首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 638 毫秒
1.
The Philadelphia chromosome (t9:22;q34:q11) is found in more than 90% of patients with chronic myelogenous leukemia, in 10 to 20% of patients with acute lymphocytic leukemia, and in 1 to 2% of patients with acute myelogenous leukemia. Alternative chimeric oncogenes are formed by splicing different sets of BCR gene exons on chromosome 22 across the translocation breakpoint to a common set of ABL oncogene sequences on chromosome 9. This results in an 8.7-kilobase mRNA that encodes the P210 BCR-ABL gene product commonly found in patients with chronic myelogenous leukemia or a 7.0-kilobase mRNA that produces the P185 BCR-ABL gene product found in most Philadelphia chromosome-positive patients with acute lymphocytic leukemia. To compare the efficiency of growth stimulation by these two proteins, we derived cDNA clones for each with identical 5' and 3' untranslated regions and expressed them from retrovirus vectors. Matched stocks were compared for potency to transform immature B-lymphoid lineage precursors. The growth-stimulating effects of P185 for this cell type were found to be significantly greater than those of P210. Structural changes in BCR may regulate the effectiveness of the ABL tyrosine kinase function, as monitored by lymphocyte growth response. Changes in mitogenic potency may help to explain the more acute leukemic presentation usually associated with expression of the P185 BCR-ABL oncogene.  相似文献   

2.
3.
Two forms of activated BCR/ABL proteins, P210 and P185, that differ in BCR-derived sequences, are associated with Philadelphia chromosome-positive leukemias. One of these diseases is chronic myelogenous leukemia, an indolent disease arising in hematopoietic stem cells that is almost always associated with the P210 form of BCR/ABL. Acute lymphocytic leukemia, a more aggressive malignancy, can be associated with both forms of BCR/ABL. While it is virtually certain that BCR/ABL plays a central role in both of these diseases, the features that determine the association of a particular form with a given disease have not been elucidated. We have used the bone marrow reconstitution leukemogenesis model to test the hypothesis that BCR sequences influence the ability of activated ABL to transform different types of hematopoietic cells. Our studies reveal that both P185 and P210 induce a similar spectrum of hematological diseases, including granulocytic, myelomonocytic, and lymphocytic leukemias. Despite the similarity of the disease patterns, animals given P185-infected marrow developed a more aggressive disease after a shorter latent period than those given P210-infected marrow. These data demonstrate that the structure of the BCR/ABL oncoprotein does not affect the type of disease induced by each form of the oncogene but does control the potency of the oncogenic signal.  相似文献   

4.
慢性粒细胞白血病是一类造血干细胞的恶性克隆性疾病,ph染色体是其特征性细胞遗传学标志,即t(9;22)(q34;ql1),存在BCR/ABL融合基因,现阶段造血干细胞移植是当前最有希望治愈CML的疗法,但受年龄、配型等限制,易发生移植物抗宿主病;复发率较高;传统的化疗、干扰素治疗也有副作用,因此,通过信号传导抑制剂抑制BCR-ABL酪氨酸激酶活性,从而阻止一系列信号传导来治疗CML是一个比较好的治疗方法,伊马替尼是一种酪氨酸激酶抑制剂是治疗慢性粒细胞白血病的靶向治疗药物,治疗疗效显著,但是并不能根治慢性粒细胞白血病,需要长期服药,一些患者出现耐药,导致治疗无效或复发。因此,寻求新的治疗方案至关重要。本文就慢性粒细胞白血病的耐药机制及治疗策略做一综述。  相似文献   

5.
Infection with a recombinant murine-feline gammaretrovirus, MoFe2, or with the parent virus, Moloney murine leukemia virus, caused significant reduction in B-lymphoid differentiation of bone marrow at 2 to 8 weeks postinfection. The suppression was selective, in that myeloid potential was significantly increased by infection. Analysis of cell surface markers and immunoglobulin H gene rearrangements in an in vitro model demonstrated normal B-lymphoid differentiation after infection but significantly reduced viability of differentiating cells. This reduction in viability may confer a selective advantage on undifferentiated lymphoid progenitors in the bone marrow of gammaretrovirus-infected animals and thereby contribute to the establishment of a premalignant state.  相似文献   

