首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribonucleic Acid Synthesis in Cells Infected with Influenza Virus   总被引:5,自引:5,他引:0       下载免费PDF全文
Virus-specific ribonucleic acid (RNA), synthesized in influenza virus-infected cells from 3.5 to 7.5 hr after infection, was studied. After velocity centrifugation in sucrose, three peaks of virus-specific RNA could be identified: 34S, 18S, and 11S. These RNA species are predominantly single-stranded and consist of 90% viral (plus) and 10% complementary (minus) RNA strands. Most (75%) of the complementary RNA is single-stranded, i.e., not part of RNA duplexes or replicative intermediates. The 34S RNA species is an aggregate of 18S and 14S RNA species. Both 18S and 11S RNA species are relatively heterogenous compared to 18S ribosomal RNA, and these species probably contain different RNA molecules having closely related sedimentation coefficients.  相似文献   

2.
Tobacco leaves were labelled with tritiated undine for 30 or 120 minutes at different times after systemic infection with tobacco mosaic virus. RNA was extracted and separated into three fractions: one enriched in RF (replicative form), one enriched in RI (replicative intermediate), and one containing the bulk of single-stranded RNA. Radioactivity in plus strands (viral RNA) and minus strands (complementary RNA) was determined in each fraction by an isotope dilution assay. The amount of minus strands in the RP and RI fractions and the amount of plus strands in the single-stranded RNA fraction were also determined.Minus-strand synthesis was twice as high a few hours after the outbreak of visible symptoms as during the subsequent large accumulation of plus strands. At the early stage of virus production, the specific radioactivity of the minus strands was three- to fourfold that of the total RNA. Later it was about the same as that of the total RNA. As minus strands constitute a constant part of the total RNA at the later stages, this observation suggests that breakdown of minus strands is small.The specific radioactivity of minus strands was the same in corresponding RF and RI fractions. As the turn-over of minus strands appears to be small, a rapid interconversion of the two RNA types is indicated.In RF and RI the radioactivity in plus strands was between 6 and 50 times greater than that in minus strands. The specific radioactivity of plus strands was greater in RF and RI than in the single-stranded RNA, supporting the concept that both RF and RI have a precursor role for viral RNA.  相似文献   

3.
Small interfering RNA (siRNA)-induced gene silencing shows great promise in genomic research and therapeutic applications. siRNA duplexes are typically assembled from complementary synthetic oligonucleotides. High-purity single-stranded species are required for in vivo applications. Methods for separation, characterization, and purification of short RNA strands have been developed based on reversed-phase ion-pair liquid chromatography. The purification strategies were developed for both single-stranded and duplex RNA species. The method of duplex purification uses on-column annealing of complementary RNA strands, followed by separation of the target duplex from truncated duplexes and single-stranded RNA forms. The proposed method significantly reduces the purification time of synthetic siRNA.  相似文献   

4.
The ability of single-stranded DNA oligomers to form adjacent triplex and duplex domains with two DNA structural motifs was examined. Helix-coil transition curves and a gel mobility shift assay were used to characterize the interaction of single-stranded oligomers 12-20 nt in length with a DNA hairpin and with a DNA duplex that has a dangling end. The 12 nt on the 5'-ends of the oligomers could form a triplex structure with the 12 bp stem of the hairpin or the duplex portion of the DNA with a dangling end. The 3'-ends of the 17-20 nt strands could form Watson-Crick pairs to the five base loop of the hairpin or the dangling end of the duplex. Complexes of the hairpin DNA with the single-stranded oligomers showed two step transitions consistent with unwinding of the triplex strand followed by hairpin denaturation. Melting curve and gel competition results indicated that the complex of the hairpin and the 12 nt oligomer was more stable than the complexes involving the extended single strands. In contrast, results indicated that the extended single-stranded oligomers formed Watson-Crick base pairs with the dangling end of the duplex DNA and enhanced the stability of the adjacent triplex region.  相似文献   

