首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of the pressure on the structure and stability of the D-galactose/D-glucose binding protein from Escherichia coli in the absence (GGBP) and in the presence (GGBP/Glc) of glucose was studied by Fourier transform infrared (FT-IR) spectroscopy and molecular dynamic (MD) simulations. FT-IR spectroscopy experiments showed that the protein beta-structures are more resistant than alpha-helices structures to pressure value increases. In addition, the infrared data indicated that the binding of glucose stabilizes the protein structure against high pressure values, and the protein structure does not completely unfold up to pressure values close to 9000 bar. MD simulations allow a prediction of the most probable configuration of the protein, consistent with the increasing pressures on the two systems. The detailed analysis of the structures at molecular level confirms that, among secondary structures, alpha-helices are more sensitive than beta-structures to the destabilizing effect of high pressure and that glucose is able to preserve the structure of the protein in the complex. Moreover, the evidence of the different resistance of the two domains of this protein to high pressure is investigated and explained at a molecular level, indicating the importance of aromatic amino acid in protein stabilization.  相似文献   

2.
The D-glucose/D-galactose-binding protein (GGBP) of Escherichia coli serves as an initial component for both chemotaxis toward D-galactose and D-glucose and high-affinity active transport of the two sugars. GGBP is a monomer with a molecular weight of about 32 kDa that binds glucose with micromolar affinity. The sugar-binding site is located in the cleft between the two lobes of the bilobate protein. In this work, the local and global structural features of GGBP were investigated by a strategic fluorescence labeling procedure and spectroscopic methodologies. A mutant form of GGBP containing the amino acid substitution Met to Cys at position 182 was realized and fluorescently labeled to probe the effect of glucose binding on the local and overall structural organization of the protein. The labeling of the N-terminus with a fluorescence probe as well as the protein intrinsic fluorescence were also used to obtain a complete picture of the GGBP structure and dynamics. Our results showed that the binding of glucose to GGBP resulted in no stabilizing effect on the N-terminus portion of GGBP and in a moderate stabilization of the protein matrix in the vicinity of the ligand-binding site. On the contrary, it was observed that the binding of glucose has a strong stabilization effect on the C-terminal domain of the GGBP structure.  相似文献   

3.
The effect of the depletion of calcium on the structure and thermal stability of the D-galactose/D-glucose-binding protein (GGBP) from Escherichia coli was studied by fluorescence spectroscopy and Fourier-transform infrared spectroscopy. The calcium-depleted protein (GGBP-Ca) was also studied in the presence of glucose (GGBP-Ca/Glc). The results show that calcium depletion has a small effect on the secondary structure of GGBP, and, in particular it affects a population of alpha-helices with a low exposure to solvent. Alternatively, glucose-binding to GGBP-Ca eliminates the effect induced by calcium depletion by restoring a secondary structure similar to that of the native protein. In addition, the infrared and fluorescence data obtained reveal that calcium depletion markedly reduces the thermal stability of GGBP. In particular, the spectroscopic experiments show that the depletion of calcium mainly affects the stability of the C-terminal domain of the protein. However, the binding of glucose restores the thermal stability of GGBP-Ca. The thermostability of GGBP and GGBP-Ca was also studied by molecular dynamics simulations. The simulation data support the spectroscopic results. New insights into the role of calcium in the thermal stability of GGBP contribute to a better understanding of the protein function and constitute important information for the development of biotechnological applications of this protein. Mutations and/or labelling of amino acid residues located in the protein C-terminal domain may affect the stability of the whole protein structure.  相似文献   

4.
Fluorescent protein biosensors, which exhibit a significant change in fluorescence based on the physical interaction between protein and ligand, may prove to be effective tools to measure a variety of analytes. In particular, real-time monitoring of glucose levels has potential applications in bioprocess monitoring and in minimizing health complications caused by diabetes. In this work, site-directed mutagenesis of the Escherichia coli glucose/galactose binding protein (GGBP) was used to engineer double-cysteine mutations that allowed selective covalent attachment of thiol-reactive dyes. Because GGBP undergoes a large conformational change on the addition of glucose, rational placement of these sites allowed glucose-dependent spatial realignment of the two fluorophores, which was monitored as a change in fluorescence intensity and extinction coefficients. Using targeted mutagenesis of the GGBP binding pocket, glucose biosensors were created to measure concentrations spanning five orders of magnitude (0.04-12,000 microM). The glucose biosensor retained its function in complex solutions that contained realistic concentrations of protein and potential interfering agents found in blood serum. In addition to the development of a fluorescent protein sensor for glucose, this work helps to expand the spectroscopic tools used for the detection of conformational movements within a single polypeptide chain.  相似文献   

