首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subtype of muscarinic receptor which mediates cAMP attenuation is not established. Therefore, several selective muscarinic antagonists were used to characterize the subtype of muscarinic receptor coupled to the inhibition of hormone-stimulated cAMP accumulation using NG108-15 neuroblastoma x glioma hybrid cells. These cells were prelabeled with [2-3H]-adenine, washed, and resuspended in a culture medium containing the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.5 mM). The labeled cells were preincubated with the different antagonists 12-15 min. before they were challenged with agonists. The formation of [3H]-cAMP was activated by PGE1 (1 microM) or forskolin (1 microM). In all cases, [3H]-cAMP formed was separated and measured. Carbachol (100 microM) and McN-A343 (10 mM) were used as standard muscarinic agonists. These studies gave the following results: a) McN-A343 (10 mM), an M1 receptor agonist, was only a partial agonist causing 40% inhibition of cAMP accumulation indicating that this effect was not mediated by an M1 receptor; b) The M1-selective antagonist, pirenzepine, exhibited low affinity (pA2 6.2) further suggesting that an M1 receptor was not coupled to the attenuation of cAMP accumulation; c) Two selective M2 antagonists (AF-DX 116 and methoctramine) and M3 antagonist (HHSiD) were used to further characterize these muscarinic receptors. The order of all antagonists based on their affinities (pA2 values) could be arranged in the following order: atropine (9.0) > methoctramine (7.6) > HHSiD (6.9) > AF-DX 116 (6.6) > pirenzepine (6.2). HHSiD exhibits the same degree of affinity to M2 receptors of other tissues as it does to those of NG cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Muscarinic receptors coupled to phosphoinositide hydrolysis (PI) are present in guinea pig bladder and colon. Compared to rat cerebral cortex, an extensively studied muscarinic/PI turnover system, all agonists were more potent and efficacious in both bladder and colon. The "M1-selective antagonists", pirenzepine and dicyclomine, were much more potent (Ki = 1-5 nM) and selective (300 to 500-fold) at both rat and guinea pig brain and guinea pig colon receptors, compared to PI-coupled receptors in guinea pig bladder. In contrast, "M2-selective antagonists", AF-DX 116 and HHSiD, were 2-6 fold more potent in bladder than in brain, while HHSiD was very potent in the colon (50 times more potent than in brain). These results suggest a pharmacological heterogeneity of PI-linked muscarinic receptors. If muscarinic receptors with a low affinity for pirenzepine are defined as M2, these results show that the guinea pig bladder contains PI-linked M2 muscarinic receptors, whereas the guinea pig colon contains PI-linked M1 receptors.  相似文献   

3.
Heterogeneity of the muscarinic receptor population in the rat central and peripheral lung was found in competition binding experiments against [3H]quinuclidinyl benzilate [( 3H]QNB) using the selective antagonists pirenzepine, AF-DX 116 and hexahydrosiladifenidol (HHSiD). Pirenzepine displaced [3H]QNB with low affinity from preparations of central airways indicating the absence of M1 receptors in the trachea and bronchi. Muscarinic receptors in the central airways are comprised of both M2 and M3 receptors since AF-DX 116, an M2-selective antagonist, bound with high affinity to 70% of the available sites while HHSiD, an M3-selective antagonist bound with high affinity to the remaining binding sites. In the peripheral lung, pirenzepine bound with high affinity to 14% of the receptor population, AF-DX 116 bound with high affinity to 79% of the binding sites while HHSiD bound with high affinity to 18% of the binding sites. The presence of M1 receptors in the peripheral airways but not in the central airways was confirmed using [3H]telenzepine, an M1 receptor ligand. [3H]Telenzepine showed specific saturable binding to 8% of [3H]QNB labeled binding sites in homogenates of rat peripheral lung, while there was no detectable specific binding in homogenates of rat trachea or heart. The results presented here demonstrate that there are three muscarinic receptor subtypes in rat lungs, and that the distribution of the different subtypes varies within the lungs. Throughout the airways, the dominant muscarinic receptor subtype is M2. In the trachea and bronchi the remaining receptors are M3, while in the peripheral lungs, the remaining receptors are both M1 and M3.  相似文献   

