首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
We recently demonstrated that systemic hypoxia during reduced inspired PO(2) produces a rapid increase in leukocyte adherence to rat mesenteric venules. Evidence suggests that the mechanism of this response involves decreased nitric oxide (NO) levels. One possible pathway for NO depletion could involve increased reactive oxygen species (ROS) generation resulting in inactivation of NO. The overall goal of the present study was to examine the role of ROS in promoting leukocyte-endothelial adherence during systemic hypoxia. Experiments were designed to 1) evaluate changes in ROS generation in the mesenteric microcirculation during systemic hypoxia, 2) determine how the ROS signal changes when PO(2) levels return to normal after a period of systemic hypoxia, 3) assess the effect of antioxidants on ROS generation during hypoxia, and 4) utilize antioxidants to examine the functional relationship between ROS generation and leukocyte adherence during hypoxia. The major findings from this study are that systemic hypoxia increases ROS generation within the mesenteric microcirculation and that antioxidants prevent the increase in leukocyte-endothelial adhesive interactions observed in hypoxia.  相似文献   

2.
The combination of living at altitude and training near sea level [live high-train low (LHTL)] may improve performance of endurance athletes. However, to date, no study can rule out a potential placebo effect as at least part of the explanation, especially for performance measures. With the use of a placebo-controlled, double-blinded design, we tested the hypothesis that LHTL-related improvements in endurance performance are mediated through physiological mechanisms and not through a placebo effect. Sixteen endurance cyclists trained for 8 wk at low altitude (<1,200 m). After a 2-wk lead-in period, athletes spent 16 h/day for the following 4 wk in rooms flushed with either normal air (placebo group, n = 6) or normobaric hypoxia, corresponding to an altitude of 3,000 m (LHTL group, n = 10). Physiological investigations were performed twice during the lead-in period, after 3 and 4 wk during the LHTL intervention, and again, 1 and 2 wk after the LHTL intervention. Questionnaires revealed that subjects were unaware of group classification. Weekly training effort was similar between groups. Hb mass, maximal oxygen uptake (VO(2)) in normoxia, and at a simulated altitude of 2,500 m and mean power output in a simulated, 26.15-km time trial remained unchanged in both groups throughout the study. Exercise economy (i.e., VO(2) measured at 200 W) did not change during the LHTL intervention and was never significantly different between groups. In conclusion, 4 wk of LHTL, using 16 h/day of normobaric hypoxia, did not improve endurance performance or any of the measured, associated physiological variables.  相似文献   

3.
To investigate the effects of training in normoxia vs. training in normobaric hypoxia (fraction of inspired O2 = 20.9 vs. 13.5%, respectively) on the regulation of Na+-K+-ATPase pump concentration in skeletal muscle (vastus lateralis), 9 untrained men, ranging in age from 19 to 25 yr, underwent 8 wk of cycle training. The training consisted of both prolonged and intermittent single leg exercise for both normoxia (N) and hypoxia (H) during a single session (a similar work output for each leg) and was performed 3 times/wk. Na+-K+-ATPase concentration was 326 +/- 17 (SE) pmol/g wet wt before training (Control), increased by 14% with N (371 +/- 18 pmol/g wet wt; P < 0.05), and decreased by 14% with H (282 +/- 20 pmol/g wet wt; P < 0.05). The maximal activity of citrate synthase, selected as a measure of mitochondrial potential, showed greater increases (P < 0.05) with H (1.22 +/- 0.10 mmol x h-1 x g wet wt-1; 70%; P < 0.05) than with N (0.99 +/- 0.10 mmol x h-1 x g wet wt-1; 51%; P < 0.05) compared with pretraining (0.658 +/- 0.09 mmol x h-1 x g wet wt-1). These results demonstrate that normobaric hypoxia induced during exercise training represents a potent stimulus for the upregulation in mitochondrial potential while at the same time promoting a downregulation in Na+-K+-ATPase pump expression. In contrast, normoxic training stimulates increases in both mitochondrial potential and Na+-K+-ATPase concentration.  相似文献   

