首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
While phenological shifts and migration of isolated species under climate change have already been observed on alpine summits, very few studies have focused on community composition changes in subalpine grasslands. Here we use permanent plots monitored since 1954 and precisely located phytosociological censuses from 1970 to study compositional changes of subalpine grasslands in two distinct regions of the Swiss Northern Alps. In both areas, warming trends during the monitoring period were associated with changes in land management (abandonment of goat and sheep pasturing or grazing replaced by mowing). Old and recent inventories were compared with correspondence analyses (CA). Ecological indicator values, community‐affinities and biological traits of the species were used to infer the factors responsible for triggering the observed changes. In both regions, subalpine grasslands were stable with smaller changes than have previously been observed in alpine environments. Only a few species appeared or disappeared and changes were generally limited to increasing or decreasing frequency and cover of certain taxa. At one site, grazing abandonment favored fallow species. Some of these species were located at their upper altitudinal distribution limits and may have spread because of rising temperatures. In both areas, declining species were predominantly alpine and low‐growing species; their decline was probably due to increased competition (e.g., shadow) with more vigorous subalpine taxa no longer limited by grazing. We conclude that vegetation communities can respond rapidly to warming as long as colonization is facilitated by available space or structural change. In the subalpine grasslands studies, changes were mainly driven by land management. These communities have a dense vegetation cover and newly arriving herbaceous species preferring warmer conditions may take some time to establish themselves. However, climate disturbances, such as exceptional drought, may accelerate community changes by opening gaps for new species.  相似文献   

2.
In the context of projected future human‐caused climate warming, the present study reports and analyses the performance of subalpine/alpine plants, vegetation and phytogeographical patterns during the past century of about 1 °C temperature rise. Historical baseline data of altitudinal limits of woody and non‐woody plants in the southern Scandes of Sweden are compared with recent assessments of these limits at the same locations. The methodological approach also includes repeat photography, individual age determinations and analyses of permanent plots. At all levels, from trees to tiny herbs, and from high to low altitudes, the results converge to indicate a causal association between temperature rise and biotic evolution. The importance of snow cover phenology is particularly evident. Treeline advance since the early‐20th century varies between 75 and 130 m, depending on species and site. Tendencies and potentials for further upshift in a near future are evident from the appearance of young saplings of all tree species, growing 400–700 m atop of the treeline. Subalpine/alpine plant species have shifted upslope by average 200 m. In addition, present‐day repetitions of floristic inventories on two alpine mountain summits reveal increases of plant species richness by 58 and 67%, respectively, since the early‐1950s. Obviously, many plants adjust their altitudinal ranges to new climatic regimes much faster than generally assumed. Nevertheless, plants have migrated upslope with widely different rates. This produces non‐analogous alpine plant communities, i.e. peculiar mixtures of alpine and silvine species. The alpine region is shrinking (higher treeline), and the character of the remaining alpine vegetation landscape is changing. For example, extensive alpine grasslands are replacing snow bed plant communities.  相似文献   

3.
Alpine snowbeds are characterized by a long-lasting snow cover and low soil temperature during the growing season. Both these key abiotic factors controlling plant life in snowbeds are sensitive to anthropogenic climate change and will alter the environmental conditions in snowbeds to a considerable extent until the end of this century. In order to name winners and losers of climate change among the plant species inhabiting snowbeds, we analyzed the small-scale species distribution along the snowmelt and soil temperature gradients within alpine snowbeds in the Swiss Alps. The results show that the date of snowmelt and soil temperature were relevant abiotic factors for small-scale vegetation patterns within alpine snowbed communities. Species richness in snowbeds was reduced to about 50% along the environmental gradients towards later snowmelt date or lower daily maximum temperature. Furthermore, the occurrence pattern of the species along the snowmelt gradient allowed the establishment of five species categories with different predictions of their distribution in a warmer world. The dominants increased their relative cover with later snowmelt date and will, therefore, lose abundance due to climate change, but resist complete disappearance from the snowbeds. The indifferents and the transients increased in species number and relative cover with higher temperature and will profit from climate warming. The snowbed specialists will be the most suffering species due to the loss of their habitats as a consequence of earlier snowmelt dates in the future and will be replaced by the avoiders of late-snowmelt sites. These forthcoming profiteers will take advantage from an increasing number of suitable habitats due to an earlier start of the growing season and increased temperature. Therefore, the characteristic snowbed vegetation will change to a vegetation unit dominated by alpine grassland species. The study highlights the vulnerability of the established snowbed vegetation to climate change and requires further studies particularly about the role of biotic interactions in the predicted invasion and replacement process.  相似文献   

