首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
K McGee  M Zettl  M Way  M F?llman 《FEBS letters》2001,509(1):59-65
Phagocytosis of Yersinia pseudotuberculosis occurs through interaction of the bacterial protein invasin with beta1-integrins. Here we report that N-WASP plays a role in internalisation of an invasin-expressing, avirulent strain of Y. pseudotuberculosis. Ectopic expression of N-WASP mutants, which affect recruitment of the Arp2/3 complex to the phagosome, reduces uptake of Yersinia. In addition, expression of the Cdc42/Rac-binding (CRIB) region of N-WASP has an inhibitory effect on uptake. Using GFP-tagged Rho GTPase mutants, we provide evidence that Rac1, but not Cdc42, is important for internalisation. Furthermore, activated Rac1 rescues Toxin B, CRIB and Src family kinase inhibitor PP2-mediated impairment of uptake. Our observations indicate that invasin-mediated phagocytosis occurs via a Src and WASP family-dependent mechanism(s), involving the Arp2/3 complex and Rac, but does not require Cdc42.  相似文献   

2.
Enteropathogenic Yersinia species encode invasin, which promotes uptake into host cells by binding beta1 integrins. Invasin may cluster integrin heterodimers extracellularly and cause the integrin alpha and beta chains to splay apart in the cytoplasm. Cdc42 signaling is not essential for Yersinia uptake, whereas invasin crucially triggers Rac1-mediated signals that enable internalization. The signals linking invasin-mediated adhesion to Rac1 activation are not clear, but a novel kinase may release it from RhoGDI so that Rac1 can be activated, for example by Dock180. Rac1 may act via Arp2/3, phosphatidylinositol 4,5-bisphosphate and capping-proteins in the formation of nascent phagosomes during Yersinia uptake.  相似文献   

3.
We report that WAVE1/Scar1, a WASP-family protein that functions downstream of Rac in membrane ruffling, can induce part of the reorganization of the actin cytoskeleton without Arp2/3 complex. WAVE1 has been reported to associate and activate Arp2/3 complex at its C-terminal region that is rich in acidic residues. The deletion of the acidic residues abolished the interaction with and the activation ability of Arp2/3 complex. The expression of the mutant WAVE1 lacking the acidic residues (DeltaA), however, induced actin-clustering in cells as the wild-type WAVE1 did. In addition, this actin-clustering could not be suppressed by the coexpression of the Arp2/3 complex-sequestering fragment (CA-region) derived from N-WASP, which clearly inhibits Rac-induced membrane ruffling. This study therefore demonstrates that WAVE1 reorganizes the actin cytoskeleton not only through Arp2/3 complex but also through another unidentified mechanism that may be important but has been neglected thus far.  相似文献   

4.
Regulation of actin dynamics by WASP family proteins   总被引:10,自引:0,他引:10  
Rapid reorganization of the actin cytoskeleton underlies morphological changes and motility of cells. WASP family proteins have received a great deal of attention as the signal-regulated molecular switches that initiate actin polymerization. The first member, WASP, was identified as the product of a gene of which dysfunction causes the human hereditary disease Wiskott-Aldrich syndrome. There are now five members in this protein family, namely WASP, N-WASP, WAVE/Scar1, 2, and 3. WASP and N-WASP have functional and physical associations with Cdc42, a Rho family small GTPase involved in filopodium formation. In contrast, there is evidence that links the WAVE/Scar proteins with another Rho family protein, Rac, which is a regulator of membrane ruffling. All WASP family members have a VCA domain at the C-terminus through which Arp2/3 complex is activated to nucleate actin polymerization. Analyses of model organisms have just begun to reveal unexpected functions of WASP family proteins in multicellular organisms.  相似文献   

5.
The Yersinia outer surface protein invasin binds to β1 integrins on target cells and has been shown to trigger phagocytic uptake by macrophages. Here, we investigated the role of the actin regulator Wiskott–Aldrich syndrome protein (WASp), its effector the Arp2/3 complex and the Rho-GTPases CDC42Hs, Rac and Rho in invasin/β1 integrin-triggered phagocytosis. During uptake of invasin-coated latex beads, the α5β1 integrin, WASp and the Arp2/3 complex were recruited to the developing actin-rich phagocytic cups in primary human macrophages. Blockage of β1 integrins by specific antibodies, inhibition of Arp2/3 function by microinjection of inhibitors or the use of WASp knockout macrophages inhibited phagocytic cup formation and uptake. Furthermore, microinjection of the dominant negative GTPase mutants N17CDC42Hs, N17Rac or the Rho-specific inhibitor C3-transferase into macrophages greatly attenuated invasin-induced formation of cups. These data suggest that during invasin-triggered phagocytosis β1 integrins activate actin polymerization via CDC42Hs, its effector WASp and the Arp2/3 complex. The contribution of Rac and Rho to phagocytic cup formation also suggests a complex interplay between different Rho GTPases during phagocytosis of pathogens.  相似文献   

