 part. The and subunits are in a different conformation when ATP+Mg2+ are present in catalytic sites than when ATP+EDTA are present. This is consistent with these two small subunits switching conformations as a function of whether or not phosphate is bound to the enzyme at the position of the phosphate of ATP. We suggest that this switching is the key to the coupling of catalytic site events with proton translocation in the F0 part of the complex.  相似文献   

16.
Summary Motor nerve terminals on white and intermediate muscle fibers of the Atlantic hagfish (Myxine glutinosa, L.) contain translucent synpatic vesicles and about 1–2% dense-core vesicles. Terminals on red muscle fibers contain up to 40% dense-core vesicles with diameter 800–1100 Å. Examinations for formaldehyde-induced fluorescence indicate yellow fluorescence (5-HT ?) apparently corresponding with terminal axons on red muscle fibers in craniovelar muscles. Possibly red muscle fibers of Myxine receive monoaminergic innervation.The author is indebted to Dr. Finn Walvig, Biological station, University of Oslo, Drøbak, for supply of hagfishes.  相似文献   

17.
A functional F0F1 ATP synthase that contains the endogenous inhibitor protein (F0F1I) was isolated by the use of two combined techniques [Adolfsen, R., McClung, J.A., and Moudrianakis, E. N. (1975).Biochemistry 14, 1727–1735; Dreyfus, G., Celis, H., and Ramirez, J. (1984).Anal. Biochem. 142, 215–220]. The preparation is composed of 18 subunits as judged by SDS-PAGE. A steady-state kinetic analysis of the latent ATP synthase complex at various concentrations of ATP showed aV max of 1.28mol min–1 mg–1, whereas theV max of the complex without the inhibitor was 8.3mol min–1 mg–1. In contrast, theK m for Mg-ATP of F0F1 I was 148M, comparable to theK m value of 142M of the F0F1 complex devoid of IF1. The hydrolytic activity of the F0F1I increased severalfold by incubation at 60C at pH 6.8, reaching a maximal ATPase activity of 9.5mol min–1 mg–1; at pH 9.0 a rapid increase in the specific activity of hydrolysis was followed by a sharp drop in activity. The latent ATP synthase was reconstituted into liposomes by means of a column filtration method. The proteoliposomes showed ATP-Pi exchange activity which responded to phosphate concentration and was sensitive to energy transfer inhibitors like oligomycin and the uncouplerp-trifluoromethoxyphenylhydrazone.  相似文献   

18.
    
The limited proteolytic pattern of transducin,G t , and its purified subunits with chymotrypsin were analyzed and the cleavage sites on the t subunit were identified. The t subunit in the GTPS bound form was cleaved into a major 38 kD fragment, whereas t -GDP was progressively digested into 38, 23, 21, and 15 kD fragments. The t subunit was not very sensitive to proteolytic digestion with chymotrypsin. The t subunit was not cleaved and only a small portion of t was digested into several fragments. In order to determine which proteolytic fragment of t still contained the carboxyl terminal region, chymotrypsinization was carried out usingG t previously32P-labeled at Cys347 by petrussis toxin-catalyzed ADP-ribosylation. The32P-label was mainly associated with the t subunit and a 15 kD fragment. The 23 and 21 kD fragments were not32P-labeled. Analysis of amino terminal sequences of 38, 21, and 15 kD proteolytic bands allowed the identification of the major cleavage sites. Chymotrypsin had two cleavage sites in the amino terminal region of t , at Leu15 and Leu19. Chymotrypsin removed 15–19 amino acid residues from the amino terminus of t , generating two peptides (38 kD) which comigrates in gel electrophoresis. Chymotrypsin also cleaved at Trp207 in a conformation-dependent manner. Trp207 of t -GTPS was resistant to proteolysis but t -GDP and the 38 kD fragments of t -GDP produced the 23 and 21 kD fragments, respectively, and a 15 kD fragment containing the carboxyl terminus. This proves that the environment of Trp207 changes when GTP or GTPS is bound, leading to its inaccessibility to chymotrypsin.  相似文献   

19.
Linkage of randomly amplified polymorphic DNA (RAPD) markers with a single dominant gene for resistance to black root rot (Chalara elegans Nag Raj and Kendrick; Syn. Thielaviopsis basicola [Berk. and Broome] Ferraris) of tobacco (Nicotiana tabacum L.), which was transferred from N. debneyi Domin, was investigated in this study. There were 2594 repeatable RAPD fragments generated by 441 primers on DNAs of Delgold tobacco, a BC5F8 near isogenic line (NIL) carrying the resistance gene in a Delgold background, and PB19, the donor parent of the resistance gene. Only 7 of these primers produced eight RAPD markers polymorphic between Delgold and PB19, indicating there are few RAPD polymorphisms between them despite relatively dissimilar pedigrees. Five of the eight RAPD markers were not polymorphic between Delgold and the NIL. All of these markers proved to be unlinked with the resistance gene in F2 linkage tests. Of the remaining three RAPD markers polymorphic between Delgold and the NIL, two were shown to be strongly linked with the resistance gene; one in coupling and the other in repulsion. Application of the two RAPDs in the elimination of linkage drag associated with the N. debneyi resistance gene and marker-assisted selection for the breeding of new tobacco cultivars with the resistance gene is discussed.  相似文献   

20.
Summary The inheritance of resistance to whitebacked planthopper Sogatella furcifera (Horvath) was studied in 21 rice varieties. Reactions of F1; F2 and F3 progenies of the crosses of 21 resistant varieties with the susceptible variety TN 1 revealed that a single dominant gene governs resistance in Mushkan 41, Santhi, Siahnakidar 195, SM2-34, Tirisurkh 251, Zirijowaian 245, 18, 24A, 39, 76 S, 78, 180, 213 B, 267, 293, CI 6037-4, NP97, S39 JKW and Bansphul. In varieties 65 and 274 A, resistance is governed by one dominant and one recessive gene which segregate independently of each other. Tests for allelism with the Wbph 1 gene originally identified in N 22 revealed that the dominant gene present in all the test varieties is the same as Wbph 1. Further studies are required to determine the allelic relationships of the recessive gene found in varieties 65 and 274 A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号