4.
Changes in plant species richness on alpine summits in the southern Swedish Scandes were analyzed between 2004/2006 and 2012. This period experienced consistent summer and winter cooling and finalized with a cold and snow rich summer 2012. Re‐surveys of these summits had previously documented substantial increases in species numbers in concordance with climate warming since the mid‐20th century. Over the present study period, species richness decreased by 25–46%. The majority of lost species were those that had advanced upslope during the previous warm episode. Cooling since the mid 2000s and particularly the unusually short and snow‐rich growth period in 2012 caused a floristic retrogression. Taken together with extensive upshifts of many species during previous relative warm decades, recent downshifts highlight the large capability of certain alpine species to track their ecological niches as climate changes. The pivotal importance of unusually late‐lying snow in 2012, suggests that snow cover phenology exerts a more direct effect on the composition of the alpine flora than ambient temperatures. Dynamic modeling of future ecological landscape evolution needs to consider episodes of the kind reported here.  相似文献   

5.
The richness of plant species in Swiss alpine-nival summits increased during the climate warming of the 20th century. Thirty-seven summits (2797–3418 m a.s.l.) with both old (~1900–1920) and recent (~2000) plant inventories were used to test whether biological species traits can explain the observed rates of summit colonisation. Species were classified into two groups: good colonisers (colonising five or more summits) and weak colonisers (fewer than five new summits). We compared species traits related to growth, reproduction and dispersal between these two groups and between the good colonisers and a group of high alpine grassland species. The observed colonisation pattern was subsequently compared with a simulated random colonisation pattern.The distribution of new species on the summits was not random, and 16 species exhibited a colonisation rate higher than expected by chance. Taraxacum alpinum aggr. and Cardamine resedifolia were the best colonisers. Results showed that diaspore traits enhancing long-distance dispersal were more frequent among good colonisers than among weak colonisers. Good colonisers were mostly characterised by pappi or narrow wings on their diaspores. Both groups were able to grow on soils more bare and rocky than species from the alpine grasslands. All other biological traits that we considered were similar among the three alpine species groups. These results are important for improving predictive models of species distribution under climate change.  相似文献   

6.
Natural plant communities are exposed to environmental changes such as global warming and increased human activities. It is thought that alpine and subalpine ecosystems with cool climatic conditions are sensitive to environmental changes. This virtual issue introduces multidisciplinary research at alpine and subalpine plant communities. The articles include research on (1) species diversity, vegetation and biomass, (2) species assembly, (3) climate and growth of alpine plants, (4) reproduction of alpine plants, (5) differences of growth traits among coexisting species, (6) vegetation changes by human activities and overgrazing of deer, and (7) differentiation of growth traits among ecotypes in relation to climatic conditions. These thirteen articles provide valuable information for future research on the effects of environmental changes on alpine and subalpine plant communities.  相似文献   

7.
Plant functional traits underlie vegetation responses to environmental changes such as global warming, and consequently influence ecosystem processes. While most of the existing studies focus on the effect of warming only on species diversity and productivity, we further investigated (i) how the structure of community plant functional traits in temperate grasslands respond to experimental warming, and (ii) whether species and functional diversity contribute to a greater stability of grasslands, in terms of vegetation composition and productivity. Intact vegetation turves were extracted from temperate subalpine grassland (highland) in the Eastern Pyrenees and transplanted into a warm continental, experimental site in Lleida, in Western Catalonia (lowland). The impacts of simulated warming on plant production and diversity, functional trait structure, and vegetation compositional stability were assessed. We observed an increase in biomass and a reduction in species and functional diversity under short-term warming. The functional structure of the grassland communities changed significantly, in terms of functional diversity and community-weighted means (CWM) for several traits. Acquisitive and fast-growing species with higher SLA, early flowering, erect growth habit, and rhizomatous strategy became dominant in the lowland. Productivity was significantly positively related to species, and to a lower extent, functional diversity, but productivity and stability after warming were more dependent on trait composition (CWM) than on diversity. The turves with more acquisitive species before warming changed less in composition after warming. Results suggest that (i) the short-term warming can lead to the dominance of acquisitive fast growing species over conservative species, thus reducing species richness, and (ii) the functional traits structure in grassland communities had a greater influence on the productivity and stability of the community under short-term warming, compared to diversity effects. In summary, short-term climate warming can greatly alter vegetation functional structure and its relation to productivity.  相似文献   