5.
The Parvovirus H-1 replicates autonomously in hamster embryo cells. A DNA synthetic event, called HA-DNA synthesis, upon which subsequent viral RNA and viral hemagglutinin synthesis is dependent, is initiated in late S phase of the infected cell (18). It was postulated that HA-DNA represents parental viral replicative form DNA (RF DNA). This study describes the isolation and characterization of H-1 RF DNA as part of the continuing study of the mechanisms and control of DNA replication in the eukaryotic cell. The H-1 RF DNA is a linear duplex molecule containing the viral strand and its complement. The complementary strands of the RF DNA have been separated by equilibrium density gradient centrifugation. The RF DNA has a buoyant density of 1.705 in neutral CsCl and an estimated guanine plus cytosine (GC) content of 45.9%. It has a sedimentation coefficient of 17S. The calculated molecular weight of 3.7 x 10(6) is twice that of the single-stranded virion DNA. H-1 virions contain DNA that is homogeneous and free of complementary strands.  相似文献   

6.
A simple method for the isolation and characterization of DNA-DNA and DNA-RNA hybrid molecules formed in solution was developed. It was based on the fact that, in appropriate salt concentration, such as 5% Na2HPO4, DNA in either double-stranded (DNA-DNA or DNA-RNA) or single-stranded forms, but not free nucleotides, can bind to diethylaminoethylcellulose disc filters (DE81). Thus tested samples were treated with the single-strand-specific nuclease S1 and then applied to DE81 filters. The free nucleotides, resulting from degrading the single-stranded molecules, were removed by intensive washing with 5% Na2HPO4, leaving only the hybrid molecules on the filters. The usefulness of this method was illustrated in dissociation and reassociation studies of viral (SV40) or cellular (NIH/3T3) DNAs and DNA-RNA hybrid molecules. Using this technique the reassociation of denatured SV40 DNA was found to be a very rapid process. Dissociation studies revealed that the melting curves of tested DNAs were dependent on salt concentration. Thus the melting temperatures (tm) obtained for SV40 DNA were 76 degrees C at 1 X SSC (0.15 M NaCl-0.015 M sodium citrate) and 65 degrees C at 0.1 X SSC, and for NIH/3T3 DNA 82 degrees C at 1 X SSC and 68 degrees C at 0.1 X SSC. MuLV DNA-RNA hybrid molecules were formed by annealing in vitro synthesized MuLV DNA with 70S MuLV RNA at 68 degrees C. The melting temperature of this hybrid in the annealing solution was 87 degrees C. Another important feature of this procedure was that, after being selectively bound to the filters, the hybrid molecules could efficiently be recovered by heating the filters for 5 min at 60 degrees C in 1.5-1.7 M KCl. The recovered molecules were intact hybrids as they were found to be completely resistant to S1 nuclease.  相似文献   

7.
Replicative intermediate ribonucleic acid (RNA), designated RI, which contained parental RNA labeled with (32)P was separated by filtration through agarose from the nucleic acids prepared from (32)P-labeled RNA phage-infected Escherichia coli. A larger amount of ribonuclease-sensitive parental label was found in the rapidly sedimenting forms of RI than in the slower sedimenting forms, indicating that parental RNA is displaced to form a single-stranded tail. This result indicates that some phage RNA is generated by asymmetric semiconservative replication of RI, but it does not mean that a portion of the RI duplexes cannot be conserved during generation of phage RNA. Parental RNA was also found in double-stranded RNA with no apparent tails which sedimented with an S value of 13. This RNA was soluble in 2 m NaCl, and its sedimentation rate was unaffected by ribonuclease; nevertheless, single-strand scissions were produced by ribonuclease and were detected after the duplex was converted to its component single strands.  相似文献   

8.
Disulfide crosslinking via thiol-disulfide interchange was applied to quantitate the relative flexibility contributed by nicks and single-stranded gaps in an RNA structure. An RNA duplex comprised of three strands was constructed containing the disulfide crosslink precursors 1 and 2 at opposite ends of the duplex on opposite strands. The third strand was of varying length to yield a nick or single-stranded gaps of 1, 2, or 3 nt. Crosslinking rates Indicated relative flexibilities of the resulting two-helix junctions. Crosslinking in the nicked duplex occurred two orders of magnitude slower than in a duplex containing a 3-nt gap. Rates of crosslinking in duplexes with 3-and 2-nt gaps showed only modest dependence on the gap sequence. Many natural RNAs, including ribozymes, contain two-helix junctions related to the model system described here. The data suggest that two-helix junctions containing a nick in one strand will retain substantial rigidity, whereas one or more single-stranded nucleotides at a two-helix junction allow significant flexibility.  相似文献   