6.
Imatinib mesylate (STI571), a specific inhibitor of BCR/ABL tyrosine kinase, exhibits potent antileukemic effects in the treatment of chronic myelogenous leukemia (CML). However, the precise mechanism by which inhibition of BCR/ABL activity results in pharmacological responses remains unknown. BCR/ABL-positive human K562 CML cells resistant to doxorubicin (K562DoxR) and their sensitive counterparts (K562DoxS) were used to determine the mechanism by which the STI571 inhibitor may overcome drug resistance. K562 wild type cells and CCRF-CEM lymphoblastic leukemia cells without BCR/ABL were used as controls. The STI571 specificity was examined by use of murine pro-B lymphoid Baf3 cells with or without BCR/ABL kinase expression. We examined kinetics of DNA repair after cell treatment with doxorubicin in the presence or absence of STI571 by the alkaline comet assay. The MTT assay was used to estimate resistance against doxorubicin and Western blot analysis with Crk-L antibody was performed to evaluate BCR/ABL kinase inhibition by STI571. We provide evidence that treatment of CML-derived BCR/ABL-expressing leukemia K562 cells with STI571 results in the inhibition of DNA repair and abrogation of the resistance of these cells to doxorubicin. We found that doxorubicin-resistant K562DoxR cells exhibited accelerated kinetics of DNA repair compared with doxorubicin-sensitive K562DoxS cells. Inhibition of BCR/ABL kinase in K562DoxR cells with 1 microM STI571 decreased the kinetics of DNA repair and abrogated drug resistance. The results suggest that STI571-mediated inhibition of BCR/ABL kinase activity can affect the effectiveness of the DNA-repair pathways, which in turn may enhance drug sensitivity of leukemia cells.  相似文献   

7.
P210 BCR/ABL is a chimeric oncogene implicated in the pathogenesis of chronic myelogenous leukemia. BCR sequences have been shown to be required for activation of the tyrosine kinase and transforming functions of BCR/ABL. In this work, we show that two other structural requirements for full transforming activity of P210 BCR/ABL include a functional tyrosine kinase and the presence of tyrosine 1294, a site of autophosphorylation within the tyrosine kinase domain. Replacement of tyrosine 1294 with phenylalanine (1294F) greatly diminishes the transforming activity of BCR/ABL without affecting the specific activity of the protein tyrosine kinase. Expression of an exogenous myc gene in fibroblasts partially complements the transforming capacity of mutant P210 BCR/ABL (1294F). Surprisingly, tyrosine 1294 is not required for efficient induction of growth factor-independence in hematopoietic cell lines by P210 BCR/ABL. These results suggest that autophosphorylation at tyrosine 1294 may be important for recognition and phosphorylation of cellular substrates in the pathway of transformation, but it is not critical for mediating the events which lead to growth factor independence.  相似文献   

8.
9.
The BCR/ABL oncogene causes chronic myelogenous leukemia (CML), a myeloproliferative disorder characterized by clonal expansion of hematopoietic progenitor cells and granulocyte lineage cells. The SH2-containing inositol-5-phosphatase SHIP is a 145-kDa protein which has been shown to regulate hematopoiesis in mice. Targeted disruption of the murine SHIP gene results in a myeloproliferative syndrome characterized by a dramatic increase in numbers of granulocyte-macrophage progenitor cells in the marrow and spleen. Also, hematopoietic progenitor cells from SHIP(-/-) mice are hyperresponsive to certain hematopoietic growth factors, a phenotype very similar to the effects of BCR/ABL in murine cells. In a series of BCR/ABL-transformed hematopoietic cell lines, Philadelphia chromosome (Ph)-positive cell lines, and primary cells from patients with CML, the expression of SHIP was found to be absent or substantially reduced compared to untransformed cell lines or leukemia cells lacking BCR/ABL. Ba/F3 cells in which expression of BCR/ABL was under the control of a tetracycline-inducible promoter showed rapid loss of p145 SHIP, coincident with induction of BCR/ABL expression. Also, an ABL-specific tyrosine kinase inhibitor, CGP57148B (STI571), rapidly caused reexpression of SHIP, indicating that BCR/ABL directly, but reversibly, regulates the expression of SHIP protein. The estimated half-life of SHIP protein was reduced from 18 h to less than 3 h. However, SHIP mRNA also decreased in response to BCR/ABL, suggesting that SHIP protein levels could be affected by more than one mechanism. Reexpression of SHIP in BCR/ABL-transformed Ba/F3 cells altered the biological behavior of cells in culture. The reduction of SHIP due to BCR/ABL is likely to directly contribute to the pathogenesis of CML.  相似文献   