6.
The Wiskott-Aldrich syndrome protein (WASP) and neural WASP (N-WASP) are key players in regulating actin cytoskeleton via the Arp2/3 complex. It has been widely reported that the WASP proteins are activated by Rho family small GTPase Cdc42 and that Rac1 acts through SCAR/WAVE proteins. However, a systematic study of the specificity of different GTPases for different Arp2/3 activators has not been conducted. In this study, we have expressed, purified, and characterized completely soluble, highly active, and autoinhibited full-length human WASP and N-WASP from mammalian cells. We show a novel N-WASP activation by Rho family small GTPase Rac1. This GTPase exclusively stimulates N-WASP and has no effects on WASP. Rac1 is a significantly more potent N-WASP activator than Cdc42. In contrast, Cdc42 is a more effective activator of WASP than N-WASP. Lipid vesicles containing PIP2 significantly improve actin nucleation by the Arp2/3 complex and N-WASP in the presence of Rac1 or Cdc42. PIP2 vesicles have no effect on WASP activity alone. Moreover, the inhibition of WASP-stimulated actin nucleation in the presence of Cdc42 and PIP2 vesicles has been observed. We found that adaptor proteins Nck1 or Nck2 are the most potent WASP and N-WASP activators with distinct effects on the WASP family members. Our in vitro data demonstrates differential regulation of full-length WASP and N-WASP by cellular activators that highlights fundamental differences of response at the protein-protein level.  相似文献   

7.
WAVE-1, which is also known as Scar, is a scaffolding protein that directs actin reorganization by relaying signals from the GTPase Rac to the Arp2/3 complex. Although the molecular details of WAVE activation by Rac have been described, the mechanisms by which these signals are terminated remain unknown. Here we have used tandem mass spectrometry to identify previously unknown components of the WAVE signalling network including WRP, a Rac-selective GTPase-activating protein. WRP binds directly to WAVE-1 through its Src homology domain 3 and specifically inhibits Rac function in vivo. Thus, we propose that WRP is a binding partner of WAVE-1 that functions as a signal termination factor for Rac.  相似文献   

8.
Henry N Higgs   《Current biology : CB》2001,11(24):R1009-R1012
Arp2/3 complex plays a key role in regulated actin polymerization. A recent study has revealed marked differences in the ability of two nucleation-promoting factors - N-WASP and Scar/WAVE1 - to activate the Arp2/3 complex. Further insights have come from determination of the Arp2/3 crystal structure.  相似文献   

9.
The Arp2/3 complex, a highly conserved nucleator of F-actin polymerization, is essential for a variety of eukaryotic cellular processes, including epidermal cell morphogenesis in Arabidopsis thaliana. Efficient nucleation of actin filaments by the Arp2/3 complex requires the presence of an activator such as a member of the Scar/WAVE family. In mammalian cells, a multiprotein complex consisting of WAVE, PIR121/Sra-1, Nap1, Abi-2 and HSPC300 mediates responsiveness of WAVE to upstream regulators such as Rac. Essential roles in WAVE complex assembly or function have been demonstrated for PIR121/Sra-1, Nap1 and Abi-2, but the significance of HSPC300 in this complex is unclear. Plant homologs of all mammalian WAVE complex components have been identified, including HSPC300, the mammalian homolog of maize BRICK1 (BRK1). We show that, like mutations disrupting the Arabidopsis homologs of PIR121/Sra-1, Nap1 and Scar/WAVE, mutations in the Arabidopsis BRK1 gene result in trichome and pavement cell morphology defects (and associated alterations in the F-actin cytoskeleton of expanding cells) similar to those caused by mutations disrupting the ARP2/3 complex itself. Analysis of double mutants provides genetic evidence that BRK1 functions in a pathway with the ARP2/3 complex. BRK1 is required for accumulation of SCAR1 protein in vivo, potentially explaining the apparently essential role of BRK1 in ARP2/3 complex function.  相似文献   