4.
The presynaptic muscarinic autoreceptor of Torpedo marmorata electric organ has been characterised by radioligand binding studies using the subtype-selective antagonists pirenzepine, (+)-telenzepine, methoctramine, and AF-DX 116. The presynaptic receptor had relatively high affinity for the M1 antagonists pirenzepine and (+)-telenzepine (Ki = 35 and 7 nM, respectively) and lower affinities for the M2 antagonists AF-DX 116 and methoctramine (Ki = 311 and 277 nM, respectively). Comparison of these binding data with those from an M2 receptor (rat heart membranes) assayed under identical conditions and with data in the recent literature suggests that the Torpedo muscarinic autoreceptor has a pharmacology most similar to the M1 pharmacological subtype of muscarinic acetylcholine receptor.  相似文献   

5.
Using intracellular recording and immunohistochemistry, we studied the presynaptic muscarinic autoreceptor subtypes controlling ACh release in the neuromuscular junctions of the newborn (3-6 days postnatal) and adult (30-40 days) rat. In the Levator auris longus muscles of both newborn and adult rats, acetylcholine release was modified by the M1-receptor selective antagonists pirenzepine (10 microM) and MT-7 (100 nM) and by the M2-receptor selective antagonists methoctramine (1 microM) and AF-DX 116 (10 microM). The M4-receptor selective antagonists tropicamide (1 microM) and MT-3 (100 nM) can also modify the neurotransmitter release in certain synapses of the newborn muscles. The neurotransmitter release was not altered by the M3-receptor selective antagonist 4-DAMP (1 microM) in the adult or newborn rats. However, we directly demonstrate by immunocytochemistry the presence of these receptors in the motor endplates and conclude that M1-, M2-, M3- and M4-type muscarinic receptors are present in all the neuromuscular junctions of the rat muscle both in newborn and adult animals. These receptors may be located in the perisynaptic glial cell as well as at the nerve terminals.  相似文献   

6.
Muscarinic receptors in the rat cerebral cortex, cardiac atria and vas deferens were identified, quantitated, and characterized relative to phosphatidylinositol (PI) turnover as the functional response to stimulation of specific receptor subtypes. Receptor densities as determined by 3H-QNB binding were ranked: cerebral cortex greater than vas deferens greater than heart. Using displacement of 3H-QNB binding by the selective M1 and M2 muscarinic receptor antagonists pirenzepine and 11[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro- 6H-pyrido [2,3-b] [1,4] benzodiazepine-6-one (AF-DX 116) respectively, heterogeneous populations were found in the cerebral cortex and vas deferens. The M1 receptor subtype predominated in the former and the M2 predominated in the latter. An homogeneous M2 receptor population was present in the heart. Methacholine-stimulated accumulation of 3H inositol-1-phosphate was greater in the vas deferens than in the cerebral cortex, whereas PI turnover was not enhanced in cardiac atria. Reserpine treatment of rats (0.5 mg kg-1 day-1 for 7 days) increased muscarinic receptor density in the vas deferens coincident with a shift in the low affinity pKi for AF-DX 116 to a value comparable to high affinity binding, and abolished the enhanced PI hydrolysis. In the cerebral cortex, reserpine treatment shifted only the early portion of the methacholine dose-response curve to the right. These results are judged to be supportive of preferential coupling between the M3 muscarinic receptor subtype and PI turnover.  相似文献   

7.
Characterization of muscarinic receptor subtypes in human tissues   总被引:5,自引:0,他引:5  
The affinities of selective, pirenzepine and AF-DX 116, and classical, N-methylscopolamine and atropine, muscarinic cholinergic receptor antagonists were investigated in displacement binding experiments with [3H]Pirenzepine and [3H]N-methylscopolamine in membranes from human autoptic tissues (forebrain, cerebellum, atria, ventricle and submaxillary salivary glands). Affinity estimates of N-methylscopolamine and atropine indicated a non-selective profile. Pirenzepine showed differentiation between the M1 neuronal receptor of the forebrain and the receptors in other tissues while AF-DX 116 clearly discriminated between muscarinic receptors of heart and glands. The results in human tissues confirm the previously described selectivity profiles of pirenzepine and AF-DX 116 in rat tissues. These findings thus reveal the presence also in man of three distinct muscarinic receptor subtypes: the neuronal M1, the cardiac M2 and the glandular M3.  相似文献   

