首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The ecological consequences of climate change have been recognized in numerous species, with perhaps phenology being the most well‐documented change. Phenological changes may have negative consequences when organisms within different trophic levels respond to environmental changes at different rates, potentially leading to phenological mismatches between predators and their prey. This may be especially apparent in the Arctic, which has been affected more by climate change than other regions, resulting in earlier, warmer, and longer summers. During a 7‐year study near Utqia?vik (formerly Barrow), Alaska, we estimated phenological mismatch in relation to food availability and chick growth in a community of Arctic‐breeding shorebirds experiencing advancement of environmental conditions (i.e., snowmelt). Our results indicate that Arctic‐breeding shorebirds have experienced increased phenological mismatch with earlier snowmelt conditions. However, the degree of phenological mismatch was not a good predictor of food availability, as weather conditions after snowmelt made invertebrate availability highly unpredictable. As a result, the food available to shorebird chicks that were 2–10 days old was highly variable among years (ranging from 6.2 to 28.8 mg trap?1 day?1 among years in eight species), and was often inadequate for average growth (only 20%–54% of Dunlin and Pectoral Sandpiper broods on average had adequate food across a 4‐year period). Although weather conditions vary among years, shorebirds that nested earlier in relation to snowmelt generally had more food available during brood rearing, and thus, greater chick growth rates. Despite the strong selective pressure to nest early, advancement of nesting is likely limited by the amount of plasticity in the start and progression of migration. Therefore, long‐term climatic changes resulting in earlier snowmelt have the potential to greatly affect shorebird populations, especially if shorebirds are unable to advance nest initiation sufficiently to keep pace with seasonal advancement of their invertebrate prey.  相似文献   

2.
Phenological advances and trophic mismatches are frequently reported ecological consequences of climate warming. Trophic mismatches occur when phenological responses to environmental conditions differ among trophic levels such that the timing of resource demand by consumers becomes decoupled from supply. We used 25 years of demographic measurements of a migratory songbird (the black‐throated blue warbler Setophaga caerulescens) to compare its breeding phenology to the phenology of both its caterpillar prey and the foliage on which caterpillars feed. Caterpillar biomass in this forest did not show a predictable seasonal pulse. Nest initiation by warblers in this northern hardwood forest was therefore not timed to coincide with a peak in food availability for nestlings. Nonetheless, timing of first clutches was strongly associated with spring leaf expansion (slope ± SE = 0.56 ± 0.08 days per day of change in leaf phenology, R2 = 0.66). Warblers adjusted the timing of breeding to early springs mainly by shortening the interval between arrival and clutch initiation, but this likely has limits because recent early springs are approaching the relatively inflexible dates when birds arrive on the breeding grounds. Although the timing of first nests did not match 1:1 with leaf‐out phenology, the adjustments in breeding time maximized mean annual reproductive success. Nest predation had the greatest effect on annual reproductive success, but the ability of nesting warblers to appropriately track leaf phenology accounted for effects on annual reproductive success comparable to the influence of variation in caterpillar abundance and conspecific density. Nesting phenology in black‐throated blue warblers was generally well matched to the timing of leaf‐out, even though the match was not 1:1. Without measurements of reproductive success, these unequal phenological shifts might otherwise have been interpreted as having negative ecological consequences.  相似文献   

3.
Lehikoinen A 《PloS one》2011,6(5):e20001
Predation affects life history traits of nearly all organisms and the population consequences of predator avoidance are often larger than predation itself. Climate change has been shown to cause phenological changes. These changes are not necessarily similar between species and may cause mismatches between prey and predator. Eurasian sparrowhawk Accipiter nisus, the main predator of passerines, has advanced its autumn phenology by about ten days in 30 years due to climate change. However, we do not know if sparrowhawk migrate earlier in response to earlier migration by its prey or if earlier sparrowhawk migration results in changes to predation risk on its prey. By using the median departure date of 41 passerine species I was able to show that early migrating passerines tend to advance, and late migrating species delay their departure, but none of the species have advanced their departure times as much as the sparrowhawk. This has lead to a situation of increased predation risk on early migrating long-distance migrants (LDM) and decreased the overlap of migration season with later departing short-distance migrants (SDM). Findings highlight the growing list of problems of declining LDM populations caused by climate change. On the other hand it seems that the autumn migration may become safer for SDM whose populations are growing. Results demonstrate that passerines show very conservative response in autumn phenology to climate change, and thus phenological mismatches caused by global warming are not necessarily increasing towards the higher trophic levels.  相似文献   