5.
The effects of hydrostatic pressure on the structure and stability of porcine odorant-binding protein (pOBP) in the presence and absence of the odorant molecule 2-isobutyl-3-methoxypyrazine (IBMP) were studied by steady-state and time-resolved fluorescence spectroscopy as well as by molecular dynamics simulation. The authors found that the application of moderate values of hydrostatic pressure to pOBP solutions perturbed the microenvironment of Trp(16) and disrupted its highly quenched complex with Met(39). In addition, compared with the protein in the absence of IBMP, the MD simulations experiments carried out at different pressures highlighted the role of this ligand in stabilizing the Trp(16)/Met(39) interaction even at 2000 bar. The obtained results will assist for the tailoring of this protein as specific sensing element in a new class of fluorescence-based biosensors for the detection of explosives.  相似文献   

6.
A novel glucose-sensing molecule was created based on galactose/glucose-binding protein (GGBP). GGBP mutants at Asp14, a residue interacting with the 4th hydroxyl group of the sugar molecule, were constructed by mutagenesis to improve the ligand specificity of GGBP. The autofluorescence-based analysis of the binding abilities of these engineered GGBPs showed that the GGBP mutants Asp14Asn and Asp14Glu bound only to glucose in a concentration-dependent manner, without being affected by the presence of galactose. The Phe16Ala mutation, which leads to an increase in the K (d) value toward glucose, was then introduced into these two glucose-specific mutant GGBPs. One of the constructed GGBP double-mutants, Asp14Glu/Phe16Ala, had a glucose specificity with a K(d) value of 3.9 mM, which makes it suitable for use in the measurement of the physiological glucose concentration. Our results demonstrate that it is possible to construct a GGBP which specifically recognizes glucose and has a higher K(d) value and use it as a molecular recognition element of blood glucose monitoring systems by combining two different mutations based on the 3D structure of GGBP.  相似文献   

7.
In this work, we used fluorescence spectroscopy, molecular dynamics simulation, and Fourier transform infrared spectroscopy for investigating the effect of trehalose binding and maltose binding on the structural properties and the physical parameters of the recombinant D-trehalose/D-maltose binding protein (TMBP) from the hyperthermophilic archaeon Thermococcus litoralis. The binding of the two sugars to TMBP was studied in the temperature range 20 degrees-100 degrees C. The results show that TMBP possesses remarkable temperature stability and its secondary structure does not melt up to 90 degrees C. Although both the secondary structure itself and the sequence of melting events were not significantly affected by the sugar binding, the protein assumes different conformations with different physical properties depending whether maltose or trehalose is bound to the protein. At low and moderate temperatures, TMBP possesses a structure that is highly compact both in the absence and in the presence of two sugars. At about 90 degrees C, the structure of the unliganded TMBP partially relaxes whereas both the TMBP/maltose and the TMBP/trehalose complexes remain in the compact state. In addition, Fourier transform infrared results show that the population of alpha-helices exposed to the solvent was smaller in the absence than in the presence of the two sugars. The spectroscopic results are supported by molecular dynamics simulations. Our data on dynamics and stability of TMBP can contribute to a better understanding of transport-related functions of TMBP and constitute ground for targeted modifications of this protein for potential biotechnological applications.  相似文献   

8.
We have characterized stability and conformational dynamics of the calcium depleted D-galactose/D-glucose-binding protein (GGBP) from Escherichia coli. The structural stability of the protein was investigated by steady state and time resolved fluorescence, and far-UV circular dichroism in the temperature range from 20 degrees C to 70 degrees C. We have found that the absence of the Ca(2+) ion results in a significant destabilization of the C-terminal domain of the protein. In particular, the melting temperature decreases by about 10 degrees C with the simultaneous loss of the melting cooperativity. Time resolved fluorescence quenching revealed significant loosening of the protein when highly shielded Trp residue(s) became accessible to acrylamide at higher temperatures. We have documented a significant stabilizing effect of glucose that mostly reverts the effect of calcium, that is, the thermal stability of the protein increases by about 10 degrees C and the melting cooperativity is restored. Moreover, the protein structure remains compact with low amplitude of the segmental mobility up to high temperatures. We have used molecular dynamics to identify the structural feature responsible for changes in the temperature stability. Disintegration of the Ca(2+)-binding loop seems to be responsible for the loss of the stability in the absence of calcium. The new insights on the structural properties and temperature stability of the calcium depleted GGBP contribute to better understanding of the protein function and constitute important information for the development of new biotechnological applications of this class of proteins.  相似文献   