8.
Recent studies have demonstrated that the majority of muscarinic receptors in rabbit peripheral lung homogenates bind pirenzepine with high affinity (putative M1 subtype). In experiments of AF-DX 116 inhibiting [3H](-)quinuclidinyl benzilate or [3H]pirenzepine, we found similar inhibitory constants for AF-DX 116 binding in rat heart and rabbit peripheral lung that were 4-fold smaller (i.e. of higher affinity) than the inhibitory constant for rat cerebral cortex. This result demonstrates heterogeneity of the M1 muscarinic receptor subtype between peripheral lung and cerebral cortex.  相似文献   

9.
In vitro competition binding experiments with the selective muscarinic antagonists AF-DX 116 and pirenzepine (PZ) vs 3H-N-methylscopolamine as radioligand revealed a characteristic distribution of muscarinic receptor subtypes in different regions of rat brain. Based on non linear least squares analysis, the binding data were compatible with the presence of three different subtypes: the M1 receptor (high affinity for PZ), the cardiac M2 receptor (high affinity for AF-DX 116) and the glandular M2 receptor (low affinity for PZ and AF-DX 116). The highest proportion of M1 receptors was found in the hippocampus, whilst the cerebellum and the hypothalamus were the regions with the largest fraction of the cardiac M2 and glandular M2 receptors, respectively. In certain brain areas, depending on the relative proportions of the subtypes, flat binding curves were seen for AF-DX 116 and PZ. Based on these data, an approximate distribution pattern of the subtypes in the various brain regions is presented.  相似文献   

10.
Isolated mouse islets were used to identify the muscarinic receptor subtype present in pancreatic B-cells. We thus compared the inhibitory potencies of atropine (non-specific), of pirenzepine (specific for M1 receptors) and of compound AF-DX 116 (specific for cardiac M2 receptors) on acetylcholine-induced insulin release, 86Rb+ efflux and 45Ca2+ efflux. The three antagonists inhibited all effects of acetylcholine, but EC50 values were markedly different: atropine = 1.5-5 nM, pirenzepine = 0.6-1.7 microM and AF-DX 116 = 1.7-11 microM. The results did not suggest that the various effects of ACh could result from the activation of different subtypes of receptors. It is concluded that muscarinic receptors of pancreatic B-cells belong to an M2 subtype distinct from the cardiac M2 receptors.  相似文献   

11.
The M1-selective (high affinity for pirenzepine) muscarinic acetylcholine receptor (mAChR) antagonist pirenzepine displaced both N-[3H]methylscopolamine [( 3H]NMS) and [3H]quinuclidinylbenzilate from intact human SK-N-SH neuroblastoma cells with a low affinity (Ki = 869-1,066 nM), a result indicating the predominance of the M2 or M3 (low affinity for pirenzepine) receptor subtype in these cells. Whereas a selective M2 agent, AF-DX 116 [11-2[[2-[(diethylamino)methyl]-1-piperidinyl]- acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one) bound to the mAChRs with a very low affinity (Ki = 6.0 microM), 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP), an agent that binds with high affinity to the M3 subtype, potently inhibited [3H]NMS binding (Ki = 7.2 nM). 4-DAMP was also 1,000-fold more effective than AF-DX 116 at blocking stimulated phosphoinositide (PPI) hydrolysis in these cells. Covalent labeling studies (with [3H]propylbenzilycholine mustard) suggest that the size of the SK-N-SH mAChR (Mr = 81,000-98,000) distinguishes it from the predominant mAChR species in rat cerebral cortex (Mr = 66,000), an M1-enriched tissue. These results provide the first demonstration of a neural M3 mAChR subtype that couples to PPI turnover.  相似文献   

