首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Yan W  Gale MJ  Tan SL  Katze MG 《Biochemistry》2002,41(15):4938-4945
P58(IPK) was discovered as an inhibitor of the interferon-induced, protein kinase, PKR. Upon virus infection, PKR can, as part of the host defense system, inhibit mRNA translation by phosphorylating the alpha subunit of protein synthesis eukaryotic initiation factor 2 (eIF-2alpha). We previously found that influenza virus recruits the cellular P58(IPK) co-chaperone to inhibit PKR activity and thus facilitate viral protein synthesis. P58(IPK) contains nine tetratricopeptide repeat (TPR) motifs in addition to the highly conserved J domain found in all DnaJ chaperone family members. To define the role of molecular chaperones in regulating cell growth in addition to PKR regulation, we performed a detailed analysis of the P58(IPK) J domain. Using growth rescue assays, we found that the P58(IPK) J domain substituted for the J domains of other DnaJ proteins, including DnaJ in Escherichia coli and Ydj1 in Saccharomyces cerevisiae. This is the first time a cellular J domain from a mammalian DnaJ family member was shown to be functional in both prokaryotic DnaJ and eukaryotic Ydj1 constructs. Furthermore, point mutations within the conserved HPD residue cluster of the P58(IPK) J domain disrupted P58(IPK) J function including stimulation of ATPase activity of Hsp70. However, the P58(IPK) HPD mutants still inhibited PKR activity and thus supported cell growth in a yeast rescue assay. Overexpression of the HPD mutants of P58(IPK), similar to their wild-type counterpart, also stimulated mRNA translation in a mammalian cell system. Taken together, our data necessitate a model of P58(IPK) inhibition of PKR kinase activity and stimulation of mRNA translation, which does not require classical J domain function found in the DnaJ molecular chaperone family.  相似文献   

2.
Zuotin, a ribosome-associated DnaJ molecular chaperone.   总被引:14,自引:0,他引:14       下载免费PDF全文
W Yan  B Schilke  C Pfund  W Walter  S Kim    E A Craig 《The EMBO journal》1998,17(16):4809-4817
Correct folding of newly synthesized polypeptides is thought to be facilitated by Hsp70 molecular chaperones in conjunction with DnaJ cohort proteins. In Saccharomyces cerevisiae, SSB proteins are ribosome-associated Hsp70s which interact with the newly synthesized nascent polypeptide chain. Here we report that the phenotypes of an S.cerevisiae strain lacking the DnaJ-related protein Zuotin (Zuo1) are very similar to those of a strain lacking Ssb, including sensitivities to low temperatures, certain protein synthesis inhibitors and high osmolarity. Zuo1, which has been shown previously to be a nucleic acid-binding protein, is also a ribosome-associated protein localized predominantly in the cytosol. Analysis of zuo1 deletion and truncation mutants revealed a positive correlation between the ribosome association of Zuo1 and its ability to bind RNA. We propose that Zuo1 binds to ribosomes, in part, by interaction with ribosomal RNA and that Zuo1 functions with Ssb as a chaperone on the ribosome.  相似文献   

3.
A number of RNA-containing viruses such as hepatitis C (HCV) and poliovirus (PV) that infect human beings and cause serious diseases use a common mechanism for synthesis of viral proteins, termed internal ribosome entry site (IRES)-mediated translation. This mode of translation initiation involves entry of 40S ribosome internally to the 5' untranslated region (UTR) of viral RNA. Cap-dependent translation of cellular mRNAs, on the other hand, requires recognition of mRNA 5' cap by the translation machinery. In this review, we discuss two inhibitors that specifically inhibit viral IRES-mediated translation without interfering with cellular cap-dependent translation. We present evidence, which suggest that one of these inhibitors, a small RNA (called IRNA) originally isolated from the yeast Saccharomyces cerevisiae, inhibits viral IRES-mediated translation by sequestering both noncanonical transacting factors and canonical initiation factors required for IRES-mediated translation. The other inhibitor, a small peptide from the lupus autoantigen La (called LAP), appears to block binding of cellular transacting factors to viral IRES elements. These results suggest that it might be possible to target viral IRES-mediated translation for future development of therapeutic agents effective against a number of RNA viruses including HCV that exclusively use cap-independent translation for synthesis of viral proteins.  相似文献   