9.
Periplasmic expression screening is a selection technique used to enrich high-affinity proteins in Escherichia coli. We report using this screening method to rapidly select a mutated D-glucose/D-galactose-binding protein (GGBP) having low affinity to glucose. Wild-type GGBP has an equilibrium dissociation constant of 0.2 microM and mediates the transport of glucose within the periplasm of E. coli. The protein undergoes a large conformational change on binding glucose and, when labeled with an environmentally sensitive fluorophore, GGBP can relay glucose concentrations, making it of potential interest as a biosensor for diabetics. This use necessitates altering the glucose affinity of GGBP, bringing it into the physiologically relevant range for monitoring glucose in humans (1.7-33 mM). To accomplish this a focused library was constructed using structure-based site-saturation mutagenesis to randomize amino acids in the binding pocket of GGBP at or near direct H-bonding sites and screening the library within the bacterial periplasm. After selection, equilibrium dissociation constants were confirmed by glucose titration and fluorescence monitoring of purified mutants labeled site-specifically at E149C with the fluorophore IANBD (N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylene-diamine). The screening identified a single mutation A213R that lowers GGBP glucose affinity 5000-fold to 1 mM. Computational modeling suggested the large decrease in affinity was accomplished by the arginine side chain perturbing H-bonding and increasing the entropic barrier to the closed conformation. Overall, these experiments demonstrate the ability of structure-based site-saturation mutagenesis and periplasmic expression screening to discover low-affinity GGBP mutants having potential utility for measuring glucose in humans.  相似文献   

10.
A novel luminescence-based glucose-sensing molecule was created by combining a galactose-/glucose-binding protein (GGBP) with luciferase. The glucose-sensing luciferase (GlcLuc) was constructed using a GGBP fused with a large domain and a small domain of Firefly luciferase (Lluc and Sluc). The luminescence intensity-based analysis with E. coli recombinant protein showed that the GlcLuc had luciferase activity in glucose or galactose in a concentration-dependent manner (Kd = 3.9 μM for glucose and 11 μM for galactose), and that the increase in the activity saturated within one minute after the injection of the ligands. These results indicated that the conformation change of the GGBP moiety following the ligand binding effectively induced the reconstitution of the GGBP-fused split luciferase. The Asp459Asn mutation, which was expected to lead to a glucose specific binding ability, was then introduced into the GlcLuc. The GlcLuc mutant showed the luciferase activity increasing only with the increase of glucose concentration, but not with that of galactose. Our results demonstrate that the GGBP fused with a split luciferase, which is reconstituted rapidly and specifically in the presence of glucose, provides a novel glucose-sensing system based on luminescence and may also contribute to the construction of luminescence-based sensing molecules for other substrates using other PBPs.  相似文献   

11.
12.
Protein free energy landscapes remodeled by ligand binding   总被引:1,自引:0,他引:1       下载免费PDF全文
Glucose/galactose binding protein (GGBP) functions in two different larger systems of proteins used by enteric bacteria for molecular recognition and signaling. Here we report on the thermodynamics of conformational equilibrium distributions of GGBP. Three fluorescence components appear at zero glucose concentration and systematically transition to three components at high glucose concentration. Fluorescence anisotropy correlations, fluorescent lifetimes, thermodynamics, computational structure minimization, and literature work were used to assign the three components as open, closed, and twisted conformations of the protein. The existence of three states at all glucose concentrations indicates that the protein continuously fluctuates about its conformational state space via thermally driven state transitions; glucose biases the populations by reorganizing the free energy profile. These results and their implications are discussed in terms of the two types of specific and nonspecific interactions GGBP has with cytoplasmic membrane proteins.  相似文献   