9.
A DNA-containing bacteriophage, phiCd1, was isolated from sewage and shown to infect both stalked and swarmer cells of Caulobacter crescentus strain CB13B1a. phiCd1 is a small, icosohedral bacteriophage, 60 nm in diameter, which possesses a short, noncontractile tail, 10 to 12 nm in length. The bacteriophage particle is composed of at least eight structural proteins. phiCd1 nucleic acid exists as a linear duplex of DNA as judged by: (i) thermal denaturation (Tm), (ii) CsCl density gradient centrifugation, and (iii) chemical analysis of its base composition. The DNA is 61% guanosine plus cytosine, has a buoyant density in CsCl of 1.721 +/- 0.001 g/cm3, and denatures sharply at 78.5 C in 0.1 SSC (standard saline citrate) buffer. The S20, w value for the DNA is 34.3 +/- 0.1S as compared with T7 DNA, indicating a molecular weight of about 29 x 10(6).  相似文献   

10.
The 2'-OH group in the ribose sugars of an RNA molecule plays an important role in guiding tertiary interactions that stabilize different RNA structural motifs. Deoxyribose, or 2'-OH by 2'-H, substitution in both the single-stranded and the duplex part of an RNA backbone has been routinely used to evaluate what role the 2'-OH plays in different tertiary interactions that guide an RNA-RNA contact. A deoxyribose substitution not only has the effect of removing a hydrogen bond donating group, but also introduces a sugar moiety with a preference for C2'-endo pucker in a backbone of predominantly C3'-endo sugars. This study evaluates the effects of a single deoxyribose substitution in both single-stranded and double-helical forms of RNA oligomers. A single-stranded, nonrepetitive 7-mer oligoribonucleotide (7-mer RNA) and four different variants having the same base sequence but with a single deoxyribose sugar at different positions in the strands have been studied by ultraviolet (UV) absorption, circular dichroism (CD), and Fourier transform infrared (FTIR) spectroscopy. Duplexes were formed by association with the complementary strand of the 7-mer RNA. The results show that both RNA and DNA single strands have preorganized conformations with spectral properties resembling those of A- and B-form helices, respectively, with RNA being more heterogeneous than its DNA counterpart. A single deoxyribose substitution perturbs the structure of the RNA backbone, with the effect being more pronounced in the single-stranded than in the duplex structure. The perturbation depends on the position of the 2'-H substitution in the strand.  相似文献   

11.
The 4S RNA genes in HeLa mitochondrial DNA (mtDNA) have been mapped by electron microscopy using the electron-opaque label ferritin. This method is based on the high affinity interaction between the protein, avidin, and biotin. 4S RNA, covalently coupled to biotin, was hybridized to single-stranded mtDNA. The hybrids were then labeled with ferritin-avidin conjugates. The positions of ferritin-labeled 4S RNA genes were determined relative to the rRNA genes on both heavy (H) and light (L) strands of mtDNA. This region was recognized as a duplex segment after hybridization either with rRNA in the case of H strands or with DNA complementary to rRNA in the case of L strands.Our studies suggest that at least nineteen 4S RNA genes are present in the HeLa mitochondrial genome. On the H strand, we have confirmed the nine map positions found in a previous electron microscope mapping study (Wu et al., 1972) and obtained evidence for three additional 4S RNA genes. On the L strand, seven 4S RNA genes have been mapped. The nineteen genes are distributed more or less uniformly around the genome. There is a pair of closely spaced genes, approximately 150 nucleotides apart, on the H strand, and another closely spaced pair on the L strand.  相似文献   

