首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
2.
Gene duplication and mobile genetic elements in the morning glories   总被引:11,自引:0,他引:11  
Hoshino A  Johzuka-Hisatomi Y  Iida S 《Gene》2001,265(1-2):1-10
We review gene duplication and subsequent structural and functional divergence in the anthocyanin biosynthesis genes in the Japanese and common morning glories and discuss their evolutionary implications. These plants appear to contain at least six copies of the CHS gene and three tandem copies of the DFR gene. Of these, the CHS-D and DFR-B genes are mainly responsible for flower pigmentation and mutations in these genes confer white flowers. We compared the genomic sequences of these duplicated genes between the two morning glories and found small mobile element-like sequences (MELSs) and direct repeats (DRs) in introns and intergenic regions. The results indicate that the MELS elements and DRs play significant roles in divergence after gene duplication. We also discuss DNA rearrangements occurring before and after speciation of these morning glories. DNA transposable elements belonging to the Ac/Ds or En/Spm families have acted as major spontaneous mutagens in these morning glories. We also describe the structural features of the first Mu-related element found in the morning glories and polymorphisms found in the same species.  相似文献   

3.
4.
 The a-3 flecked [J] variegated line of Japanese morning glory bearing white flowers with normal-colored flecks and sectors has been shown to carry a 6.4-kb transposable element, Tpn1, inserted within the DFR-B gene, one of the anthocyanin biosynthesis genes encoding dihydroflavonol 4-reductase (DFR). The a flaked [M] variegated line of morning glory also bears white flowers with normal-colored flakes and sectors, and it was shown to carry multiple DNA rearrangements, including insertions of mobile element-like sequences, MELSIP1 and MELSIP2, in its DFR gene region. Unlike the a-3 flecked [J] mutation, the mutable a flaked [M] allele exhibited incomplete dominance. Interestingly, not only intensely colored flakes but also white spots and sectors were often observed in lightly colored flowers of morning glory in the heterozygous state A[M]/a flaked [M]. The interspecific F1 hybrids between Japanese morning glory and morning glory carrying both a-3 flecked [J]/A-3[M] and A[J]/ a flaked [M] in the heterozygous condition bear lightly colored flowers with intensely colored sectors as well as white flakes. The results clearly demonstrated that the DFR gene in the a flaked [M] line of morning glory is active and complements the DFR-B gene carrying Tpn1 in the a-3 flecked [J] line of Japanese morning glory. Interspecific allelic interactions between the mutable a flaked [M] gene of morning glory and the corresponding wild-type A[J] gene of Japanese morning glory resulted in incomplete dominance and the formation of white flakes and sectors. The appearance of the white flakes may be due to a somatic mutation of the A[J] gene. Received: 4 November 1996/Accepted: 13 December 1996  相似文献   

5.
6.
7.
A pathogenic isolate of Fusarium, F. oxysporum f. sp. batatas O-17 (PF), causes wilt disease in leaf etiolation in sweet potato (Ipomoea batatas) and morning glory (Ipomoea tricolor). Extracts from PF cultures were screened for phytotoxic components using a growth inhibition assay with morning glory seedlings. The extracts were fractionated using differential solvent extraction and two active compounds, ergosterol and fusalanipyrone, were isolated from the less-polar fraction. Growth inhibition of morning glory seedlings showed a sigmoidal dose-response relationship, with fusalanipyrone exhibiting a two order of magnitude higher EC50 value than ergosterol (18 nM and 1.6 microM, respectively). Both compounds showed lower growth inhibition activity towards lettuce seedlings (Lactuca sativa). This study provides information on the phytotoxic components of PF and discusses the mechanism behind PFf-induced phytotoxicity.  相似文献   

8.
The Japanese morning glory has an extensive history of genetic studies. Many mutants in the colors and shapes of its flowers and leaves have been isolated since the 17th century, and more than 200 genetic loci have been localized for the 10 linkage groups. They include over 20 mutable loci, several with variegated flower phenotypes. In a line of Japanese morning glory bearing variegated flowers called flecked, a transposable element of 6.4 kb, termed Tpn1, was found within one of the anthocyanin biosynthesis genes encoding dihydroflavonol-4-reductase (DFR). The 6.4-kb element carries 28-bp perfect terminal inverted repeats, the outer 13 bp being identical to those of the maize transposable element Suppressor-mutator/Enhancer. It is flanked by 3-bp direct repeats within the second intron of the DFR gene, 9 bp upstream of the third exon. When somatic and germinal excision occurs, it produces excision sequences characteristic of plant transposable elements. Cosegregation data of the variegated flower phenotype and the DFR gene carrying Tpn1 indicated that the mutable phenotype is due to excision of Tpn1 from the DFR gene. Sequences homologous to Tpn1 are present in multiple copies in the genome of Japanese morning glory.  相似文献   