10.
The Rho-GTPase Rac1 stimulates actin remodelling at the cell periphery by relaying signals to Scar/WAVE proteins leading to activation of Arp2/3-mediated actin polymerization. Scar/WAVE proteins do not interact with Rac1 directly, but instead assemble into multiprotein complexes, which was shown to regulate their activity in vitro. However, little information is available on how these complexes function in vivo. Here we show that the specifically Rac1-associated protein-1 (Sra-1) and Nck-associated protein 1 (Nap1) interact with WAVE2 and Abi-1 (e3B1) in resting cells or upon Rac activation. Consistently, Sra-1, Nap1, WAVE2 and Abi-1 translocated to the tips of membrane protrusions after microinjection of constitutively active Rac. Moreover, removal of Sra-1 or Nap1 by RNA interference abrogated the formation of Rac-dependent lamellipodia induced by growth factor stimulation or aluminium fluoride treatment. Finally, microinjection of an activated Rac failed to restore lamellipodia protrusion in cells lacking either protein. Thus, Sra-1 and Nap1 are constitutive and essential components of a WAVE2- and Abi-1-containing complex linking Rac to site-directed actin assembly.  相似文献   

11.
Branched actin filament networks in cells are assembled through the combined activities of Arp2/3 complex and different WASP/WAVE proteins. Here we used TIRF and electron microscopy to directly compare for the first time the assembly kinetics and architectures of actin filament networks produced by Arp2/3 complex and dimerized VCA regions of WAVE1, WAVE2, or N-WASP. WAVE1 produced strikingly different networks from WAVE2 or N-WASP, which comprised unexpectedly short filaments. Further analysis showed that the WAVE1-specific activity stemmed from an inhibitory effect on filament elongation both in the presence and absence of Arp2/3 complex, which was observed even at low stoichiometries of WAVE1 to actin monomers, precluding an effect from monomer sequestration. Using a series of VCA chimeras, we mapped the elongation inhibitory effects of WAVE1 to its WH2 (“V”) domain. Further, mutating a single conserved lysine residue potently disrupted WAVE1''s inhibitory effects. Taken together, our results show that WAVE1 has unique activities independent of Arp2/3 complex that can govern both the growth rates and architectures of actin filament networks. Such activities may underlie previously observed differences between the cellular functions of WAVE1 and WAVE2.  相似文献   

12.
Salmonella enterica serovar Typhimurium (S. typhimurium) induces actin assembly both during invasion of host cells and during the course of intracellular bacterial replication. In this study, we investigated the involvement in these processes of host cell signalling pathways that are frequently utilized by bacterial pathogens to manipulate the eukaryotic actin cytoskeleton. We confirmed that Cdc42, Rac, and Arp3 are involved in S. typhimurium invasion of HeLa cells, and found that N-WASP and Scar/WAVE also play a role in this process. However, we found no evidence for the involvement of these proteins in actin assembly during intracellular replication. Cortactin was recruited by Salmonella during both invasion and intracellular replication. However, RNA interference directed against cortactin did not inhibit either invasion or intracellular actin assembly, although it resulted in increased cell spreading and a greater number of lamellipodia. We also found no role for either the GTPase dynamin or the formin family member mDia1 in actin assembly by intracellular bacteria. Collectively, these data provide evidence that signalling pathways leading to Arp2/3-dependent actin nucleation play an important role in S. typhimurium invasion, but are not involved in intracellular Salmonella-induced actin assembly, and suggest that actin assembly by intracellular S. typhimurium may proceed by a novel mechanism.  相似文献   