4.
5.
M Altmann  N Schmitz  C Berset    H Trachsel 《The EMBO journal》1997,16(5):1114-1121
In the yeast Saccharomyces cerevisiae a small protein named p20 is found associated with translation initiation factor eIF4E, the mRNA cap-binding protein. We demonstrate here that p20 is a repressor of cap-dependent translation initiation. p20 shows amino acid sequence homology to a region of eIF4G, the large subunit of the cap-binding protein complex eIF4F, which carries the binding site for eIF4E. Both, eIF4G and p20 bind to eIF4E and compete with each other for binding to eIF4E. The eIF4E-p20 complex can bind to the cap structure and inhibit cap-dependent but not cap-independent translation initiation: the translation of a mRNA with the 67 nucleotide omega sequence of tobacco mosaic virus in its 5' untranslated region (which was previously shown to render translation cap-independent) is not inhibited by p20. Whereas the translation of the same mRNA lacking the omega sequence is strongly inhibited by p20. Disruption of CAF20, the gene encoding p20, stimulates the growth of yeast cells, overexpression of p20 causes slower growth of yeast cells. These results show that p20 is a regulator of eIF4E activity which represses cap-dependent initiation of translation by interfering with the interaction of eIF4E with eIF4G, e.g. the formation of the eIF4F-complex.  相似文献   

6.
Translation initiation of some viral and cellular mRNAs occurs by ribosome binding to an internal ribosome entry site (IRES). Internal initiation mediated by the hepatitis C virus (HCV) IRES in Saccharomyces cerevisiae was shown by translation of the second open reading frame in a bicistronic mRNA. Introduction of a single base change in the HCV IRES, known to abrogate internal initiation in mammalian cells, abolished translation of the second open reading frame. Internal initiation mediated by the HCV IRES was independent of the nonsense-mediated decay pathway and the cap binding protein eIF4E, indicating that translation is not a result of mRNA degradation or 5'-end-dependent initiation. Human La protein binds the HCV IRES and is required for efficient internal initiation. Disruption of the S. cerevisiae genes that encode La protein orthologs and synthesis of wild-type human La protein in yeast had no effect on HCV IRES-dependent translation. Polypyrimidine tract-binding protein (Ptb) and poly-(rC)-binding protein 2 (Pcbp2), which may be required for HCV IRES-dependent initiation in mammalian cells, are not encoded within the S. cerevisiae genome. HCV IRES-dependent translation in S. cerevisiae was independent of human Pcbp2 protein and stimulated by the presence of human Ptb protein. These findings demonstrate that the genome of S. cerevisiae encodes all proteins necessary for internal initiation of translation mediated by the HCV IRES.  相似文献   

7.
8.
In eukaryotes, proteins homologous to the bacterial DnaJ protein are involved in regulation of the Hsp70 molecular chaperones, which are implicated in a variety of protein biogenesis pathways. We report herewith the molecular characterization of a T. cruzi DnaJ gene, termed TcJ6, encoding a protein that displays high sequence homology with the Saccharomyces cerevisiae Sis1 co-chaperone required for the initiation of translation. TcJ6 protein was expressed as a polypeptide of 36.5 kDa at a constant level during parasite differentiation and was associated to the cytoplasmic fraction. We showed that overexpression of TcJ6 complemented a temperature-sensitive yeast sis1 mutant. In addition, sucrose gradient sedimentation analysis of polysomes from T. cruzi and a yeast mutant overexpressing TcJ6p showed that the trypanosomal co-chaperone was closely associated with ribosomal subunits, 80 S monosomes and the smaller polysomes, as observed for Sis1p. Furthermore, in T. cruzi TcJ6p was also found to be preferentially concentrated around the nucleus, giving a speckled staining pattern. This suggests that TcJ6p is associated with the endoplasmic reticulum. Taken together, these data suggest that the trypanosomal DnaJ is involved in initiation of translation.  相似文献   