4.
Climatic changes are disrupting otherwise tight trophic interactions between predator and prey. Most of the earlier studies have primarily focused on the temporal dimension of the relationship in the framework of the match–mismatch hypothesis. This hypothesis predicts that predator's recruitment will be high if the peak of the prey availability temporally matches the most energy‐demanding period of the predators breeding phenology. However, the match–mismatch hypothesis ignores the level of food abundance while this can compensate small mismatches. Using a novel time‐series model explicitly quantifying both the timing and the abundance component for trophic relationships, we here show that timing and abundance of food affect recruitment differently in a marine (cod/zooplankton), a marine–terrestrial (puffin/herring) and a terrestrial (sheep/vegetation) ecosystem. The quantification of the combined effect of abundance and timing of prey on predator dynamics enables us to come closer to the mechanisms by which environment variability may affect ecological systems.  相似文献   

5.
In migratory birds, arrival date and hatching date are two key phenological markers that have responded to global warming. A body of knowledge exists relating these traits to evolutionary pressures. In this study, we formalize this knowledge into general mathematical assumptions, and use them in an ecoevolutionary model. In contrast to previous models, this study novelty accounts for both traits—arrival date and hatching date—and the interdependence between them, revealing when one, the other or both will respond to climate. For all models sharing the assumptions, the following phenological responses will occur. First, if the nestling-prey peak is late enough, hatching is synchronous with, and arrival date evolves independently of, prey phenology. Second, when resource availability constrains the length of the pre-laying period, hatching is adaptively asynchronous with prey phenology. Predictions for both traits compare well with empirical observations. In response to advancing prey phenology, arrival date may advance, remain unchanged, or even become delayed; the latter occurring when egg-laying resources are only available relatively late in the season. The model shows that asynchronous hatching and unresponsive arrival date are not sufficient evidence that phenological adaptation is constrained. The work provides a framework for exploring microevolution of interdependent phenological traits.  相似文献   

6.
7.
Nielsen JT  Møller AP 《Oecologia》2006,149(3):505-518
The reproductive success of predators depends on abiotic environmental conditions, food abundance and population density, and food abundance, density and their interactions may respond to changes in climatic conditions. Timing of reproduction by five of the eight numerically most common prey of the sparrowhawk Accipiter nisus advanced significantly since 1971, during a period of temperature increase. There was no evidence that mean laying date or any other reproductive parameter of sparrowhawks changed consistently during the study period 1977–1997. Laying date advanced and percentage of unsuccessful female sparrowhawks decreased with beech mast in the current year, an index of food abundance for avian prey. Mean laying date of sparrowhawks was advanced in warmer springs, and although mean clutch size was not larger in warm than in cold springs, mean brood size of successful pairs and breeding success increased in such springs, showing that sparrowhawks enjoyed a fitness gain when reproducing early. The timing of sparrowhawk reproduction with respect to the peak in abundance of fledgling prey increased, from a good match between mean timing of fledging by prey and maximum demand for food by the predator in 1977, to reproduction occurring later than the peak in fledging prey availability in 1997. The size of the breeding population of sparrowhawks was not predicted by mean spring temperature, the size of the breeding population the previous year or beech mast crop. The size of the post-breeding population was predicted by size of the breeding and post-breeding population the previous year and by the proportion of unsuccessful females the current year. These findings imply that sparrowhawks did not respond to change in climate, although climate changed the timing of reproduction by the main prey species.  相似文献   