13.
The Wiskott-Aldrich syndrome protein (WASP) family activates the Arp2/3 complex leading to the formation of new actin filaments. Here, we study the involvement of Scar1, Scar2, N-WASP, and Arp2/3 complex in dorsal ruffle formation in mouse embryonic fibroblasts (MEFs). Using platelet-derived growth factor to stimulate circular dorsal ruffle assembly in primary E13 and immortalized E9 Scar1(+/+) and Scar1 null MEFs, we establish that Scar1 loss does not impair the formation of dorsal ruffles. Reduction of Scar2 protein levels via small interfering RNA (siRNA) also did not affect dorsal ruffle production. In contrast, wiskostatin, a chemical inhibitor of N-WASP, potently suppressed dorsal ruffle formation in a dose-dependent manner. Furthermore, N-WASP and Arp2 siRNA treatment significantly decreased the formation of dorsal ruffles in MEFs. In addition, the expression of an N-WASP truncation mutant that cannot bind Arp2/3 complex blocked the formation of these structures. Finally, N-WASP(-/-) fibroblast-like cells generated aberrant dorsal ruffles. These ruffles were highly unstable, severely depleted of Arp2/3 complex, and diminished in size. We hypothesize that N-WASP and Arp2/3 complex are part of a multiprotein assembly important for the generation of dorsal ruffles and that Scar1 and Scar2 are dispensable for this process.  相似文献   

14.
The mammalian genome encodes multiple Wiskott-Aldrich syndrome protein (WASP)/WASP-family Verprolin homologous (WAVE) proteins. Members of this family interact with the actin related protein (Arp) 2/3 complex to promote growth of a branched actin network near the plasma membrane or the surface of moving cargos. Arp2/3 mediated branching can further lead to formation of comet tails (actin rockets). Despite their similar domain structure, different WASP/WAVE family members fulfill unique functions that depend on their subcellular location and activity levels. We measured the relative efficiency of actin nucleation promotion of full-length WASP/WAVE proteins in a cytoplasmic extract from primary human umbilical vein endothelial cells (HUVEC). In this assay WAVE2 and WAVE3 complexes showed higher nucleation efficiency than WAVE1 and N-WASP, indicating distinct cellular controls for different family members. Previously, WASP and N-WASP were the only members that were known to stimulate comet formation. We observed that in addition to N-WASP, WAVE3 also induced short actin tails, and the other WAVEs induced formation of asymmetric actin shells. Differences in shape and structure of actin-based growth may reflect varying ability of WASP/WAVE proteins to break symmetry of the actin shell, possibly by differential recruitment of actin bundling or severing (pruning or debranching) factors.  相似文献   

15.
The WAVE/Scar proteins regulate actin polymerisation at the leading edge of motile cells via activation of the Arp2/3 complex in response to extracellular cues. Within cells they form part of a pentameric complex that is thought to regulate their ability to interact and activate the Arp2/3 complex. However, the exact mechanism for this is not known. We set out to assess whether phosphorylation of Scar1 by the non-receptor tyrosine kinase Src may influence the function of Scar1 and its ability to regulate Arp2/3-mediated actin polymerisation. We show that Scar1 is phosphorylated by Src in vitro and in vivo and identify tyrosine 125 as the major site in Scar1 to be phosphorylated in cells. Src-dependent phosphorylation of Scar1 on tyrosine 125 enhances its ability to bind to the Arp2/3 complex and regulates its ability to control actin polymerisation in cells. Thus, Src may act as an intermediary to regulate the activity of the Arp2/3 complex in response to external stimuli, via modulation of its interaction with WAVE/Scar proteins.  相似文献   

16.
Bartonella henselae (Bhe) can invade human endothelial cells (ECs) by two distinguishable entry routes: either individually by endocytosis or as large bacterial aggregates by invasome-mediated internalization. Only the latter process is dependent on a functional VirB/VirD4 type IV secretion system (T4SS) and the thereby translocated Bep effector proteins. Here, we introduce HeLa cells as a new cell system suitable to study invasome formation. We describe a novel route to trigger invasome formation by the combined action of the effectors BepC and BepF. Co-infections of either HUVEC or HeLa cells with the Bep-deficient ΔbepA-G mutant expressing either BepC or BepF restores invasome formation. Likewise, ectopic expression of a combination of BepC and BepF in HeLa cells enables invasome-mediated uptake of the Bhe ΔbepA-G mutant strain. Further, eGFP-BepC and eGFP-BepF fusion proteins localize to the cell membrane and, upon invasome formation, to the invasome. Furthermore, the combined action of BepC and BepF inhibits endocytic uptake of inert microspheres. Finally, we show that BepC and BepF-triggered invasome formation differs from BepG-triggered invasome formation in its requirement for cofilin1, while the Rac1/Scar1/WAVE/Arp2/3 and Cdc42/WASP/Arp2/3 signalling pathways are required in both cases.  相似文献   