9.
The DnaK, DnaJ, and GrpE proteins of Escherichia coli have been universally conserved across the biological kingdoms and work together to constitute a highly efficient molecular chaperone machine. We have examined the extent of functional conservation of Saccharomyces cerevisiae Ssc1p, Mdj1p, and Mge1p by analyzing their ability to substitute for their corresponding E. coli homologs in vivo. We found that the expression of yeast Mge1p, the GrpE homolog, allowed for the deletion of the otherwise essential grpE gene of E. coli, albeit only up to 40 degrees C. The inability of Mge1p to substitute for GrpE at very high temperatures is consistent with our previous finding that it specifically failed to stimulate DnaK's ATPase at such extreme conditions. In contrast to Mge1p, overexpression of Mdj1p, the DnaJ homolog, was lethal in E. coli. This toxicity was specifically relieved by mutations which affected the putative zinc binding region of Mdj1p. Overexpression of a truncated version of Mdj1p, containing the J- and Gly/Phe-rich domains, partially substituted for DnaJ function at high temperature. A chimeric protein, consisting of the J domain of Mdj1p coupled to the rest of DnaJ, acted as a super-DnaJ protein, functioning even more efficiently than wild-type DnaJ. In contrast to the results with Mge1p and Mdj1p, both the expression and function of Ssc1p, the DnaK homolog, were severely compromised in E. coli. We were unable to demonstrate any functional complementation by Ssc1p, even when coexpressed with its Mdj1p cochaperone in E. coli.  相似文献   

10.
DnaJ homologues function in cooperation with hsp70 family members in various cellular processes including intracellular protein trafficking and folding. Three human DnaJ homologues present in the cytosol have been identified: dj1 (hsp40/hdj-1), dj2 (HSDJ/hdj-2), and neuronal tissue-specific hsj1. dj1 is thought to be engaged in folding of nascent polypeptides, whereas functions of the other DnaJ homologues remain to be elucidated. To investigate roles of dj2 and dj1, we developed a system of chaperone depletion from and readdition to rabbit reticulocyte lysates. Using this system, we found that heat shock cognate 70 protein (hsc70) and dj2, but not dj1, are involved in mitochondrial import of preornithine transcarbamylase. Bacterial DnaJ could replace mammalian dj2 in mitochondrial protein import. We also tested the effects of these DnaJ homologues on folding of guanidine-denatured firefly luciferase. Unexpectedly, dj2, but not dj1, together with hsc70 refolded the protein efficiently. We propose that dj2 is the functional partner DnaJ homologue of hsc70 in the mammalian cytosol. Bacterial DnaJ protein could replace mammalian dj2 in the refolding of luciferase. Thus, the cytosolic chaperone system for mitochondrial protein import and for protein folding is highly conserved, involving DnaK and DnaJ in bacteria, Ssa1–4p and Ydj1p in yeast, and hsc70 and dj2 in mammals.  相似文献   

11.
The replication of positive-strand RNA viruses involves not only viral proteins but also multiple cellular proteins and intracellular membranes. In both plant cells and the yeast Saccharomyces cerevisiae, brome mosaic virus (BMV), a member of the alphavirus-like superfamily, replicates its RNA in endoplasmic reticulum (ER)-associated complexes containing viral 1a and 2a proteins. Prior to negative-strand RNA synthesis, 1a localizes to ER membranes and recruits both positive-strand BMV RNA templates and the polymerase-like 2a protein to ER membranes. Here, we show that BMV RNA replication in S. cerevisiae is markedly inhibited by a mutation in the host YDJ1 gene, which encodes a chaperone Ydj1p related to Escherichia coli DnaJ. In the ydj1 mutant, negative-strand RNA accumulation was inhibited even though 1a protein associated with membranes and the positive-strand RNA3 replication template and 2a protein were recruited to membranes as in wild-type cells. In addition, we found that in ydj1 mutant cells but not wild-type cells, a fraction of 2a protein accumulated in a membrane-free but insoluble, rapidly sedimenting form. These and other results show that Ydj1p is involved in forming BMV replication complexes active in negative-strand RNA synthesis and suggest that a chaperone system involving Ydj1p participates in 2a protein folding or assembly into the active replication complex.  相似文献   