8.
The effects of grazing exclusion on species diversity and functional diversity were analyzed along an elevation gradient from the subalpine (1960 m a.s.l.) to the lower and upper alpine zone (2275 m–2650 m a.s.l.) in the Austrian Central Alps for 15 years. Nine sites were chosen, including grasslands at different elevations, a bog and a glacier foreland site at the lower alpine zone and a snowbed at the upper alpine zone. Data were acquired by frequency counts in 1 m2 permanent plots inside each fenced area (three plots per site) and outside in grazed areas (three plots). Diversity indices and functional diversity were analyzed by means of generalized linear mixed models (GLMMs). Exclosure, duration of exclusion and exclosure*years (interaction effect) were defined as predictor variables. Multivariate ordination techniques were used to (i) determine species responses to grazing exclusion (pRDA, partial redundancy analysis) and (ii) to create a distance matrix representing the changes between exclosures and control plots per year (NMDS, non-metric multidimensional scaling). At the subalpine grassland, first differences between exclosure and control plots occurred already only after three years, at the upper alpine zone after four and five years. Contrary to our expectation, dwarf shrubs did not increase within the exclosures of the subalpine grassland. Instead, mainly the tall forb Geranium sylvaticum increased. Species richness significantly decreased at the exclosures of the subalpine zone, the snowbed and at one upper alpine grassland sites. The communities of the glacier foreland and the bog were hardly affected by grazing exclusion.We conclude that plant species and communities react individually depending on elevation and grazing animals. Grazing exclusion studies at high elevations should definitely be carried out in the long-term.  相似文献   

9.
Climate change and elevated atmospheric CO2 levels could increase the vulnerability of plants to freezing. We analyzed tissue damage resulting from naturally occurring freezing events in plants from a long–term in situ CO2 enrichment (+ 200 ppm, 2001–2009) and soil warming (+ 4°C since 2007) experiment at treeline in the Swiss Alps (Stillberg, Davos). Summer freezing events caused damage in several abundant subalpine and alpine plant species in four out of six years between 2005 and 2010. Most freezing damage occurred when temperatures dropped below –1.5°C two to three weeks after snow melt. The tree Larix decidua and the dwarf shrubs Vaccinium myrtillus and Empetrum hermaphroditum showed more freezing damage under experimentally elevated CO2 and/or temperatures than under control conditions. Soil warming induced a 50% die‐back of E. hermaphroditum during a single freezing event due to melting of the protective snow cover. Although we could not identify a clear mechanism, we relate greater freezing susceptibility to a combination of advanced plant phenology in spring and changes in plant physiology. The climate record since 1975 at the treeline site indicated a summer warming by 0.58°C/decade and a 3.5 days/decade earlier snow melt, but no significant decrease in freezing events during the vegetation period. Therefore, in a warmer climate with higher CO2 levels but constant likelihood of extreme weather events, subalpine and alpine plants may be more susceptible to freezing events, which may partially offset expected enhanced growth with global change. Hence, freezing damage should be considered when predicting changes in growth of alpine plants or changes in community composition under future atmospheric and climate conditions.  相似文献   

10.
Human disturbance in alpine habitats is expected to increase, and improved knowledge of short-term recovery after disturbance events is necessary to interpret vegetation responses and formulate planning and mitigation efforts. The ability of a plant community to return to its original state after a disturbance (community resilience) depends on species composition and environmental conditions. The aim of this study is to analyze initial short-term effects of disturbance in alpine plant communities in contrasting climates (oceanic vs. continental; central Norway). We used a nested block-design to examine vegetative regrowth and seedling recruitment after experimental perturbation. Three plant community types along the snow pack gradient were exposed to (1) no disturbance, (2) clipping, and (3) clipping and uprooting. Slow vegetative regrowth and low seedling establishment rates were found in dry alpine ridges and late-melting oceanic snowbed communities. Leeside habitats with intermediate snow conditions were found more resilient. The difference was related to growth form and species diversity. Woody species, which dominated in ridges and oceanic snowbeds, showed the most negative response to disturbance. Species-rich plant communities dominated by graminoids and herbs showed higher rates of regrowth. Species richness seems to cause resilience to the plant communities through higher response diversity. Plant communities at the extreme ends of abiotic gradients, ridges and late-melting snowbeds, will be most sensitive to both disturbance and environmental change. In an up-scaled human-used landscape disturbance effects will be amplified and further limit recovery to a pre-disturbance state.  相似文献   