8.
Climate change‐induced shifts in phenology have important demographic consequences, and are frequently used to assess species' sensitivity to climate change. Therefore, developing accurate phenological predictions is an important step in modeling species' responses to climate change. The ability of such phenological models to predict effects at larger spatial and temporal scales has rarely been assessed. It is also not clear whether the most frequently used phenological index, namely the average date of a phenological event across a population, adequately captures phenological shifts in the distribution of events across the season. We use the long‐tailed tit Aegithalos caudatus (Fig. 1) as a case study to explore these issues. We use an intensive 17‐year local study to model mean breeding date and test the capacity of this local model to predict phenology at larger spatial and temporal scales. We assess whether local models of breeding initiation, termination, and renesting reveal phenological shifts and responses to climate not detected by a standard phenological index, that is, population average lay date. These models take predation timing/intensity into account. The locally‐derived model performs well at predicting phenology at the national scale over several decades, at both high and low temperatures. In the local model, a trend toward warmer Aprils is associated with a significant advance in termination dates, probably in response to phenological shifts in food supply. This results in a 33% reduction in breeding season length over 17 years – a substantial loss of reproductive opportunity that is not detected by the index of population average lay date. We show that standard phenological indices can fail to detect patterns indicative of negative climatic effects, potentially biasing assessments of species' vulnerability to climate change. More positively, we demonstrate the potential of detailed local studies for developing broader‐scale predictive models of future phenological shifts.  相似文献   

9.
  1. Many organisms reproduce in seasonal environments, where selection on timing of reproduction is particularly strong as consumers need to synchronize reproduction with the peaked occurrence of their food. When a consumer species changes its phenology at a slower rate than its resources, this may induce a trophic mismatch, that is, offspring growing up after the peak in food availability, potentially leading to reductions in growth and survival. However, there is large variation in the degree of trophic mismatches as well as in its effects on reproductive output.
  2. Here, we explore the potential causes for variation in the strength of trophic mismatches in published studies of birds. Specifically, we ask whether the changes in the degree of mismatch that have occurred over time can be explained by a bird''s (a) breeding latitude, (b) migration distance, and/or (c) life‐history traits.
  3. We found that none of these three factors explain changes in the degree of mismatch over time. Nevertheless, food phenology did advance faster at more northerly latitudes, while shifts in bird phenology did not show a trend with latitude.
  4. We argue that the lack of support in our results is attributable to the large variation in the metrics used to describe timing of food availability. We propose a pathway to improve the quantification of trophic mismatches, guided by a more rigorous understanding of links between consumers and their resources.
  相似文献   

10.
1.?Climate warming has led to shifts in the seasonal timing of species. These shifts can differ across trophic levels, and as a result, predator phenology can get out of synchrony with prey phenology. This can have major consequences for predators such as population declines owing to low reproductive success. However, such trophic interactions are likely to differ between habitats, resulting in differential susceptibility of populations to increases in spring temperatures. A mismatch between breeding phenology and food abundance might be mitigated by dietary changes, but few studies have investigated this phenomenon. Here, we present data on nestling diets of nine different populations of pied flycatchers Ficedula hypoleuca, across their breeding range. This species has been shown to adjust its breeding phenology to local climate change, but sometimes insufficiently relative to the phenology of their presumed major prey: Lepidoptera larvae. In spring, such larvae have a pronounced peak in oak habitats, but to a much lesser extent in coniferous and other deciduous habitats. 2.?We found strong seasonal declines in the proportions of caterpillars in the diet only for oak habitats, and not for the other forest types. The seasonal decline in oak habitats was most strongly observed in warmer years, indicating that potential mismatches were stronger in warmer years. However, in coniferous and other habitats, no such effect of spring temperature was found. 3.?Chicks reached somewhat higher weights in broods provided with higher proportions of caterpillars, supporting the notion that caterpillars are an important food source and that the temporal match with the caterpillar peak may represent an important component of reproductive success. 4.?We suggest that pied flycatchers breeding in oak habitats have greater need to adjust timing of breeding to rising spring temperatures, because of the strong seasonality in their food. Such between-habitat differences can have important consequences for population dynamics and should be taken into account in studies on phenotypic plasticity and adaptation to climate change.  相似文献   