9.
10.
Life cycles of plants including tuberization and flowering are strongly related to environmental factors such as photoperiod and temperature. Theobroxide induces potato tuber formation and flower bud formation of morning glory under non-inductive conditions and stimulates the activity of lipoxygenase (LOX). In this study, to understand the LOX activity more systematically, the relationships between LOX activity and light and temperature, which effects potato tuber and flower-bud formation, have been investigated. The results showed that LOX activity in morning glory was greatly enhanced up to 30 min and then declined after switching from the light to the dark condition, while the activity did not vary when switching from the dark to the light condition. In addition, the temperature profile of measured LOX activity in the potato and morning glory plants was nearly consistent with the time taken to form potato tubers and flower buds in morning glory, respectively, at different growing temperatures. These results strongly suggest that LOX activity is directly connected with light and temperature to regulate the formation of tubers and flower-buds.  相似文献   

11.
In planta the enzymatic activity of apoplastic and vacuolar invertases is controlled by inhibitory proteins. Although these invertase inhibitors (apoplastic and vacuolar forms) have been implicated as contributing to resistance to cold-induced sweetening (CIS) in tubers of potato (Solanum tuberosum L.), there is a lack of information on the structure and allelic diversity of the apoplastic invertase inhibitor genes. We have PCR-isolated and sequenced the alleles of the apoplastic invertase inhibitor gene (Stinh1) from three tetraploid potato genotypes: 1021/1 (a genotype with very high tolerance to CIS), 'Karaka' and 'Summer Delight' (two cultivars that are highly susceptible to CIS). In total, five alleles were identified in these genotypes, of which four (Stinh1-c, Stinh1-d, Stinh1-e, Stinh1-f) were novel. An analysis of allele diversity was conducted by incorporating previously published sequences of apoplastic invertase inhibitors from potato. Eight alleles were assessed for sequence polymorphism in the two exons and the single hypervariable intron. Contrary to the hypervariable intron, only 65 single nucleotide polymorphisms were observed in the exons, of which 42 confer amino acid substitutions. Phylogenetic analysis of amino acid sequences indicates that the alleles of the invertase inhibitor are highly conserved amongst members of the Solanaceae family.  相似文献   

12.
13.
Induction of some plant organs including tubers and flower buds begins with sensing environmental cues, such as photoperiod and temperature in the leaves. Theobroxide has been shown to induce potato tuberization and flower-bud formation in morning glory under non-inductive photoperiodic conditions, stimulating the activity of lipoxygenase (LOX) and the synthesis of jasmonic acid (JA). In the present study, the ability of theobroxide to overcome the inhibitory effect of unfavorable high temperature on the induction of tubers in potato and flower buds in morning glory was examined. Both tuber induction and flower-bud formation under non-inductive high temperatures were promoted by the application of theobroxide at a high concentration. However, although theobroxide treatment resulted in an increase in fresh weight during potato tuber growth at 30°C, morning glory plants treated with theobroxide at 35°C failed to bloom, implying that theobroxide may assist only in flower-bud formation.  相似文献   

14.
游录鹏  苗婧  邹爱兰  戚金亮  杨永华 《遗传》2012,34(4):107-116
马铃薯抗晚疫病基因Rpi-blb2是来源于马铃薯野生种Solanum bulbocastanum中的一个具有广谱抗性的NBS-LRR类抗病基因。文章用PCR的方法从20个高抗晚疫病的马铃薯栽培种和20个高感晚疫病的马铃薯栽培种以及7个马铃薯野生种中克隆了Rpi-blb2基因的LRR区段。采用生物信息学方法对这些序列的相似性、多态性位点、核酸多样性指数等参数进行了分析,发现Rpi-blb2的LRR区域在核酸水平上变异程度很高,而且存在多处热点突变位点;通过对该区域的Ka/Ks值进行估算,发现Rpi-blb2的LRR区域总体上受到纯化选择,功能保守,但是LRR区域的不同部位所受到的选择压力却不尽相同。同时,从核酸水平来看,Rpi-blb2基因的LRR区域在马铃薯栽培种和马铃薯野生种之间没有发现明显的分化。  相似文献   