13.
Telomerase inhibition through G‐quadruplex stabilization by small molecules is of great interest as a novel anticancer therapeutic strategy. Here, we show that newly synthesized Cu‐complex binds to G‐quadruplex DNA and induces changes in its stability. This biophysical interaction was investigated in vitro using spectroscopic, voltammetric and computational techniques. The binding constant for this complex to G‐quadruplex using spectroscopic and electrochemical methods is in the order of 105. The binding stoichiometry was investigated using spectroscopic techniques and corresponded to a ratio of 1: 1. Fluorescence titration results reveal that Cu‐complex is quenched in the presence of G‐quadruplex DNA. Analysis of the fluorescence emission at different temperatures shows that ΔH° > 0, ΔS° > 0 and ΔG° < 0, and indicates that hydrophobic interactions played a major role in the binding processes. MD simulation results suggested that this ligand could stabilize the G‐quadruplex structure. An optimized docked model of the G‐quadruplex–ligand mixture confirmed the experimental results. Based on the results, we conclude that Cu‐complex as an anticancer candidate can bind and stabilize the G‐quadruplex DNA structure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The D-galactose/D-glucose-binding protein (GGBP) from E. coli serves as an initial component for both chemotaxis toward glucose and high-affinity active transport of the sugar. In this work, we have used phosphorescence spectroscopy to investigate the effects of glucose and calcium on the dynamics and stability of GGBP. We found that GGBP exhibits a phosphorescence spectrum composed of two energetically distinct 0,0-vibrational bands centered at 404.43 and 409.61 nm; the large energy separation between them indicates two classes of chromophores making distinct dipolar interactions with their surrounding. Interestingly, the high-energy spectral component (404.43 nm) is one of the bluest spectra reported to date in proteins. Considering the ground state dipole direction, low-energy configurations for the indole side chain in proteins leading to blue-shifted spectra can arise from negative charges in proximity to the imidazole-ring nitrogen and/or positive charges near C4-C5 of the benzene ring. Among the five tryptophan residues of GGBP, Trp-284, located at the N-terminal domain of the protein, and Trp-183, located in the protein hinge region, make strong attractive charge interactions with surrounding side chains. Regarding Trp-284, the indole ring nitrogen is in contact with the negative charge of the Asp-267, whereas Trp-183 is next to the Glu-149 residue. In the latter, the ground state energy is further lowered by the proximity of the Arg-158 to the negative end (near C6) of the indole dipole. Regarding the red spectral component (409.61 nm), it is more intense than the blue component, presumably because more residues contribute to it. lambda 0,0 is typical of environments that are weakly polar or characterized by charges positioned near 90 degrees from the ground state dipole direction (the case of W195 and W127). The binding of glucose modifies the phosphorescence lifetime values as well as the spectrum of GGBP, shifting the blue band 0.54 nm to the blue and the red band 1 nm to the red. Finally, the removal of the calcium from GGBP structure causes variations in lifetime values and spectral shifts similar to those induced by glucose binding to the native protein. Aided by a detailed inspection of the three-dimensional structure of GGBP, these results contribute to a better understanding of the structure/function relationship of this protein.  相似文献   

15.
Hung KW  Kumar TK  Kathir KM  Xu P  Ni F  Ji HH  Chen MC  Yang CC  Lin FP  Chiu IM  Yu C 《Biochemistry》2005,44(48):15787-15798
The three-dimensional solution structure of the ligand binding D2 domain of the fibroblast growth factor receptor (FGFR) is determined using multidimensional NMR techniques. The atomic root-mean-square distribution for the backbone atoms in the structured region is 0.64 A. Secondary structural elements in the D2 domain include 11 beta-strands arranged antiparallely into two layers of beta-sheets. The structure of the D2 domain is characterized by the presence of a short flexible helix that protrudes out of the layers of beta-sheets. Results of size exclusion chromatography and sedimentation velocity experiments show that the D2 domain exists in a monomeric state both in the presence and in the absence of bound sucrose octasulfate (SOS), a structural analogue of heparin. Comparison of the solution structure of the D2 domain with the crystal structure of the protein (D2 domain) in the FGF signaling complex reveals significant differences, suggesting that ligand (FGF) binding may induce significant conformational changes in the receptor. SOS binding sites in the D2 domain have been mapped on the basis of the 1H-15N chemical shift perturbation data. SOS binds to the positively charged residues located in beta-strand III and the flexible helix. Isothermal titration calorimetry data indicate that the ligand (hFGF-1) binds strongly (Kd approximately 10(-9) M) to the D2 domain even in the absence of SOS. Binding of SOS to either the D2 domain or hFGF-1 does not seem to be the driving force for the formation of the D2-hFGF-1 binary complex. The function of SOS binding appears to stabilize the preformed D2-FGF binary complex.  相似文献   

16.
The effect of temperature and glucose binding on the structure of the galactose/glucose-binding protein from Escherichia coli was investigated by circular dichroism, Fourier transform infrared spectroscopy, and steady-state and time-resolved fluorescence. The data showed that the glucose binding induces a moderate change of the secondary structure content of the protein and increases the protein thermal stability. The infrared spectroscopy data showed that some protein stretches, involved in alpha-helices and beta strand conformations, are particularly sensitive to temperature. The fluorescence studies showed that the intrinsic tryptophanyl fluorescence of the protein is well represented by a three-exponential model and that in the presence of glucose the protein adopts a structure less accessible to the solvent. The new insights on the structural properties of the galactose/glucose-binding protein can contribute to a better understanding of the protein functions and represent fundamental information for the development of biotechnological applications of the protein.  相似文献   