12.
This study was conducted to investigate the subtypes of muscarinic receptors involved in the action of cholinergic agents on prostacyclin synthesis in the rabbit aorta. Prostacyclin production measured as 6-keto-PGF1 alpha was assessed after exposing the aortic rings to different cholinergic agents. Acetylcholine (ACh) (M1 and M2 agonist) (1-10 microM) and arecaidine proparagyl ester (APE) (M2 selective agonist) (1-10 microM) enhanced 6-keto-PGF1 alpha output in a concentration-dependent manner. A selective M1 receptor agonist, McN-A-343, at 1 microM-1 mM did not alter 6-keto-PGF1 alpha output. ACh- and APE induced increases in 6-keto-PGF1 alpha output were attenuated by the M1/M2 antagonist atropine (0.1 microM), M2 alpha antagonist (AF-DX 116), (0.1-1.0 microM), and by selective M2 beta antagonist, hexahydro-sila-difendiol (HHSiD) (0.1-1.0 microM), but not by the M1 antagonist pirenzepine (1.0 microM). 6-Keto-PGF1 alpha output elicited by ACh- or APE was not altered by the adrenergic receptor antagonists phentolamine and propranolol or by the nicotinic receptor blocker hexamethonium. Similarly, the arachidonic acid- or norepinephrine induced 6-keto-PGF1 alpha accumulation was not altered by these muscarinic receptor antagonists. Indomethacin, a cyclooxygenase inhibitor, prevented arachidonic acid, ACh- or APE induced 6-keto-PGF1 alpha output. Removal of the endothelium abolished the production of 6-keto-PGF1 alpha elicited by ACh, APE, bradykinin, and calcium ionophore A 23187, but not that induced by angiotensin II, K+ or norepinephrine. These data suggest that vascular prostaglandin generation elicited by cholinergic agonists is mediated via activation of M2 alpha and M2 beta but not M1 muscarinic receptors, which are most likely located on the endothelium.  相似文献   

13.
The muscarinic agonist oxotremorine-M produced a concentration-dependent increase in phosphoinositide hydrolysis in bovine pial arteries. The maximal effect was 5.9 +/- 0.89 fold over basal levels, and the EC50 for oxotremorine-M was 8.9 x 10(-6) M. The phosphoinositide response in arteries with the luminal endothelium removed was similar to the response in intact arteries. The specific muscarinic antagonists pirenzepine, 4-DAMP and methoctramine produced parallel shifts of the concentration-response curve to oxotremorine-M, with the following order of potency (pKB): 4-DAMP (8.59 +/- 0.10) greater than pirenzepine (8.12 +/- 0.11) greater than methoctramine (6.77 +/- 0.20). These results indicate that muscarinic stimulation activates phosphoinositide hydrolysis in cerebral arteries, and that the muscarinic receptors mediating this increase are similar to the M1 subtype.  相似文献   

14.
The potency and selectivity of (-)cis-2,3-dihydro-3-(4-methylpiperazinylmethyl)-2-phenyl-1,5 benzothiazepin-4-(5H)one HCl (BTM-1086) for muscarinic receptor subtypes was compared in functional assay systems, in guinea pig peripheral tissues, to known reference drugs: atropine (nonselective), pirenzepine (M1), AF-DX 116 (M2) and HHSiD (M3). Like atropine, BTM-1086 was a potent, nonselective, competitive muscarinic antagonist with no detectable antispasmodic activity in urinary bladder or ileal muscle. In vivo, in the guinea pig cystometrogram, BTM-1086 depressed intravesical bladder pressure (PvesP) with the same efficacy and potency as oxybutynin, a drug used clinically for the treatment of urinary incontinence. The pharmacological profile of BTM-1086, however, suggests that it may not be suitable for development for bladder dysfunction disorders.  相似文献   

15.
According to molecular biological and pharmacological criteria, rat heart membranes normally express only one muscarinic receptor subtype. The selective antagonists pirenzepine and AF-DX 116 bind to this receptor with a single affinity: low and high, respectively. We report here that an endogenous, intracellular factor alters the affinity of selective antagonists for muscarinic receptors in the heart. Thus, when the intracellular fluid is added back to rat heart membranes, both pirenzepine and AF-DX 116 bind to two receptor sites. Approximately 30% of the receptors bind pirenzepine with high affinity and AF-DX 116 with low affinity. Thus, while cardiac muscarinic receptors are coded for by a single mRNA and are therefore genetically homogeneous, the resulting receptor protein might behave like a mixture of receptor subtypes in intact tissues due to the influence of intracellular factors on receptor conformation.  相似文献   