4.
This study was designed to test the hypothesis that intermittent normobaric hypoxia at rest is a sufficient stimulus to elicit changes in physiological measures associated with improved performance in highly trained distance runners. Fourteen national-class distance runners completed a 4-wk regimen (5:5-min hypoxia-to-normoxia ratio for 70 min, 5 times/wk) of intermittent normobaric hypoxia (Hyp) or placebo control (Norm) at rest. The experimental group was exposed to a graded decline in fraction of inspired O2: 0.12 (week 1), 0.11 (week 2), and 0.10 (weeks 3 and 4). The placebo control group was exposed to the same temporal regimen but breathed fraction of inspired O2 of 0.209 for the entire 4 wk. Subjects were matched for training history, gender, and baseline measures of maximal O2 uptake and 3,000-m time-trial performance in a randomized, balanced, double-blind design. These parameters, along with submaximal treadmill performance (economy, heart rate, lactate, and ventilation), were measured in duplicate before, as well as 1 and 3 wk after, the intervention. Hematologic indexes, including serum concentrations of erythropoietin and soluble transferrin receptor and reticulocyte parameters (flow cytometry), were measured twice before the intervention, on days 1, 5, 10, and 19 of the intervention, and 10 and 25 days after the intervention. There were no significant differences in maximal O2 uptake, 3,000-m time-trial performance, erythropoietin, soluble transferrin receptor, or reticulocyte parameters between groups at any time. Four weeks of a 5:5-min normobaric hypoxia exposure at rest for 70 min, 5 days/wk, is not a sufficient stimulus to elicit improved performance or change the normal level of erythropoiesis in highly trained runners.  相似文献   

5.
Renal (peritubular) tissue hypoxia is a well-known physiological trigger for erythropoietin (EPO) production. We investigated the effect of rebound relative hypoxia after hyperoxia obtained under normo- and hyperbaric oxygen breathing conditions. A group of 16 healthy volunteers were investigated before and after a period of breathing 100% normobaric oxygen for 2 h and a period of breathing 100% oxygen at 2.5 ATA for 90 min (hyperbaric oxygen). Serum EPO concentration was measured using a radioimmunoassay at various time points during 24-36 h. A 60% increase (P < 0.001) in serum EPO was observed 36 h after normobaric oxygen. In contrast, a 53% decrease in serum EPO was observed at 24 h after hyperbaric oxygen. Those changes were not related to the circadian rhythm of serum EPO of the subjects. These results indicate that a sudden and sustained decrease in tissue oxygen tension, even above hypoxia thresholds (e.g., after a period of normobaric oxygen breathing), may act as a trigger for EPO serum level. This EPO trigger, the "normobaric oxygen paradox," does not appear to be present after hyperbaric oxygen breathing.  相似文献   

6.
The present study was designed to investigate the influence of exercise intensity and duration as well as of inspiratory oxygen content on plasma atrial natriuretic peptide concentration [( ANP]) and furthermore to compare ANP with the effect on aldosterone concentration [( Aldo]). Ten untrained male subjects performed a maximal exercise test (ME) on a cycle ergometer and a submaximal test of 60-min duration at 60% of maximal performance (SE) under normoxia (N) and normobaric hypoxia (H) (partial pressure of oxygen: 12.3 kPa). Five subjects were exposed to hypoxia at rest for 90 min. The [ANP] was mostly affected by exercise intensity (5 min after ME-N, +298.1%, SEM 39.1%) and less by exercise duration (at the end of SE-N: +229.5%, SEM 33.2%). Hypoxia had no effect at rest and reduced the exercise response (ME-H, +184.3%, SEM 27.2%; SE-H, +172.4%, SEM 15.7%). In contrast to ANP, the Aldo response was affected more by duration at submaximal level (+290.1%, SEM 34.0%) than by short maximal exercise (+235.7%, SEM 22.2%). Exposure to hypoxia rapidly decreased [Aldo] (-28.5%, SEM 3.7% after 30 min, P less than 0.01), but did not influence the exercise effects (ME-H, +206.2%, SEM 26.4%; SE-H, +321.6%, SEM 51.6%). The [ANP] increase was faster than that of [Aldo] during the maximal tests and there was no difference during submaximal exercise. Changes in plasma volume (PV), sodium concentration, and osmolality (Osm) were most pronounced during maximal exercise (for ME-N: PV -13.1%, SD 3.6%, sodium +6.2 mmol.l-1, SD 2.7, Osm +18.4 mosmol.kg H2O-1, SD 6.5). Regression analysis showed high correlations between changes in [ANP] and in Osm during and after maximal exercise and between changes in [ANP] and heart rate for submaximal exercise. It is concluded that besides other mechanisms increased Osm might be involved in the exercise-dependent increase of plasma [ANP].  相似文献   