11.
The strength and direction of phenological responses to changes in climate have been shown to vary significantly both among species and among populations of a species, with the overall patterns not fully resolved. Here, we studied the temporal and spatial variability associated with the response of several insect species to recent global warming. We use hierarchical models within a model comparison framework to analyze phenological data gathered over 40 years by the Japan Meteorological Agency on the emergence dates of 14 insect species at sites across Japan. Contrary to what has been predicted with global warming, temporal trends of annual emergence showed a later emergence day for some species and sites over time, even though temperatures are warming. However, when emergence data were analyzed as a function of temperature and precipitation, the overall response pointed out an earlier emergence day with warmer conditions. The apparent contradiction between the response to temperature and trends over time indicates that other factors, such as declining populations, may be affecting the date phenological events are being recorded. Overall, the responses by insects were weaker than those found for plants in previous work over the same time period in these ecosystems, suggesting the potential for ecological mismatches with deleterious effects for both suites of species. And although temperature may be the major driver of species phenology, we should be cautious when analyzing phenological datasets as many other factors may also be contributing to the variability in phenology.  相似文献   

12.
1. The effect of mosquitofish (Gambusia affinis) predation on the invertebrate community in a hypereutrophic constructed treatment wetland in southern California was investigated at two nutrient levels that influenced sestonic food abundance. 2. Gambusia affinis and insect predators in the wetland had a significant impact on larval mosquito density in the wetland irrespective of nutrient level. At the end of the 5‐month study, cladoceran abundance in predator exclusion enclosures was 2–3 orders of magnitude greater than in the treatments that allowed access by planktivores. Chironomids were the most abundant insect group collected in emergence traps, and midge production from the high nutrient location of the wetland was greater than from the low nutrient location, but was not affected significantly by G. affinis. The presence of abundant alternative prey in this highly enriched wetland may have weakened the predation impact of G. affinis on mosquitoes. 3. The abundances of six invertebrate groups in dipper samples and of four insect groups in emergence trap collections were analysed using a multivariate distance‐based linear model. Fish treatment and location interactions with sampling date explained significant amounts of the variation in the abundance of invertebrate groups. 4. Multivariate multiple regression analysis showed that chlorophyll‐a concentration explained a large portion of the variability in non‐predatory insect and zooplankton abundance at the high nutrient location, whereas bacterial density explained a large portion of the variability in the abundances of these taxa at the low nutrient location. Predatory insects were not directly coupled to the bottom‐up influence of bacterial abundance and chlorophyll‐a.  相似文献   

13.
Many birds have advanced their spring migration and breeding phenology in response to climate change, yet some long‐distance migrants appear constrained in their adjustments. In addition, bird species with long generation times and those in higher trophic positions may also be less able to track climate‐induced shifts in food availability. Migratory birds of prey may therefore be particularly vulnerable to climate change because: 1) most are long‐lived and have relatively low reproductive capacity, 2) many feed predominately on insectivorous passerines, and 3) several undertake annual migrations totaling tens of thousands of kilometers. Using multi‐decadal datasets for 14 raptor species observed at six sites across the Great Lakes region of North America, we detected phenological shifts in spring migration consistent with decadal climatic oscillations and global climate change. While the North Atlantic and El Niño Southern Oscillations exerted heterogeneous effects on the phenology of a few species, arrival dates more generally advanced by 1.18 d per decade, a pattern consistent with the effects of global climate change. After accounting for heterogeneity across observation sites, five of the 10 most abundant species advanced the bulk of their spring migration phenology. Contrary to expectations, we found that long‐distance migrants and birds with longer generation times tended to make the greatest advancements to their spring migration. Such results may indicate that phenotypic plasticity can facilitate climatic responses among these long‐lived predators.  相似文献   

14.
In species with long gestation, females commit to reproduction several months before parturition. If cues driving conception date are uncoupled from spring conditions, parturition could be mistimed. Mismatch may increase with global change if the rate of temporal changes in autumn cues differs from the rate of change in spring conditions. Using 17 years of data on climate and vegetation phenology, we show that autumn temperature and precipitation, but not vegetation phenology, explain parturition date in bighorn sheep. Although autumn cues drive the timing of conception, they do not predict conditions at parturition in spring. We calculated the mismatch between individual parturition date and spring green-up, assessed whether mismatch increased over time and investigated the consequences of mismatch on lamb neonatal survival, weaning mass and overwinter survival. Mismatch fluctuated over time but showed no temporal trend. Temporal changes in green-up date did not lead to major fitness consequence of mismatch. Detailed data on individually marked animals revealed no effect of mismatch on neonatal or overwinter survival, but lamb weaning mass was negatively affected by mismatch. Capital breeders might be less sensitive to mismatch than income breeders because they are less dependent on daily food acquisition. Herbivores in seasonal environments may access sufficient forage to sustain lactation before or after the spring ‘peak’ green-up, and partly mitigate the consequences of a mismatch. Thus, the effect of phenological mismatch on fitness may be affected by species life history, highlighting the complexity in quantifying trophic mismatches in the context of climate change.  相似文献   