16.
Cardioselective profile of AF-DX 116, a muscarine M2 receptor antagonist   总被引:26,自引:0,他引:26  
AF-DX 116 (see chemical name below) is a competitive antagonist of muscarine receptors in peripheral organs. In contrast to pirenzepine, its behaviour in functional experiments indicates selectivity for the M2 muscarinic subtype. In pithed rats AF-DX 116 inhibits vagally-induced bradycardia, an M2 response, (ED50 32 micrograms/kg i.v.) in preference to the M1-mediated pressor response to McN-A-343 (ED50 211 micrograms/kg i.v.). AF-DX 116 further discriminates among M2 receptors, showing a high affinity for the cardiac muscarine receptors. In isolated preparations, AF-DX 116 has a tenfold higher affinity for the muscarine receptors of the heart (pA2 7.33) than for those in smooth muscles (pA2 6.39-6.44). The same profile appears from animal studies, where the compound is a more potent antagonist of either endogenously or exogenously activated cardiac muscarine responses as compared to vascular, smooth muscle or secretory responses. In general, the ratios of potencies (ED50) observed in cardiac vs. other muscarine mediated functions ranged between 30 and 50. Atropine showed no discrimination, inhibiting all muscarine responses in the same range of doses. In the conscious dog intravenous AF-DX 116 increased basal heart rate, and completely reversed the reflex bradycardia induced by clonidine. Tachycardia was dose-related (ED50 79 micrograms/kg i.v.), and occurred independently of background sympathetic tone. AF-DX 116 clearly distinguishes between M1- and M2-mediated responses; it also emphasizes the long-recognized heterogeneity among the peripheral M2 subtypes. AF-DX 116, for its pronounced cardioselectivity, may have a therapeutic potential in the treatment of sinus bradycardia.  相似文献   

17.
Abstract: : Muscarinic acetylcholine receptor expression and function in cultured rat neostriatal neurons were examined. All experiments were performed on intact neurons grown in vitro for 12-14 days. The muscarinic antagonist N-[3H]methylscopolamine ([3H]NMS) binds to a single site in cultures with a KD of 89 pM and a Bmax of 187 fmol/mg of protein, or 32,000 sites/neuron. Competition studies using [3H]NMS were performed to determine what receptor sur > types were present. Nonlinear analysis of competition curves was best described with a single binding site for atropine, pirenzepine, and AF-DX 116 {11-[[2-[(diethylamino)-methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one}, with Ki values of 0.6, 62, and 758 nM, respectively. These results indicate that the muscarinic receptors present in neostriatal cultures are of the M1subtype, having high affinity for pirenzepine and low affinity for AF-DX 116. In contrast with antagonists, carbachol displaced [3H]NMS from two sites with Ki values of 6.5 and 147 μM, with the higher-affinity form predominant (83% of sites). The M1 receptor subtype was linked to phosphoinositide turnover. Carbachol stimulated the formation of phosphoinositides with an EC50 of 37 μM and was antagonized by atropine. At equimolar doses, pirenzepine was more potent than AF-DX 116 at antagonizing the response.  相似文献   