11.
Kari Klanderud  Ørjan Totland 《Oikos》2007,116(8):1279-1288
Most studies on factors determining diversity are conducted in temperate or warm regions, whereas studies in climatically harsh and low productivity areas, such as alpine regions, are rare. We examined the relative roles of seed availability and different biotic and abiotic factors for the diversity of an alpine plant community in southern Norway. Furthermore, because climate warming is predicted to be an important driver of alpine species diversity, we assessed how the relative impacts of dispersal and local interactions on diversity might change under experimental warming (open top chambers, OTCs).
Addition of seeds from 27 regional species increased community diversity. The establishment of the species was negatively related both to the diversity of the existing system and the cover of the abundant dwarf shrub Dryas octopetala . These results show that both species dispersal limitation and local biotic interactions are important factors for alpine plant community diversity. Despite relatively harsh environmental conditions and low productivity, competition from the resident vegetation appeared to have a greater role for species establishment and diversity than facilitation and experimental warming. Higher temperature appeared to increase the negative relationship between resident species diversity and species establishment. This may suggest that climate warming can increase the role of interspecific competition for alpine plant community structure, and thus alter the long-term effects of biotic interactions on diversity.  相似文献   

12.
Background and Aims Quantifying relationships between snow cover duration and plant community properties remains an important challenge in alpine ecology. This study develops a method to estimate spatial variation in energy availability in the context of a topographically complex, high-elevation watershed, which was used to test the explanatory power of environmental gradients both with and without snow cover in relation to taxonomic and functional plant diversity.Methods Snow cover in the French Alps was mapped at 15-m resolution using Landsat imagery for five recent years, and a generalized additive model (GAM) was fitted for each year linking snow to time and topography. Predicted snow cover maps were combined with air temperature and solar radiation data at daily resolution, summed for each year and averaged across years. Equivalent growing season energy gradients were also estimated without accounting for snow cover duration. Relationships were tested between environmental gradients and diversity metrics measured for 100 plots, including species richness, community-weighted mean traits, functional diversity and hyperspectral estimates of canopy chlorophyll content.Key Results Accounting for snow cover in environmental variables consistently led to improved predictive power as well as more ecologically meaningful characterizations of plant diversity. Model parameters differed significantly when fitted with and without snow cover. Filtering solar radiation with snow as compared without led to an average gain in R2 of 0·26 and reversed slope direction to more intuitive relationships for several diversity metrics.Conclusions The results show that in alpine environments high-resolution data on snow cover duration are pivotal for capturing the spatial heterogeneity of both taxonomic and functional diversity. The use of climate variables without consideration of snow cover can lead to erroneous predictions of plant diversity. The results further indicate that studies seeking to predict the response of alpine plant communities to climate change need to consider shifts in both temperature and nival regimes.  相似文献   

13.
This paper presents a survey of high-altitude plant communities which occur in the Western Carpathians with an enumeration of the characteristic, transgressive and differential species of the individual alliances, orders and classes. It describes the tall-herb vegetation (Mulgedio-Aconitetea) and communities of the subalpine shrubs (Betulo carpaticae-Alnetea viridis), the montane and alpine calcareous swards (Elyno-Seslerietea), the wind-exposed cryophilous swards on ridge edges with low snow cover (Carici rupestris-Kobresietea bellardii), the chionophilous communities of snow beds and snow fields (Salicetea herbaceae), the arctic-boreal dwarf-shrub heathlands (Loiseleurio-Vaccinietea), the alpine acidophilous grasslands (Caricetea curvulae) and the high-mountain mat-grass swards of the alliance Nardion strictae (Nardetea strictae).  相似文献   