7.
8.
Rats were exposed to hypobaric hypoxia (0.5 atm) for up to 3 wk. Hypoxic rats failed to gain weight but maintained normal brain water and ion content. Blood hematocrit was increased by 48% to a level of 71% after 3 wk of hypoxia compared with littermate controls. Brain blood flow was increased by an average of 38% in rats exposed to 15 min of 10% normobaric oxygen and by 23% after 3 h but was not different from normobaric normoxic rats after 3 wk of hypoxia. Sucrose space, as a measure of brain plasma volume, was not changed under any hypoxic conditions. The mean brain microvessel density was increased by 76% in the frontopolar cerebral cortex, 46% in the frontal motor cortex, 54% in the frontal sensory cortex, 65% in the parietal motor cortex, 68% in the parietal sensory cortex, 68% in the hippocampal CA1 region, 57% in the hippocampal CA3 region, 26% in the striatum, and 56% in the cerebellum. The results indicate that hypoxia elicits three main responses that affect brain oxygen availability. The acute effect of hypoxia is an increase in regional blood flow, which returns to control levels on continued hypoxic exposure. Longer-term effects of continued moderate hypoxic exposure are erythropoiesis and a decrease in intercapillary distance as a result of angiogenesis. The rise in hematocrit and the increase in microvessel density together increase oxygen availability to the brain to within normal limits, although this does not imply that tissue PO2 is restored to normal.  相似文献   

9.
It was investigated if athletes subjected to 4 wk of living in normobaric hypoxia (3,000 m; 16 h/day) while training at 800-1,300 m ["live high-train low" (LHTL)] increase muscular and systemic capacity for maintaining pH and K(+) homeostasis as well as intense exercise performance. The design was double-blind and placebo controlled. Mean power during 30-s all-out cycling was similar before and immediately after LHTL (650 ± 31 vs. 628 ± 32 W; n = 10) and placebo exposure (658 ± 22 vs. 660 ± 23 W; n = 6). Supporting the performance data, arterial plasma pH, lactate, and K(+) during submaximal and maximal exercise were also unaffected by the intervention in both groups. In addition, muscle buffer capacity (in mmol H(+)·kg dry wt(-1)·pH(-1)) was similar before and after in both the LHTL (140 ± 12 vs. 140 ± 16) and placebo group (145 ± 2 vs. 140 ± 3). The expression of sarcolemmal H(+) transporters (Na(+)/H(+) exchanger 1, monocarboxylate transporters 1 and 4), as well as expression of Na(+)-K(+) pump subunits-α(1), -α(2), and -β(1) was also similar before and after the intervention. In conclusion, muscular and systemic capacity for maintaining pH and K(+) balance during exercise is similar before and after 4 wk of placebo-controlled normobaric LHTL. In accordance, 30-s all-out sprint ability was similar before and after LHTL.  相似文献   

10.
11.
We studied whether exercise endurance under normobaric hypoxia can be enhanced by increasing hypoxic ventilatory sensitivity with almitrine bismesylate (ALM). On both ALM and placebo (PL) days, resting subjects breathed a hypoxic gas mixture (an inspired O2 fraction of 10.4-13.2%), which lowered resting arterial O2 saturation (SaO2) to 80%. After 15 min of rest there was a 3-min warm-up period of exercise at 50 W (light) on a cycle ergometer, followed by a step increase in load to 60% of the previously determined maximum power output with room-air breathing (moderate), which was maintained until exhaustion. With PL, SaO2 decreased rapidly with the onset of exercise and continued to fall slowly during moderate exercise, averaging 71.0 +/- 1.8% (SE) at exhaustion. With ALM, saturation did not differ from PL during air breathing but significantly exceeded SaO2 with PL, by 3.4% during resting hypoxia, by 4.0% at the start of exercise, and by 5.9% at exhaustion. Ventilation was not affected by ALM during air breathing and was slightly, although not significantly, increased during hypoxic rest and exercise. ALM was associated with an increased heart rate during room air breathing but not during hypoxia. Endurance time was 20.6 +/- 1.6 min with ALM and 21.3 +/- 0.9 min with PL. During hypoxic exercise, the potential benefit of greater saturation with ALM is apparently offset by other unidentified factors.  相似文献   