12.
Previously, it has been reported that a mammalian protein disulfide isomerase (PDI), when expressed on a single copy number plasmid, can rescue growth of a PDI1-disrupted yeast. However, here, for the first time we demonstrated by tetrad analysis that human PDI (hPDI) is unable to replace yeast PDI (yPDI) when hPDI cDNA is integrated into the yeast chromosome. This observation indicates that hPDI is not functionally equivalent to yPDI. Estimation of the actual copy number of the plasmid, as well as comparison of isomerase and chaperone activities between human and yeast PDI homologues, indicates that one copy of hPDI cDNA is not sufficient to rescue the PDI1-disrupted strain. Notably, the isomerase activities of yPDI family proteins, Mpd1p, Mpd2p, and Eug1p, were extremely low, although yPDI itself exhibited twice as much isomerase activity as hPDI in vitro. Moreover, with the exception of Mpd1p, all hPDI and yPDI family proteins had chaperone activity, this being particularly strong in the case of yPDI and Mpd2p. These observations indicate that the growth of Saccharomyces cerevisiae is completely dependent on the isomerase activity of yPDI.  相似文献   

13.
The cellular homologs of the Harvey and Kirsten murine sarcoma virus oncogenes comprise a multigene family, ras, that displays striking evolutionary conservation. We recently reported [DeFeo-Jones et al., Nature (London) 306:707-709, 1983] the cloning of two ras homologs from the yeast Saccharomyces cerevisiae. The nucleotide sequences of these genes predict polypeptides that show remarkable homology to p21, the mammalian ras gene product. We have also found proteins in yeast lysates with serological cross-reactivity to p21 (Papageorge et al., Mol. Cell. Biol. 4:23-29, 1984). In this work, we explored the relationship between the immunoprecipitated proteins and the yeast ras genes. We show that both ras genes are expressed in the wild-type cell. Furthermore, we demonstrate by in vitro translation of hybrid-selected RASsc1 mRNA and immunoprecipitation of the translation products that the cloned RASsc1 gene encodes the proteins immunoprecipitated from yeast lysates by anti-p21 monoclonal antibody. Finally, we used anti-p21 monoclonal antibodies to detect a guanine nucleotide binding activity in yeast lysates. The structural and biochemical homologies between ras gene products of S. cerevisiae and mammalian cells suggest that information obtained by genetic analysis of ras function in a lower eucaryote should be applicable to higher organisms as well.  相似文献   

14.
Nonsense-mediated mRNA decay (NMD), also called mRNA surveillance, is an important pathway used by all organisms that have been tested to degrade mRNAs that prematurely terminate translation and, as a consequence, eliminate the production of aberrant proteins that could be potentially harmful. In mammalian cells, NMD appears to involve splicing-dependent alterations to mRNA as well as ribosome-associated components of the translational apparatus. To date, human (h) Upf1 protein (p) (hUpf1p), a group 1 RNA helicase named after its Saccharomyces cerevisiae orthologue that functions in both translation termination and NMD, has been the only factor shown to be required for NMD in mammalian cells. Here, we describe human orthologues to S. cerevisiae Upf2p and S. cerevisiae Upf3p (Caenorhabditis elegans SMG-4) based on limited amino acid similarities. The existence of these orthologues provides evidence for a higher degree of evolutionary conservation of NMD than previously appreciated. Interestingly, human orthologues to S. cerevisiae Upf3p (C. elegans SMG-4) derive from two genes, one of which is X-linked and both of which generate multiple isoforms due to alternative pre-mRNA splicing. We demonstrate using immunoprecipitations of epitope-tagged proteins transiently produced in HeLa cells that hUpf2p interacts with hUpf1p, hUpf3p-X, and hUpf3p, and we define the domains required for the interactions. Furthermore, we find by using indirect immunofluorescence that hUpf1p is detected only in the cytoplasm, hUpf2p is detected primarily in the cytoplasm, and hUpf3p-X localizes primarily to nuclei. The finding that hUpf3p-X is a shuttling protein provides additional indication that NMD has both nuclear and cytoplasmic components.  相似文献   