12.
To gain insight into the origins of the large binding affinity of RNA toward target duplexes, 2'-deoxy-2'-fluororibonucleic acid (2'F-RNA) and 2'-deoxy-2'-fluoroarabinonucleic acid (2'F-ANA) were tested for their ability to recognize duplex DNA, duplex RNA, and RNA-DNA hybrids. 2'F-RNA, 2'F-ANA, and the corresponding control single-stranded (ss) DNA strands were shown to form triple-helical complexes only with duplex DNA and hybrid DNA (Pu)-RNA (Py), but not with duplex RNA and hybrid RNA (Pu)-DNA (Py). In contrast, an RNA third strand recognized all four possible duplexes (DD, DR, RD, and RR) as previously demonstrated by Roberts and Crothers [(1992) Science 258, 1463-1466]. The 2'F-RNA (C3'-endo) strand exhibited significantly reduced affinity for duplexes compared to an unmodified RNA (C3'-endo) strand. These findings are consistent with the intermolecular 2'-OH-phosphate contact mechanism proposed by Escudé et al. [(1993) Nucleic Acids Res. 24, 5547-5553], as a ribo 2'-F atom should not interact with a negatively charged phosphate. In addition, they emphasize the role of the 2'-OH ribose as a general recognition and binding determinant of RNA. The 2'-F arabino modification (2'F-ANA, C2'-endo) led to a considerable increase in the binding affinity for duplex DNA, as compared to those of DNA and 2'F-RNA third strands. This is likely to be the result of a greater population of C2'-endo pucker of the 2'F-ANA compared to DNA. The enhancement observed for 2'F-ANA strands toward duplex DNA is comparable to that observed with 2'-OMe RNA. Since 2'F-ANA has been shown to be more resistant to nuclease degradation than DNA, these results are likely to stimulate experimental work on arabinose derivatives in laboratories concerned with targeting DNA sequences in vivo ("antigene" strategy).  相似文献   

13.
14.
Nucleocapsid protein (NC) of human immunodeficiency virus type 1 (HIV-1) was expressed in Escherichia coli and purified. The protein displayed a variety of activities on DNA structure, all reflecting an ability to promote transition between double-helical and single-stranded conformations. We found that, in addition to its previously described ability to accelerate renaturation of complementary DNA strands, the HIV-1 NC protein could substantially lower the melting temperature of duplex DNA and could promote strand exchange between double-stranded and single-stranded DNA molecules. Moreover, in the presence of HIV-1 NC, annealing of a single-stranded DNA molecule to a complementary DNA strand that would yield a more stable double-stranded product was favored over annealing to alternative complementary DNA strands that would form less stable duplex products (selective annealing). NC thus appears to lower the kinetic barrier so that double-strand <==> single-strand equilibrium is rapidly reached to favor the lowest free-energy nucleic acid conformation. This activity of NC may be important for correct folding of viral genomic RNA and may have practical applications.  相似文献   

15.
Studies of the size, composition, and structure of the deoxyribonucleic acid (DNA) of the F and G prototypes of herpes simplex virus (HSV) subtypes 1 and 2 (HSV-1 and HSV-2) showed the following. (i) As previously reported by Good-heart et al. HSV-1 and HSV-2 DNA have a buoyant density of 1.726 and 1.728 g/cm(3), corresponding to 67 and 69 guanine +/- cytosine moles per cent, respectively. The difference in guanine plus cytosine content of the DNA species was confirmed by the finding of a 1 C difference in T(m). (ii) The DNA from purified virus on cocentrifugation with T4 DNA in neutral sucrose density gradients sedimented at 55S, corresponding to 99 +/- 5 million daltons in molecular weight. HSV-1 and HSV-2 DNA could not be differentiated with respect to size. (iii) Cosedimentation of alkali-denatured DNA from purified virus with T4 DNA on alkaline sucrose density gradients consistently yielded several bands of single-stranded HSV DNA ranging from fragments 7 x 10(6) daltons to intact strands 48 x 10(6) daltons in molecular weight.  相似文献   

16.
M Homann  W Nedbal    G Sczakiel 《Nucleic acids research》1996,24(22):4395-4400
Hammerhead ribozymes with long antisense flanks (>50 bases) have been used successfully to inhibit replication of human immunodeficiency virus type 1 (HIV-1) in living cells. To explain their increased efficacy versus antisense controls or catalytically inactive derivatives, one can consider dissociation of the ribozyme-product complex to allow a complete catalytic cycle. In this work we investigated the dissociation of a double-stranded RNA with 56 bp in vitro. Dissociation was observed in the presence of single-stranded RNA with sequence complementarity to one of the duplex strands. A displacement reaction between RNA single strands and the duplex, but not simple dissociation, was strongly suggested by the concentration dependence of this process, the influence of additional non-complementary sequences on the single strand and by the unusually low Arrhenius activation energy. The strand displacement reaction was slow in vitro at 37 degrees C and physiological ionic strength, but was increased to k approximately 10(3)-10(4)/M/s (approximately 10(4)-fold) at higher temperatures by cetyltrimethylammonium bromide. This compound is thought to enhance non-sequence-specific association of nucleic acids in a mechanistically similar way to that in which cellular hnRNP proteins are thought to act, indicating that strand displacement can be fast and, more importantly, could be tightly regulated in vivo.  相似文献   