12.
As part of a study on the resistance of subjects adapted to aerobic physical activity to hypoxia, the ventilatory response of trained skiers whose regular physical training is associated with hyperventilation to intermittent normobaric hypoxia has been analyzed. A test session consisted of three cycles of breathing alternately a hypoxic gas mixture (10 vol % O2) for 5 min and normal air for 5 min. The skiers have a lower oxygen consumption rate as compared with untrained subjects, i.e., a reduced resistance to hypoxia. Therefore, the efficiency of respiration during hypoxia is lower in atheltes, which is caused by a rapid decrease in blood oxygenation, whereas during breathing normal atmospheric air, the efficiency of respiration is lower in untrained subjects.  相似文献   

13.
People living at high altitude appear to have lower blood glucose levels and decreased incidence of diabetes. Faster glucose uptake and increased insulin sensitivity are likely explanations for these findings: skeletal muscle is the largest glucose sink in the body, and its adaptation to the hypoxia of altitude may influence glucose uptake and insulin sensitivity. This study tested the hypothesis that chronic normobaric hypoxia increases insulin-stimulated glucose uptake in soleus muscles and decreases plasma glucose levels. Adult male C57BL/6J mice were kept in normoxia [fraction of inspired O? = 21% (Control)] or normobaric hypoxia [fraction of inspired O? = 10% (Hypoxia)] for 4 wk. Then blood glucose and insulin levels, in vitro muscle glucose uptake, and indexes of insulin signaling were measured. Chronic hypoxia lowered blood glucose and plasma insulin [glucose: 14.3 ± 0.65 mM in Control vs. 9.9 ± 0.83 mM in Hypoxia (P < 0.001); insulin: 1.2 ± 0.2 ng/ml in Control vs. 0.7 ± 0.1 ng/ml in Hypoxia (P < 0.05)] and increased insulin sensitivity determined by homeostatic model assessment 2 [21.5 ± 3.8 in Control vs. 39.3 ± 5.7 in Hypoxia (P < 0.03)]. There was no significant difference in basal glucose uptake in vitro in soleus muscle (1.59 ± 0.24 and 1.71 ± 0.15 μmol·g?1·h?1 in Control and Hypoxia, respectively). However, insulin-stimulated glucose uptake was 30% higher in the soleus after 4 wk of hypoxia than Control (6.24 ± 0.23 vs. 4.87 ± 0.37 μmol·g?1·h?1, P < 0.02). Muscle glycogen content was not significantly different between the two groups. Levels of glucose transporters 4 and 1, phosphoinositide 3-kinase, glycogen synthase kinase 3, protein kinase B/Akt, and AMP-activated protein kinase were not affected by chronic hypoxia. Akt phosphorylation following insulin stimulation in soleus muscle was significantly (25%) higher in Hypoxia than Control (P < 0.05). Neither glycogen synthase kinase 3 nor AMP-activated protein kinase phosphorylation changed after 4 wk of hypoxia. These results demonstrate that the adaptation of skeletal muscles to chronic hypoxia includes increased insulin-stimulated glucose uptake.  相似文献   

14.
The purpose ofthe present investigation was to determine the independent effects ofhypoxia and physical exercise on peripheral cholecystokinin (CCK)metabolism in humans. Thirty-two physically active men wererandomly assigned in a double-blind manner to either a normoxic (N;n = 14) or hypoxic (H; n = 18) group.During the acute study, subjects in the H group only participated in two tests, separated by 48 h, which involved a cycling test to exhaustion in normobaric normoxia and normobaric hypoxia (inspired O2 fraction = 0.21 and 0.16, respectively). In theintermittent study, N and H groups cycle-trained for 4 wk at the samerelative exercise intensity in both normoxia and hypoxia. Acutenormoxic exercise consistently raised plasma CCK during both studies by 290-723%, which correlated with increases in the plasma ratio offree tryptophan to branched chain amino acids (r = 0.58-0.71, P < 0.05). In contrast, acute hypoxicexercise decreased CCK by 7.0 ± 5.5 pmol/l, which correlated withthe decrease in arterial oxygen saturation (r = 0.56, P < 0.05). In the intermittent study, plasma CCKresponse at rest and after normoxic exercise was not altered afterphysical training, despite a slight decrease in adiposity. We concludethat peripheral CCK metabolism 1) is more sensitive to acutechanges than chronic changes in energy expenditure and 2) ispotentially associated with acute changes in tissue PO2 and metabolic precursors of cerebralserotoninergic activity.