15.
You LP  Miao J  Zou AL  Qi JL  Yang YH 《遗传》2012,34(4):485-494
Rpi-blb2, which is originally derived from Solanum bulbocastanum, is a broad-spectrum potato late blight resistance gene and belongs to the NBS-LRR family. Here, the LRR homologues of Rpi-blb2 were cloned with PCR method from 40 potato cultivars (including 20 resistant potato cultivars and 20 susceptible ones) and 7 wild potato populations. Then, the similarities of the sequences, polymorphic (segregating) sites, and nucleotide diversities were estimated by bioinformatic methods. The results showed that high nucleotide polymorphism and some hot-spot mutations existed in the LRR region of Rpi-blb2. The test of Ka/Ks ratio showed that the function of LRR was conserved because of the purifying selection, although different positions of the Rpi-blb2 LRR region were under different selection pressures. Moreover, the LRR region of Rpi-blb2 had no clear differentiation between the cultivated and wild potatoes.  相似文献   

16.
17.
Sweet potato virus disease (SPVD) was common (25–30% average incidences), and farmers recognised it as an important disease, in sweet potato crops in southern Mpigi, Masaka and Rakai Districts in Uganda, but SPVD was rare in Soroti and Tororo Districts. Whiteflies, which are the vector of sweet potato chlorotic stunt crinivirus (SPCSV) a component cause of SPVD, were correspondingly common on sweet potato crops in Mpigi and rare on crops in Tororo. However, aphids, which are the vectors of sweet potato feathery mottle potyvirus (SPFMV), the other component cause of SPVD, were not found colonising sweet potato crops, and itinerant alate aphids may be the means of transmission. Different sweet potato cultivars were predominant in the different districts surveyed and four local cultivars obtained from Kanoni in S. Mpigi, where whiteflies and SPVD were common, were more resistant to SPVD than four cultivars from Busia in Tororo District, where whiteflies and SPVD were rare. However, nationally released cultivars were even more resistant than the local cultivars from Kanoni. Yield results and interviews with farmers indicated that farmers in S. Mpigi were making compromises in their choice of cultivars to grow, some key factors being SPVD susceptibility, and the yield, taste, and marketability, duration of harvest and in-ground storability of the storage roots. These compromises need to be included in an assessment of yield losses attributable to SPVD.  相似文献   

18.
Chen G  Pan D  Zhou Y  Lin S  Ke X 《Journal of biosciences》2007,32(4):713-721
Most plant disease-resistance genes (R-genes) isolated so far encode proteins with a nucleotide binding site (NBS) domain and belong to a superfamily. NBS domains related to R-genes show a highly conserved backbone of an amino acid motif, which makes it possible to isolate resistance gene analogues (RGAs) by degenerate primers. Degenerate primers based on the conserved motif (P-loop and GLPL) of the NBS domain from R -genes were used to isolate RGAs from the genomic DNA of sweet potato cultivar Qingnong no.2. Five distinct clusters of RGAs (22 sequences) with the characteristic NBS representing a highly diverse sample were identified in sweet potato genomic DNA. Sequence identity among the 22 RGA nucleotide sequences ranged from 41.2% to 99.4%, while the deduced amino acid sequence identity from the 22 RGAs ranged from 20.6%to 100%. The analysis of sweet potato RGA sequences suggested mutation as the primary source of diversity. The phylogenetic analyses for RGA nucleotide sequences and deduced amino acids showed that RGAs from sweet potato were classified into two distinct groups--toll and interleukin receptor-1 (TIR)-NBS-LRR and non-TIR-NBS-LRR. The high degree of similarity between sweet potato RGAs and NBS sequences derived from R-genes cloned from tomato, tobacco, flax and potato suggest an ancestral relationship. Further studies showed that the ratio of non-synonymous to synonymous substitution within families was low. These data obtained from sweet potato suggest that the evolution of NBS-encoding sequences in sweet potato occur by the gradual accumulation of mutations leading to purifying selection and slow rates of divergence within distinct R-gene families.  相似文献   

19.
20.
Some mutant phenotypes are known to be unstable somatically and germinally due to the insertion of transposable elements in the Japanese morning glory (Ipomoea nil). Several transposable elements that cause mutable phenotypes have recently been isolated. All of these elements show characteristic features of the En/Spm (Enhancer/Suppressor-mutator) or CACTA family. They carry common 28 bp terminal inverted repeats and subterminal repetitive regions and are known as the Tpn1 family. All of these elements are thought to be non-autonomous and mobilized by unidentified autonomous element(s). Using a probe corresponding to the subterminal region, we isolated many genomic Tpn clones, 120 of which were classified into 28 types based on their restriction maps. The copy number of the Tpn1 family was estimated to be between 500 and 1,000 copies per haploid genome. We then determined the complete sequences of 28 representative clones from each Tpn type. Most Tpn elements showed a high degree of similarity to plant genes in their internal sequences, suggesting that the Tpn1 family captured host gene sequences during the process of evolution. Detailed analyses of Tpn104 in comparison with an orthologous host gene InAP2B confirmed this assumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号