15.
Hepatitis C virus (HCV) infection frequently leads to chronic hepatitis and cirrhosis of the liver and has been linked to development of hepatocellular carcinoma. We previously identified a small yeast RNA (IRNA) capable of specifically inhibiting poliovirus (PV) internal ribosome entry site (IRES)-mediated translation. Here we report that IRNA specifically inhibits HCV IRES-mediated translation both in vivo and in vitro. A number of human hepatoma (Huh-7) cell lines expressing IRNA were prepared and characterized. Constitutive expression of IRNA was not detrimental to cell growth. HCV IRES-mediated cap-independent translation was markedly inhibited in cells constitutively expressing IRNA compared to control hepatoma cells. However, cap-dependent translation was not significantly affected in these cell lines. Additionally, Huh-7 cells constitutively expressing IRNA became refractory to infection by a PV-HCV chimera in which the PV IRES is replaced by the HCV IRES. In contrast, replication of a PV-encephalomyocarditis virus (EMCV) chimera containing the EMCV IRES element was not affected significantly in the IRNA-producing cell line. Finally, the binding of the La autoantigen to the HCV IRES element was specifically and efficiently competed by IRNA. These results provide a basis for development of novel drugs effective against HCV infection.  相似文献   

16.
17.
Previously, we demonstrated that treatment of monocytic cells with IFN-gamma causes release of ribosomal protein L13a from the 60S ribosome and subsequent translational silencing of Ceruloplasmin (Cp) mRNA. Here, evidence using cultured cells demonstrates that Cp mRNA silencing is dependent on L13a and that L13a-deficient ribosomes are competent for global translational activity. Human monocytic U937 cells were stably transfected with two different shRNA sequences for L13a and clonally selected for more than 98% abrogation of total L13a expression. Metabolic labeling of these cells showed rescue of Cp translation from the IFN-gamma mediated translational silencing activity. Depletion of L13a caused significant reduction of methylation of ribosomal RNA and of cap-independent translation mediated by Internal Ribosome Entry Site (IRES) elements derived from p27, p53, and SNAT2 mRNAs. However, no significant differences in the ribosomal RNA processing, polysome formation, global translational activity, translational fidelity, and cell proliferation were observed between L13a-deficient and wild-type control cells. These results support the notion that ribosome can serve as a depot for releasable translation-regulatory factors unrelated to its basal polypeptide synthetic function. Unlike mammalian cells, the L13a homolog in yeast is indispensable for growth. Thus, L13a may have evolved from an essential ribosomal protein in lower eukaryotes to having a role as a dispensable extra-ribosomal function in higher eukaryotes.  相似文献   

18.
19.
A fundamental problem in proteomics is the identification of protein complexes and their components. We have used analytical ultracentrifugation with a fluorescence detection system (AU-FDS) to precisely and rapidly identify translation complexes in the yeast Saccharomyces cerevisiae. Following a one-step affinity purification of either poly(A)-binding protein (PAB1) or the large ribosomal subunit protein RPL25A in conjunction with GFP-tagged yeast proteins/RNAs, we have detected a 77S translation complex that contains the 80S ribosome, mRNA, and components of the closed-loop structure, eIF4E, eIF4G, and PAB1. This 77S structure, not readily observed previously, is consistent with the monosomal translation complex. The 77S complex abundance decreased with translational defects and following the stress of glucose deprivation that causes translational stoppage. By quantitating the abundance of the 77S complex in response to different stress conditions that block translation initiation, we observed that the stress of glucose deprivation affected translation initiation primarily by operating through a pathway involving the mRNA cap binding protein eIF4E whereas amino acid deprivation, as previously known, acted through the 43S complex. High salt conditions (1M KCl) and robust heat shock acted at other steps. The presumed sites of translational blockage caused by these stresses coincided with the types of stress granules, if any, which are subsequently formed.  相似文献   

20.
Topoisomerase II plays an essential role in the segregation of chromosomes during cell division. It is also a major component of the nuclear matrix. Proteins that interact with and regulate this essential enzyme are of great interest. To investigate the role of proteins interacting with the N-terminal domain of the Saccharomyces cerevisiae topoisomerase II, we used a yeast two-hybrid protein interaction screen. We identified an interaction between the catalytic domain of the yeast protein kinase 1 enzyme (Pkc1) and the N-terminal domain of the S. cerevisiae topoisomerase II. The S. cerevisiae Pkc1 is the homologue of the mammalian calcium dependent PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号