17.
Most yeast strains carry a cytoplasmic double-stranded RNA (dsRNA) molecule called W, of 2.5 kb in size. We have cloned and sequenced most of W genome (1), and we proposed that W (+) strands were identical to 20S RNA, a single-stranded RNA (ssRNA) species, whose copy number is highly induced under stress conditions. Recently it was proposed that 20S RNA was circular (2). In this paper, however, we demonstrate that both W dsRNA and 20S RNA are linear. Linearity of W dsRNA is shown by the stoichiometric labelling of both strands of W with 32P-pCp and T4 RNA ligase. The last 3' end nucleotide of both strands is about 70 to 80% C and 20 to 30% A. Linearity of 20S RNA is directly demonstrated by a site-specific cleavage of 20S RNA with RNase H, using an oligodeoxynucleotide complementary to an internal site of 20S RNA. The cleavage produced not one but two RNA fragments expected from the linearity of 20S RNA.  相似文献   

18.
20 S RNA virus is a positive strand RNA virus found in Saccharomyces cerevisiae. The viral genome (2.5 kb) only encodes its RNA polymerase (p91) and forms a ribonucleoprotein complex with p91 in vivo. A lysate prepared from 20 S RNA-induced cells showed an RNA polymerase activity that synthesized the positive strands of viral genome. When in vitro products, after phenol extraction, were analyzed in a time course, radioactive nucleotides were first incorporated into double-stranded RNA (dsRNA) intermediates and then chased out to the final single-stranded RNA products. The positive and negative strands in these dsRNA intermediates were non-covalently associated, and the release of the positive strand products from the intermediates required a net RNA synthesis. We found, however, that these dsRNA intermediates were an artifact caused by phenol extraction. Native replication intermediates had a single-stranded RNA backbone as judged by RNase sensitivity experiments, and they migrated distinctly from a dsRNA form in non-denaturing gels. Upon completion of RNA synthesis, positive strand RNA products as well as negative strand templates were released from replication intermediates. These results indicate that the native replication intermediates consist of a positive strand of less than unit length and a negative strand template loosely associated, probably through the RNA polymerase p91. Therefore, W, a dsRNA form of 20 S RNA that accumulates in yeast cells grown at 37 degrees C, is not an intermediate in the 20 S RNA replication cycle, but a by-product.  相似文献   

19.
20.
Control of Replication in RNA Bacteriophages   总被引:1,自引:1,他引:0       下载免费PDF全文
The rates of viral RNA and protein syntheses for wild-type RNA bacteriophages and their nonpolar, coat protein amber mutants were determined in amber suppressor (S26R1E, Su-1 and H12R8a, Su-3) and nonsuppressor (AB259, S26, and Q13) strains of Escherichia coli in the presence of rifamycin. It was demonstrated that the rates of synthesis of phage-specific replicase and RNA minus strands drop off concurrently in both wild-type and coat protein mutant-infected Su(-) and Su(+) cells after 10 and 15 min postinfection, respectively. The rate of synthesis of RNA plus strands started to decline 5 to 10 min later in both cases. Excessive synthesis of replicase in the coat protein mutant-infected cells was accompanied by a similar overproduction of RNA minus strands, but not of plus strands. Partial suppression of protein synthesis in wild-type phage-infected cells abolishing coat protein control over replicase accumulation led to prolongation of replicase synthesis. Such an effect was observed also in coat protein mutant-infected cells, indicating that the excess of replicase itself may be capable of suppression of replicase synthesis in the absence of coat protein. The prolongation of replicase synthesis was followed by the prolonged synthesis of RNA minus strands in both cases. Moreover, replicase and minus strands were formed in nearly equal amounts when protein synthesis was partially inhibited. Assuming functional instability of phage RNAs, the observed coupling of replicase and minus-strand RNA synthesis offers a possibility for control of viral RNA replication by means of control of replicase synthesis on the translational level. A hypothesis is put forward to explain the molecular mechanism of such coupling between the syntheses of replicase and RNA minus strands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号