14.
Global warming affects snow reliability in many winter sports resorts between 1200 and 1800 m a.s.l. in the European Alps. To deal with this problem, tourism managers consider guaranteeing winter sports by intensifying artificial snow-making. However, the knowledge of the impacts of artificial snow on ecosystems and especially on vegetation is still rudimentary. The aim of this study was to investigate whether artificial snowing leads to detectable quantitative and qualitative changes in the floristic composition of upper montane and subalpine meadows and pastures. In Savognin (eastern Swiss Alps), where artificial snow-making occurred every year since 1978, ten transects were laid perpendicular to the artificially snowed ski run between 1190 and 1780 m a.s.l. Each transect consisted of two to six plots in the artificially snowed area and five to eight plots on its left and/or right side. Vegetation censuses were made in 1987 (cover data) as well as in 1988 and 2000 (presence/absence data). A phytosociological survey of the general study area was accomplished in 1988. Air permeability and ion content of the artificial snow cover were also analysed. The results suggest that artificial snow leads to detectable changes in the floristic composition as well as to a decrease in species richness of the communities involved. In particular, the additional inputs of water and ions seem to alter the competition balance in the communities, promoting the faster growing species characteristic of nutrient-rich, mesic habitats at the expense of weaker competitors such as the species of low-nutrient and drier habitats. In conclusion, artificial snow represents a serious threat for the plant species diversity of low-nutrient and dry grasslands.  相似文献   

15.
Plant diversity has been shown to drive important ecosystem functions such as productivity. At the same time, plant diversity and species composition are altered in alpine ecosystems by human impacts such as skiing. Therefore, we investigated impacts of decreased species richness and ski piste treatments on ecosystem functions in subalpine grassland.Species richness manipulations were combined with nutrient input from snow cover treated with snow additives that are commonly used on ski pistes. Three different species richness levels containing 1, 3 or 9 species randomly selected from a larger pool plus unmanipulated meadow plots were treated with four water types to simulate melt water. One water type contained the snow additive ammonium nitrate. Invasion into the communities was prevented by weeding during 2 years and allowed in three subsequent years.Higher species richness increased plant cover and biomass and decreased their variation. The number of functional groups in a plant assemblage had a positive effect on plant growth. Ammonium nitrate strongly increased biomass and plant cover after a single application but decreased species richness in originally diverse meadow plots. There was no significant interaction between species richness and water-type treatments.After the cessation of weeding, the species richness of different plot types converged within 3 years due to invasion. Nevertheless, relationships between initial species richness and plant cover remained positive.The results suggest that the diversity and species composition of alpine vegetation are important factors influencing cover and biomass, in particular during re-colonization of bare ground after disturbances such as ski-piste construction. In slow-growing alpine vegetation, initially positive diversity effects may remain even after successional convergence of species richness due to invasion. The negative effect of ammonium nitrate on species richness suggests the snow additives should only be used with care.  相似文献   

16.
Climate change effects on snow cover and thermic regime in alpine tundra might lead to a longer growing season, but could also increase risks to plants from spring frost events. Alpine snowbeds, i.e. alpine tundra from late snowmelt sites, might be particularly susceptible to such climatic changes. Snowbed communities were grown in large monoliths for two consecutive years, under different manipulated snow cover treatments, to test for effects of early (E) and late (L) snowmelt on dominant species growth, plant functional traits, leaf area index (LAI) and aboveground productivity. Spring snow cover was reduced to assess the sensitivity of snowbed alpine species to severe early frost events, and dominant species freezing temperatures were measured. Aboveground biomass, productivity, LAI and dominant species growth did not increase significantly in E compared to L treatments, indicating inability to respond to an extended growing season. Edapho‐climatic conditions could not account for these results, suggesting that developmental constraints are important in controlling snowbed plant growth. Impaired productivity was only detected when harsher and more frequent frost events were experimentally induced by early snowmelt. These conditions exposed plants to spring frosts, reaching temperatures consistent with the estimated freezing points of the dominant species (~?10 °C). We conclude that weak plasticity in phenological response and potential detrimental effects of early frosts explain why alpine tundra from snowbeds is not expected to benefit from increased growing season length.  相似文献   