10.
The BCR/ABL oncogene causes chronic myelogenous leukemia, a myeloproliferative disorder characterized by clonal expansion of hematopoietic progenitor cells and myeloid cells. It is shown here that transformation of the hematopoietic cell lines Ba/F3, 32Dcl3, and MO7e with BCR/ABL results in an increase in reactive oxygen species (ROS) compared with quiescent, untransformed cells. The increase in ROS was directly due to BCR/ABL because it was blocked by the ABL-specific tyrosine kinase inhibitor STI571. Oxidative stress through ROS is believed to have many biochemical effects, including the potential ability to inhibit protein-tyrosine phosphatases (PTPases). To understand the significance of increased production of ROS, a model system was established in which hydrogen peroxide (H(2)O(2)) was added to untransformed cells to mimic the increase in ROS induced constitutively by BCR/ABL. H(2)O(2) substantially reduced total cellular PTPase activity to a degree approximately equivalent to that of pervanadate, a well known PTPase inhibitor. Further, stimulation of untransformed cells with H(2)O(2) or pervanadate increased tyrosine phosphorylation of each of the most prominent known substrates of BCR/ABL, including c-ABL, c-CBL, SHC, and SHP-2. Treatment of the BCR/ABL-expressing cell line MO7/p210 with the reducing agents pyrrolidine dithiocarbamate or N-acetylcysteine reduced the accumulation of ROS and also decreased tyrosine phosphorylation of cellular proteins. Further, treatment of MO7e cells with H(2)O(2) or pervanadate increased the tyrosine kinase activity of c-ABL. Drugs that alter ROS metabolism or reactivate PTPases may antagonize BCR/ABL transformation.  相似文献   

11.
Cells of the hemopoietic system arise by proliferation and differentiation of progenitor cells. This process begins with multipotential stem cells which can self-renew and also undergo progressive differentiation to progenitor cells committed to particular lineages, ultimately yielding mature blood cells (D. Metcalf and M. A. S. Moore, Haematopoietic Cells, 1971). Early commitment of lymphoid progenitors is generally believed to separate the lymphoid lineage from the myeloid and erythroid lineages, whose progenitors are separated late in differentiation (Metcalf and Moore, 1971). We recently developed a derivative of Moloney murine leukemia virus (M-MuLV) in which the enhancer sequences from simian virus 40 were substituted into the M-MuLV long terminal repeat. This recombinant virus (delta Mo + SV M-MuLV) induces pre-B and B lymphoid leukemia with long latency after inoculation of 2-day-old NIH Swiss mice (R. Hanecak, P. K. Pattengale, and H. Fan, J. Virol. 62:2427-2436, 1988). In this report, we describe the derivation of a permanent, virus-producing cell line with the phenotypic characteristics of mature macrophages from a B-cell-derived lymphoblastic lymphoma induced by delta Mo + SV M-MuLV. Comparison studies of immunoglobulin heavy-chain gene rearrangements and also delta Mo + SV M-MuLV proviral integration sites confirmed that the macrophage cell line was derived from the original B-lymphoblastic lymphoma. Moreover, inoculation of the macrophage cell line into animals resulted in histiocytic sarcomas of the macrophage type, thus reflecting stable conversion of B-lymphoid tumor cells to the macrophage phenotype. These results suggest a closer relationship between lymphoid and myeloid cells than previously believed.  相似文献   

12.
Nucleotide-excision repair (NER) is the most versatile mechanism of DNA repair, recognizing and dealing with a variety of helix-distorting lesions, such as the UV-induced photoproducts cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) photoproducts. We investigated the influence of an anticancer drug, STI571, on the efficacy of NER in removing UV-induced DNA damage. STI571 is used mostly in the treatment of chronic myeloid leukemia and inhibits activity of the BCR/ABL oncogenic tyrosine kinase, which is a hallmark of this disease. NER activity was examined in the BCR/ABL-expressing cell lines K562 and BV173 of myeloid and lymphoid origin, respectively, as well as in CCRF-CEM cells, which do not express BCR/ABL. A murine myeloid parental 32D cell line and its counterpart transfected with the BCR/ABL gene were also tested. NER activity was assessed in the cell extracts by use of an UV-irradiated plasmid as a substrate and by a modified single-cell gel electrophoresis (comet) assay on UV-treated nucleoids. Additionally, quantitative PCR was performed to evaluate the efficacy of the removal of UV-induced lesions from the p53 gene by intact cells. Results obtained from these experiments indicate that STI571 decreases the efficacy of NER in leukemic cells expressing BCR/ABL. Therefore, STI571 may overcome the drug resistance associated with increased DNA repair in BCR/ABL-positive leukemias.  相似文献   