15.
Species have phenological variation among local habitats that are located at relatively small spatial scales. However, less studies have tested how this spatial variability in phenology can mediate intra-/inter-specific interactions. When predators track phenological variation of prey among local habitats, survival of prey within a local habitat strongly influenced by phenological synchrony with their conspecifics in adjacent habitats. Theory predicts that phenological synchrony among local habitats increases prey survival in local habitat within spatially structured environments because the predators have to make a habitat choice for foraging. Consequently, total survival of prey at regional scale should be higher. By using a spatially explicit field experiment, we tested above hypothesis using a prey–predator interaction between tadpole (Rhacophorus arboreus) and newt (Cynops pyrrhogaster). We established enclosures (≈regional scale) consisting of two tanks (≈local habitat scale) with different degree of prey phenological synchrony. We found that phenological synchrony of prey between tanks within each enclosure decreased the mean residence time of the predator in each tank, which resulted in higher survival of prey at a local habitat scale, supporting the theoretical prediction. Furthermore, individual-level variation in predator residence time explained the between-tank variation in prey survival in enclosures with phenological synchrony, implying that movement patterns of the predator can mediate variation in local population dynamics of their prey. However, total survival at each enclosure was not higher under phenological synchrony. These results suggest the importance of relative timing of prey phenology, not absolute timing, among local habitats in determining prey–predator interactions.  相似文献   

16.
Different phenological responses to climate changes by species representing preys and predators may lead to mismatch between functionally dependent components of an ecosystem, with important effects on its structure and functioning. Here, we investigate within-season variation in zooplankton availability, chick diet composition and breeding performance of a small planktivorous seabird, the little auk (Alle alle) in two large colonies in Hornsund and Magdalenefjorden, Spitsbergen, differing in synchrony of breeding (11-day vs. 22-day hatching period, respectively). Assuming similar zooplankton phenology and existing differences in duration of the little auk breeding period, we expected lower availability of the preferred food in the less synchronized colony in Magdalenefjorden and in consequence a negative effect on nestling body mass and survival. We found that in both colonies Calanus glacialis (copepodite stage CV) was the most important prey item in the chick diet making up 68–87 % of the biomass and energy of all prey items. The only exception was the end of the chick-rearing period in Magdalenefjorden, when contribution of this prey item was significantly lower (24–26 %). Thus, late breeders in Magdalenefjorden were apparently mismatched regarding C. glacialis CV availability. However, the hatching date did not affect birds fitness (reproductive output and chick pre-fledging mass) significantly. Results of our study indicate that little auks breeding on Spitsbergen can respond to a wide range of environmental conditions and prey availabilities through the plasticity of their foraging behaviour, which may help them to maintain their optimum fitness level in changing and unpredictable environments.  相似文献   

17.
Environmental constraints are strong in migratory species that breed in the Arctic. In addition to breeding, Anatidae have to renew all their flight feathers during the short arctic summer. We examine how temporal constraints and climate affect the phenology of flight feather moult in the greater snow goose Chen caerulescens atlantica, a High Arctic nesting species. We used a database of 1412 moulting adult females measured over 15 yr on Bylot Island, Nunavut. Ninth (9th) primary length was used to determine the moult stage and speed of feather growth. We found a positive relationship between median annual hatching and moult initiation dates and the slope did not differ from 1. The interval between hatching and moult initiation was thus rather fixed and geese did not initiate moult earlier when reproductive phenology was delayed. Nonetheless, there was no relationship between median hatching date and the date at which birds regained flight capacity, suggesting that date of end of moult is independent of the reproductive phenology. There was a trend for an increase in the speed of flight feather growth in years with delayed hatching date. This is the most likely mechanism that could explain moult phenology adjustment in this species. Finally, we found a positive relationship between 9th primary length (corrected for inter‐annual variations) and body condition, suggesting a delay in moulting for individuals in poor condition. These results suggest that moult plasticity is primarily governed by variations in feather growth speed. This phenotypic plasticity could be necessary to complete flight feather renewal before the end of the arctic summer, independently of reproductive phenology and spring environmental conditions. Our novel results suggest possible phenological adjustments through moult speed, which was considered constant in geese until now.  相似文献   