17.
The high tropical Andes host one of the richest alpine floras of the world, with exceptionally high levels of endemism and turnover rates. Yet, little is known about the patterns and processes that structure altitudinal and latitudinal variation in plant community diversity. Herein we present the first continental‐scale comparative study of plant community diversity on summits of the tropical Andes. Data were obtained from 792 permanent vegetation plots (1 m2) within 50 summits, distributed along a 4200 km transect; summit elevations ranged between 3220 and 5498 m a.s.l. We analyzed the plant community data to assess: 1) differences in species abundance patterns in summits across the region, 2) the role of geographic distance in explaining floristic similarity and 3) the importance of altitudinal and latitudinal environmental gradients in explaining plant community composition and richness. On the basis of species abundance patterns, our summit communities were separated into two major groups: Puna and Páramo. Floristic similarity declined with increasing geographic distance between study‐sites, the correlation being stronger in the more insular Páramo than in the Puna (corresponding to higher species turnover rates within the Páramo). Ordination analysis (CCA) showed that precipitation, maximum temperature and rock cover were the strongest predictors of community similarity across all summits. Generalized linear model (GLM) quasi‐Poisson regression indicated that across all summits species richness increased with maximum air temperature and above‐ground necromass and decreased on summits where scree was the dominant substrate. Our results point to different environmental variables as key factors for explaining vertical and latitudinal species turnover and species richness patterns on high Andean summits, offering a powerful tool to detect contrasting latitudinal and altitudinal effects of climate change across the tropical Andes.  相似文献   

18.
Global climate models predict continued rapid warming for most of the Arctic throughout the next century. To further understand the response of arctic tundra to climate warming, four sites in northern Alaska were warmed for five to seven consecutive growing seasons using open‐top chambers. Sites were located in dry heath and wet meadow communities near Barrow (71°18′N, 156°40′W) and Atqasuk (70°29′N, 157°25′W). Change in plant community composition was measured using a point frame method. During the period of observation, species richness declined in control plots by up to 2.7 species plot?1. Responses to warming varied by site but similar trends included increased canopy height (?0.1 to 2.3 cm) and relative cover of standing dead plant matter (1.5–6.0%) and graminoids (1.8–5.8%) and decreased species diversity (0.1–1.7 species plot?1) and relative cover of lichens (0.2–9.1%) and bryophytes (1.4–4.6%) (parentheses enclose the range of average values for the sites). The response to warming was separated into an initial short‐term response assessed after two growing seasons of warming and a secondary longer‐term response assessed after an additional three to five growing seasons of warming. The initial responses to warming were similar in the four sites, while the secondary responses varied by site. The response to warming was greater at Barrow than Atqasuk because of a greater initial response at Barrow. However, the long‐term response to warming was projected to be greater at Atqasuk because of a greater secondary response at Atqasuk. These findings show that predictions of vegetation change due to climate warming based on manipulative experiments will differ depending on both the duration and plant community on which the study focuses.  相似文献   

19.
Reports about changes of alpine plant species richness over the past 60 years in the Swedish Scandes are reviewed, synthesized and updated with data from recent reinventories. Methodologically, this endeavour is based on resurveys of the floristic composition on the uppermost 20 m of four high‐mountain summits. The key finding is that the species pool has increased by 60–170% since the 1950s and later. Some of the invading species are new to the alpine tundra, with more silvine and thermophilic properties than the extant alpine flora. Not a single species of the original flora has disappeared from any of the summits. This circumstance is discussed in perspective of widespread expectations of pending temperature‐driven extinction of alpine species in an alleged future warmer climate. These progressive changes coincided with distinct warming (summer and winter) since the late 1980s. During a short cooler period (1974–1994), the species numbers decreased and the upper elevational limits of some ground cover species descended. Thus, discernible responses, concurrent with both warming and cooling intervals, sustain a strong causal link between climate variability and alpine plant species richness. Methodologically, plot‐less revisitation studies of the present kind are beset with substantial uncertainties, which may overstate floristic changes over time. However, it is argued here that carefully executed and critically interpreted, no other method can equally effectively sense the earliest phases of plant invasions into alpine vegetation.  相似文献   

20.
The aim of this study is to test the assumption that the relationship between the degree of dominance and local species richness may be different in grass communities with different productivities. Alpine, subalpine, and low-mountain grasslands, as well as subalpine mires, alpine communities of low-snow habitats and those with long-term snow cover, steppe communities, and the grass layer of low-mountain forest communities of the Western Caucasus and Ciscaucasia, are used as objects of research. The data on the phytomass of 419 plots with an area of 0.25 m2 are studied. The results show that, the higher the mean productivity of communities is, the closer the relationship between the degree of dominance and species richness is, and the closest relationship is observed in meadow communities. Possible causes of these relationships are considered. It is reasonably suggested that this may be due to the features of the organization of plant communities with high and low productivity (in particular, high or low intensity of interspecific competition).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号