17.
The ability of three anionic cosolutes (sulfate, thiocyanate, and chloride) in modulating the (1)H/(2)H exchange rates for backbone amide protons has been investigated using nuclear magnetic resonance (NMR) for two different proteins: the IGg-binding domain of protein L (ProtL) and the glucose-galactose-binding protein (GGBP). Our results show that moderate anion concentrations (0.2 M-1 M) regulate the exchange rate following the Hofmeister series: Addition of thiocyanate increases the exchange rates for both proteins, while sulfate and chloride (to a less extent) slow down the exchange reaction. In the presence of the salt, no alteration of the protein structure and minimal variations in the number of measurable peaks are observed. Experiments with model compounds revealed that the unfolded state is modulated in an equivalent way by these cosolutes. For ProtL, the estimated values for the local free energy change upon salt addition (m (3,DeltaG )) are consistent with the previously reported free energy contribution from the cosolute's preferential interaction/exclusion term indicating that nonspecific weak interactions between the anion and the amide groups constitute the dominant mechanism for the exchange-rate modulation. The same trend is also found for GGBP in the presence of thiocyanate, underlining the generality of the exchange-rate modulation mechanism, complementary to more investigated effects like the electrostatic interactions or specific anion binding to protein sites.  相似文献   

18.
The monitoring and management of blood glucose levels are key components for maintaining the health of people with diabetes. Traditionally, glucose monitoring has been based on indirect detection using electrochemistry and enzymes such as glucose oxidase or glucose dehydrogenase. Here, we demonstrate direct detection of glucose using a surface plasmon resonance (SPR) biosensor. By site-specifically and covalently attaching a known receptor for glucose, the glucose/galactose-binding protein (GGBP), to the SPR surface, we were able to detect glucose binding and determine equilibrium binding constants. The site-specific coupling was accomplished by mutation of single amino acids on GGBP to cysteine and subsequent thiol conjugation. The resulting SPR surfaces had glucose-specific binding properties consistent with known properties of GGBP. Further modifications were introduced to weaken GGBP-binding affinity to more closely match physiologically relevant glucose concentrations (1-30 mM). One protein with a response close to this glucose range was identified, the GGBP triple mutant E149C, A213S, L238S with an equilibrium dissociation constant of 0.5mM. These results suggest that biosensors for direct glucose detection based on SPR or similar refractive detection methods, if miniaturized, have the potential for development as continuous glucose monitoring devices.  相似文献   

19.
The application of high hydrostatic pressure is an effective tool to promote dissolution and refolding of protein from aggregates and inclusion bodies while minimizing reaggregation. In this study we explored the mechanism of high-pressure protein refolding by quantitatively assessing the magnitude of the protein-protein interactions both at atmospheric and elevated pressures for T4 lysozyme, in solutions containing various amounts of guanidinium hydrochloride. At atmospheric pressure, the protein- protein interactions are most attractive at moderate guanidinium hydrochloride concentrations (approximately 1-2 molar), as indicated by a minimum in B(22) values. In contrast, at a pressure of 1,000 bar no minimum in B(22) values is observed, indicating that high pressures colloidally stabilize protein against aggregation. Finally, experimental values of refractive index increments as a function of pressure indicate that at high pressures, wetting of the hydrophobic surfaces is favored, resulting in a reduction of the hydrophobic effect. This reduction in the hydrophobic effect reduces the driving force for aggregation of (partially) unfolded protein.  相似文献   

20.
The structure and stability of the fluorescent protein monomeric Kusabira Orange (mKO), a GFP-like protein, was studied under different pressure levels and in different chemical environments. At different pH values (between pH 7.4 and pH 4.0) and under a pressure up to 600 MPa (at 25 °C), mKO did not show significant fluorescence spectral changes, indicating a structural stability of the protein. In more extreme chemical conditions (at pH 4.0 in the presence of 0.8 M guanidine hydrochloride), a marked reduction of mKO fluorescence intensity emission was observed at pressures above 300 MPa. This fluorescence emission quenching may be due to the loss of the intermolecular bonds and, consequently, to the destructuration of the mKO chromophore structure. Since the electrostatic and hydrophobic interactions as well as the salt bridges present in proteins are usually perturbed under high pressure, the reduction of mKO fluorescence intensity emission is associated to the perturbation of the protein salt bridges network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号