18.
Climate‐driven shifts in prey phenology may lead to asynchrony with the timing of peak resource requirements of their predators, leading to a reduction in productivity and population declines. Migrant species that cannot adjust their arrival times may be particularly at risk, especially those that breed in seasonal environments and for which a temporarily super‐abundant prey source is important, such as insectivorous passerine birds that take advantage of the seasonal flush of caterpillars to feed their young. We assess whether population declines of the trans‐Saharan migratory Wood Warbler Phylloscopus sibilatrix are likely to have been caused by phenological mismatch. We measured seasonal invertebrate biomass and various fitness parameters, including the timing of breeding and breeding success, in two time periods: 1982–1984, prior to the species’ decline in the UK, and 2009–2011, as the reduction in numbers continued. Although birds bred on average a week earlier in 2009–2011 than in 1982–1984, this was not adequate to track the more rapid advancement of peak caterpillar biomass, which advanced by 12 days and was closely correlated with spring temperatures. Moreover, although caterpillars were the dominant prey fed to nestlings, there was only limited evidence that productivity was positively related to caterpillar biomass in the environment. Considering only successful nests, synchrony with the food peak did not produce heavier nestlings and had only a small positive effect on fledging success, although there was a seasonal decline in productivity when all nests were considered. We conclude that the lack of a marked effect of the observed mismatch is due to Wood Warblers’ generalist diet, enabling them to breed successfully on prey other than caterpillars. Although other studies have demonstrated that climate‐driven asynchrony of predator and prey populations can have impacts on avian demography, this study highlights the importance of investigating the generality of those findings.  相似文献   

19.
The study of phylogenetic conservatism in alpine plant phenology is critical for predicting climate change impacts; currently we have a poor understanding of how phylogeny and climate factors interactively influence plant phenology. Therefore, we explored the influence of phylogeny and climate factors on flowering phenology in alpine meadows. For two different types of alpine plant communities, we recorded phenological data, including flowering peak, first flower budding, first flowering, first fruiting and the flowering end for 62 species over the course of 5 years (2008–2012). From sequences in two plastid regions, we constructed phylogenetic trees. We used Blomberg’s K and Pagel’s lambda to assess the phylogenetic signal in phenological traits and species’ phenological responses to climate factors. We found a significant phylogenetic signal in the date of all reproductive phenological events and in species’ phenological responses to weekly day length and temperature. The number of species in flower was strongly associated with the weekly day lengths and followed by the weekly temperature prior to phenological activity. Based on phylogenetic eigenvector regression (PVR) analysis, we found a highly shared influence of phylogeny and climate factors on alpine species flowering phenology. Our results suggest the phylogenetic conservatism in both flowering and fruiting phenology may depend on the similarity of responses to external environmental cues among close relatives.  相似文献   

20.
Synopsis Development of the fish community on a submerged 16 m barge and variation in fish abundance on nearby transects were surveyed twice monthly for twenty months. A steady increase in abundance was observed for certain fishes on the barge, whereas a few species exhibited distinct seasonal variation on both the barge and transects. Most of the seasonal species settled between March and May.Some seasonal species appeared to be site selective in their settlement and consequently settled juveniles were clumped in their distribution. An abundance of preferred topographical features may be why settlement was relatively high at the study site and indirectly why predators became significantly (r3 = 7.67***, N = 37) more abundant at the study area during the months of maximum prey settlement. Concurrent settlement of several species during the same few months may be important because juveniles become an abundant food source to predators during those few months only. Periodic swamping of predators by abundant juvenile prey may improve the chances for individuals of rarer prey species to be overlooked and therefore be succesfully recruited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号