18.
Abstract

The present study was conducted to localize and characterize the subtype(s) of muscarinic receptor involved in prostacyclin (PGI2) production elicited by the cholinergic transmitter acetylcholine (ACh) in various cell types in the rabbit heart. ACh increased PGI2 synthesis measured as 6-keto-PGF1α, in cultured coronary endothelial cells and freshly dissociated ventricular myocytes in a dose dependent manner but not in cultured coronary smooth muscle cells of rabbit heart. McN-A-343, a partially selective M1 muscarinic ACh receptor (mAChR) agonist, did not alter 6-keto-PGF1α synthesis in these cell types. ACh induced 6-keto-PGF1α synthesis in coronary endothelial cells and ventricular myocytes was not altered by a low concentration (10?8 M) of pirenzipine, an M1 mAChR antagonist but was reduced by a higher concentration (10?6 M). In coronary endothelial cells ACh induced 6-keto-PGF1α production was reduced by hexahydro-sila-difendial (HHSiD), an M3 mAChR antagonist, and in ventricular myocytes by both 11-(2-[(di-ethylamino) methyl]-1-piperidinyl]acetyl-5,11-dihydro-6-H-pyrido-[2,3-b]-benzodiazepine-6 one] (AF-DX 116), an M2 receptor antagonist, and HHSiD. The decrease by ACh of isoporterenol stimulated cAMP accumulation was minimized by AF-DX 116 but not by HHSiD or pirenzipine. Pertussis toxin treatment minimized ACh induced decrease in isoproterenol stimulated rise in cAMP and ATP release, but not ACh induced 6-keto-PGF1α synthesis. These data suggest that ACh stimulates prostacyclin production in coronary endothelial cells via M3 mAChR and in ventricular myocytes M2 and M3 mAChR. Moreover, ACh induced decrease in cAMP, but not the increase in 6-keto-PGF1α production, is mediated by pertussis toxin sensitive Gαi proteins in these cells.  相似文献   

19.
Catecholamine secretion in the bovine adrenal medulla is evoked largely by nicotinic receptor activation. However, bovine adrenal medulla also contain muscarinic receptors that mediate several cell responses. To understand the physiological role of muscarinic receptors in the bovine adrenal medulla it is important to identify the pharmacological subtypes present in this tissue. For this, we analyzed the abilities of differnt selective muscarinic antagonists in displacing the binding of the non-selective antagonist [3H] quinuclidinyl benzylate to an enriched plasma membrane fraction prepared from bovine adrenal medulla. All the selective antagonists bind at least two bindings sites with different affinities. The binding profile of the sites with high proportion is similar to the M2 subtype and those present in low proportion have a M1 profile. However, some variation in the proportion of the sites for the different ligands suggest the presence of the third pharmacological subtype (M3). We conclude that the sites in high proportion (60–80%) correspond to M2 muscarinic subtypes, and the rest is constitute by M1 plus M3 subtypes. The presence of multiplicity of subtypes in the adrenal medulla membranes suggests a diversity of functions of muscarinic receptors in the adrenal gland.Abbreviations [3H]QNB [3H]quinuclidinyl benzylate - HHSiD hexahydro-siladifenidol-hydrochloride - AF-DX 116 11-[[2-(diethylamino)methyl]]-1-piperidinyl]-5,11-dihydro-6H-pyrido[2,3,-b][1,4]benzodiazepin-6-one - 4-DAMP 4-diphenylacetoxy-N-methyl piperidine methobromide  相似文献   

20.
The binding of [3H]pirenzepine to a human neuroblastoma cell line (SH-SY5Y) and its correlation with hydrolysis of phosphatidylinositols were characterized. Specific [3H]pirenzepine binding to intact cells was rapid, reversible, saturable, and of high affinity. Kinetic studies yielded association (k+1) and dissociation (k-1) rate constants of 5.2 +/- 1.4 X 10(6) M-1 min-1 and 1.1 +/- 0.06 X 10(-1) min-1, respectively. Saturation experiments revealed a single class of binding sites (nH = 1.1) for the radioligand with a total binding capacity of 160 +/- 33 fmol/mg protein and an apparent dissociation constant of 13 nM. The specific [3H]pirenzepine binding was inhibited by the presence of selected muscarinic drugs. The order of antagonist potency was atropine sulfate greater than pirenzepine greater than AF-DX 116, with K0.5 of 0.53 nM, 2.2 nM, and 190 nM, respectively. The binding properties of [3H](-)-quinuclidinyl benzilate and its quaternary derivative [3H](-)-methylquinuclidinyl benzilate were also investigated. The muscarinic agonist carbachol stimulated formation of inositol phosphates which could be inhibited by muscarinic antagonists. The inhibition constants of pirenzepine and AF-DX 116 were 11 nM and 190 nM, respectively. In conclusion, we show that the nonclassical muscarinic receptor antagonist [3H]pirenzepine identifies a high-affinity population of muscarinic sites which is associated with hydrolysis of phosphatidylinositols in this human neuroblastoma cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号