  相似文献   

15.
Chronic reductions in tissue O(2) tension (hypoxia) are associated with muscle atrophy and blunted hypertrophic responses to resistance exercise (RE) training. However, the effect of hypoxia on muscle protein synthesis (MPS) at rest and after RE is unknown. In a crossover study, seven healthy men (21.4 ± 0.7 yr) performed unilateral leg RE (6 × 8 repetitions at 70% 1-repetition maximum) under normoxic (20.9% inspired O(2)) and normobaric hypoxic (12% inspired O(2) for 3.5 h) postabsorptive conditions. Immediately after RE the rested leg was biopsied, and a primed continuous infusion of [1,2-(13)C(2)]leucine was maintained for 2.5 h before final biopsies from both legs to measure tracer incorporation and signaling responses (i.e., ribosomal S6 kinase 1). After 3.5 h of hypoxia, MPS was not different from normoxia in the rested leg (normoxia 0.033 ± 0.016 vs. hypoxia 0.043 ± 0.016%/h). MPS increased significantly from baseline 2.5 h after RE in normoxia (0.033 ± 0.016 vs. 0.104 ± 0.038%/h) but not hypoxia (0.043 ± 0.016 vs. 0.060 ± 0.063%/h). A significant linear relationship existed between MPS 2.5 h after RE in hypoxia and mean arterial blood O(2) saturation during hypoxia (r(2) = 0.49, P = 0.04). Phosphorylation of p70S6K(Thr389) remained unchanged in hypoxia at rest but increased after RE in both normoxia and hypoxia (2.6 ± 1.2-fold and 3.4 ± 1.1-fold, respectively). Concentrations of the hypoxia-responsive mTOR inhibitor regulated in development and DNA damage-1 were unaltered by hypoxia or RE. We conclude that normobaric hypoxia does not reduce MPS over 3.5 h at rest but blunts the increased MPS response to acute RE to a degree dependent on extant SpO(2).  相似文献   

16.
Hypoxia stimulates angiogenesis in some microvascular beds, but no clear angiogenic effect of hypoxia has yet been demonstrated in adult skeletal muscle. In this study the distribution of alkaline phosphatase (APase) was compared with a novel microvascular marker, Griffonia simplicifolia I (GSI), to determine whether the respective markers were expressed by muscle capillaries during hypoxic conditions and to probe for the presence or absence of angiogenesis in response to short-term hypoxia. Mice were exposed to normobaric 8% oxygen for 7 or 21 days. Capillary density in the red and white areas of the gastrocnemius muscle was determined with the use of a double-labeling procedure for both APase and fluorescently tagged GSI. Little change in capillary density was found. Focal reductions in APase activity were observed within 1 wk of hypoxia, but no changes were observed in GSI binding. In controls, 74 and 92% of red and white muscle capillaries, respectively, were APase positive. This percentage declined to 60% in red and 43% in white muscle after 21 days of hypoxia. The results indicate that APase expression is labile under certain conditions and warrant a cautious approach to using the enzyme as a marker. Binding of the GSI lectin to muscle capillaries appeared to be unchanged by the exposure to hypoxia, indicating stability of this marker system. No significant change in the number of capillaries around individual muscle fibers was evident at 21 days when GSI was used to detect capillaries. These results confirm the absence of hypoxia-induced angiogenesis in muscle capillaries during the time period studied.  相似文献   

17.
Six subjects rode a bicycle ergometer on three occasions breathing 17, 21, or 60% oxygen. In addition to rest and recovery periods, each subject worked for 10 min at 55% of maximal oxygen uptake (VO2 max) and then to exhaustion at approximately 90% VO2 max. Performance time, inspired and expired gas fractions, ventilation, and arterialized venous oxygen tension (PO2), carbon dioxide tension (PCO2), lactate, and pH were measured. VO2, carbon dioxide output, [H+]a, and [HCO3-]a were calculated. Performance times were longer in hyperoxia than in normoxia or hypoxia. However, VO2 was not different at exhaustion in normoxia compared with hypoxia or hyperoxia. During exercise, hypoxia was associated with increased lactate levels and decreased [H+]a, PCO2, and [HCO3-]a. The opposite trends were generally associated with hyperoxia. At exhaustion, [H+]a was not different under any inspired oxygen fraction. These results support the contention that oxygen is not limiting for exercise of this intensity and duration. The results also suggest that [H+] is a possible limiting factor and that the effect of oxygen on performance is perhaps related to control of [H+].  相似文献   