17.
Rickettsiae are obligate intracellular pathogens that are transmitted to humans by arthropod vectors and cause diseases such as spotted fever and typhus. Although rickettsiae require the host cell actin cytoskeleton for invasion, the cytoskeletal proteins that mediate this process have not been completely described. To identify the host factors important during cell invasion by Rickettsia parkeri, a member of the spotted fever group (SFG), we performed an RNAi screen targeting 105 proteins in Drosophila melanogaster S2R+ cells. The screen identified 21 core proteins important for invasion, including the GTPases Rac1 and Rac2, the WAVE nucleation-promoting factor complex and the Arp2/3 complex. In mammalian cells, including endothelial cells, the natural targets of R. parkeri, the Arp2/3 complex was also crucial for invasion, while requirements for WAVE2 as well as Rho GTPases depended on the particular cell type. We propose that R. parkeri invades S2R+ arthropod cells through a primary pathway leading to actin nucleation, whereas invasion of mammalian endothelial cells occurs via redundant pathways that converge on the host Arp2/3 complex. Our results reveal a key role for the WAVE and Arp2/3 complexes, as well as a higher degree of variation than previously appreciated in actin nucleation pathways activated during Rickettsia invasion.  相似文献   

18.
Chlamydiae are Gram-negative obligate intracellular pathogens to which access to an intracellular environment is fundamental to their development. Chlamydial attachment to host cells induces the activation of the Rac GTPase, which is required for the localization of WAVE2 at the sites of chlamydial entry. Co-immunoprecipitation experiments demonstrated that Chlamydia trachomatis infection promoted the interaction of Rac with WAVE2 and Abi-1, but not with IRSp53. siRNA depletion of WAVE2 and Abi-1 abrogated chlamydia-induced actin recruitment and significantly reduced the uptake of the pathogen by the depleted cells. Chlamydia invasion also requires the Arp2/3 complex as demonstrated by its localization to the sites of chlamydial attachment and the reduced efficiency of chlamydial invasion in cells overexpressing the VCA domain of the neural Wiskott-Aldrich syndrome protein. Thus, C. trachomatis activates Rac and promotes its interaction with WAVE2 and Abi-1 to activate the Arp2/3 complex resulting in the induction of actin cytoskeletal rearrangements that are required for invasion.  相似文献   

19.
WASP family proteins activate nucleation by the Arp2/3 complex, inducing rapid actin polymerization in vitro. Although the C-terminal portion of WASP family proteins (VCA) activates nucleation by the Arp2/3 complex in pure systems, we find that this fragment lacks activity in cell extracts. Thus, polystyrene beads coated with VCA did not move in brain cytosol, while beads coated with N-WASP or WAVE2 did move. The basic clusters between the WH1 domain and the CRIB domain of N-WASP were critical for movement since beads coated with N-WASP or WAVE2 constructs missing the basic clusters (Delta basic) also did not move. Furthermore, VCA and N-WASP/WAVE2 Delta basic constructs were much less able than wild-type N-WASP and WAVE2 to induce actin polymerization in cytosol. All of the proteins, with or without the basic domain, were potent activators of nucleation by purified Arp2/3 complex.  相似文献   

20.
WASP family proteins induce actin polymerization through a C-terminal verprolin homology, cofilin homology, and acidic (VCA) region by activating the Arp2/3 complex. The N-WASP VCA region is the most potent activator of the Arp2/3 complex. In addition, full-length WAVE1 and a WAVE1 VCA fragment show differential activity. The mechanisms underlying these differences are poorly understood. We examined the activities of various N-WASP and WAVE1 VCA mutant proteins with several types of fusion moieties. When fused to GST, maltose-binding protein, or the WAVE1 proline-rich domain, N-WASP VCA and WAVE1 VCA mutant proteins with two V motifs showed stronger activities than wild-type WAVE1 VCA with one V motif, demonstrating the importance of two V motifs for strong VCA activity. A WAVE1 VCA fragment tagged with six histidines (His) showed markedly reduced activity compared to GST-fused VCA, whereas His-tagged N-WASP VCA showed similar activity to GST-fused VCA. An additional V motif failed to enhance WAVE1 VCA activity in the His-tagged form. Thus, the WAVE1 VCA fragment may exist in an unfavorable conformation to activate the Arp2/3 complex, implying the existence of a structural difference between WAVE1 and N-WASP VCAs in addition to the number of V motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号