18.
Pulmonary gas exchange was studied in eight normal subjects both before and after 2 wk of altitude acclimatization at 3,800 m (12,470 ft, barometric pressure = 484 Torr). Respiratory and multiple inert gas tensions, ventilation, cardiac output (Q), and hemoglobin concentration were measured at rest and during three levels of constant-load cycle exercise during both normoxia [inspired PO2 (PIO2) = 148 Torr] and normobaric hypoxia (PIO2 = 91 Torr). After acclimatization, the measured alveolar-arterial PO2 difference (A-aPO2) for any given work rate decreased (P less than 0.02). The largest reductions were observed during the highest work rates and were 24.8 +/- 1.4 to 19.7 +/- 0.8 Torr (normoxia) and 22.0 +/- 1.1 to 19.4 +/- 0.7 Torr (hypoxia). This could not be explained by changes in ventilation-perfusion inequality or estimated O2 diffusing capacity, which were unaffected by acclimatization. However, Q for any given work rate was significantly decreased (P less than 0.001) after acclimatization. We suggest that the reduction in A-aPO2 after acclimatization is a result of more nearly complete alveolar/end-capillary diffusion equilibration on the basis of a longer pulmonary capillary transit time.  相似文献   

19.
This study tested the hypothesis that women would have blunted physiological responses to acute hypoxic exercise compared with men. Fourteen women taking oral contraceptives (28 +/- 0.9 yr of age) and 15 men (30 +/- 1.0 yr of age) with similar peak O(2) consumption (VO(2 peak)) values (56 +/- 1.1 vs. 57 +/- 0.8 ml x kg fat-free mass(-1) x min(-1)) were studied under hypoxic (H; fraction of inspired oxygen = 13%) vs. normoxic (fraction of inspired oxygen = 20.93%) conditions. Cardiopulmonary, metabolic, and neuroendocrine measures were taken before, during, and 30 min after three 5-min consecutive workloads at 30, 45, and 60% VO(2 peak). In women compared with men, glucose levels were greater during recovery from H (P < 0.05) and lactate levels were lower at 45% VO(2 peak), 60% VO(2 peak), and up to 20 min of recovery (P < 0.05), regardless of trial (P < 0.0001). Although the women had greater baseline levels of cortisol and growth hormone (P < 0.0001), gender did not affect these hormones during H or exercise. Catecholamine responses to H were also similar between genders. Thus the endocrine response to hypoxia per se was not blunted in women as we had hypothesized. Other mechanisms must be at play to cause the gender differences in metabolic substrates in response to hypoxia.  相似文献   

20.
Systemic hypoxia produces a rapid microvascular inflammatory response characterized by increased reactive oxygen species (ROS) levels, leukocyte-endothelial adherence and emigration, and increased vascular permeability. The lipid inflammatory mediator leukotriene B(4) (LTB(4)) is involved in the early hypoxia-induced responses (ROS generation and leukocyte adherence). Whether other lipid inflammatory mediators participate in this phenomenon is not known. The objective of these experiments was to study the role of platelet-activating factor (PAF) in the microvascular inflammatory response to hypoxia and its potential interactions with LTB(4) in this response. Intravital microscopy was used to examine mesenteric venules of anesthetized rats. We found that WEB-2086, a PAF receptor antagonist, completely prevented the increase in ROS levels and leukocyte adherence during a brief reduction in inspired Po(2) to anesthetized rats; administration of either WEB-2086 or the LTB(4) antagonist LTB(4)-DMA attenuated leukocyte emigration and the increase in vascular permeability to the same extent during prolonged systemic hypoxia in conscious rats. Furthermore, no additive effect was observed in either response when both antagonists were administered simultaneously. This study demonstrates a role for PAF in the rapid microvascular inflammatory response to hypoxia, as well as contributions of PAF and LTB(4) to the slowly developing responses observed during sustained hypoxia. The incomplete blockade of the hypoxia-induced increases in vascular permeability and leukocyte emigration by combined administration of both antagonists indicates that factors in addition to LTB(4) and PAF participate in these phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号