13.
Embryonic stem (ES) cells differentiate into multiple hematopoietic lineages during embryoid body formation in vitro, but to date, an ES-derived hematopoietic stem cell has not been identified and subjected to clonal analysis in a manner comparable with hematopoietic stem cells from adult bone marrow. As the chronic myeloid leukemia-associated BCR/ABL oncogene endows the adult hematopoietic stem cell with clonal dominance without inhibiting pluripotent lymphoid and myeloid differentiation, we have used BCR/ABL as a tool to enable engraftment and clonal analysis. We show that embryoid body-derived hematopoietic progenitors expressing BCR/ABL maintain a primitive hematopoietic blast stage of differentiation and generate only primitive erythroid cell types in vitro. These cells can be cloned, and when injected into irradiated adult mice, they differentiate into multiple myeloid cell types as well as T and B lymphocytes. While the injected cells express embryonic (beta-H1) globin, donor-derived erythroid cells in the recipient express only adult (beta-major) globin, suggesting that these cells undergo globin gene switching and developmental maturation in vivo. These data demonstrate that an embryonic hematopoietic stem cell arises in vitro during ES cell differentiation that constitutes a common progenitor for embryonic erythroid and definitive lymphoid-myeloid hematopoiesis.  相似文献   

14.
The BCR/ABL fusion tyrosine kinase activates various intracellular signaling pathways, thus causing chronic myeloid leukemia (CML). Here we demonstrate that the inducible expression of BCR/ABL in a murine hematopoietic cell line, TonB210, leads to the activation of the Ras family small GTPase Rap1, which is inhibited by the ABL kinase inhibitor imatinib. The Rap1 activity in a CML cell line, K562, was also inhibited by imatinib. Inhibition of Rap1 activation by a dominant negative mutant of Rap1, Rap1-N17, or SPA-1 inhibited the BCR/ABL-induced activation of Elk-1. BCR/ABL also activated in a kinase activity-dependent manner the B-Raf kinase, which is an effector molecule of Rap1 and a potent activator of the MEK/Erk/Elk-1 signaling pathway. Together, these data suggest that, in addition to the well-established Ras/Raf-1 pathway, BCR/ABL activates the alternative signaling pathway involving Rap1 and B-Raf to activate Erk, which may play important roles in leukemogenesis.  相似文献   

15.
The BCR-ABL oncogene transforms Rat-1 cells and cooperates with v-myc.   总被引:30,自引:14,他引:16       下载免费PDF全文
The tyrosine kinase P210 is the gene product of the rearranged BCR-ABL locus on the Philadelphia chromosome (Ph1), which is found in leukemic cells of patients with chronic myelogenous leukemia. It has a weakly oncogenic effect in immature murine hematopoietic cells and does not transform NIH 3T3 cells. We have found that P210 has a strikingly different effect in Rat-1 cells, another line of established rodent fibroblasts. Stable expression of P210 in Rat-1 cells caused a distinct morphological change and conferred both tumorigenicity and capacity for anchorage-independent growth. The introduction of v-myc into Rat-1 cells expressing P210 led to complete morphological transformation and enhanced tumorigenicity. No such interaction took place in NIH 3T3 cells. Thus, Rat-1 cells can be used to detect cooperation between BCR-ABL and other oncogenes and may prove useful for the identification of secondary oncogenic events in chronic myelogenous leukemia.  相似文献   

16.
BCR/ABL oncogene, as a result of chromosome aberration t(9;22), is the pathogenic principle of almost 95% of human chronic myeloid leukemia (CML). Imatinib (STI571) is a highly selective inhibitor of BCR/ABL oncogenic tyrosine kinase used in leukemia treatment. It has been suggested that BCR/ABL may contribute to the resistance of leukemic cells to drug and radiation through stimulation of DNA repair in these cells. To evaluate further the influence of STI571 on DNA repair we studied the efficacy of this process in BCR/ABL-positive and -negative cells using single cell electrophoresis (comet assay). In our experiments, K562 human chronic myeloid leukemia cells expressing BCR/ABL and CCRF-CEM human acute lymphoblastic leukemia cells without BCR/ABL expression were employed. The cells were exposed for 1 h at 37 degrees C to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) at 5 microM, mitomycin C (MMC) at 50 microM or to gamma-radiation at 15 Gy with or without a 24 h preincubation at 1 microM of STI571. The MTT cells survival after 4 days of culture showed that STI571 enhanced the cytotoxity of the examined compounds in the K562 line. Further it was found, that the inhibitor decreased the efficacy of DNA repair challenged by each agent, but only in the K562 expressing BCR/ABL. Due to the variety of DNA damage induced by the employed agents in this study we can speculate, that BCR/ABL may stimulate multiple pathways of DNA repair. These results extend our previous studies performed on BCR/ABL-transformed mouse cells onto human cells. It is shown that BCR/ABL stimulated DNA repair in human leukemia cells. In conclusion we report that STI571 was found to inhibit DNA repair and abrogate BCR/ABL-positive human leukemia cells therapeutic resistance.  相似文献   

17.
18.
BCR/ABL tyrosine kinase generated from the chromosomal translocation t(9;22) causes chronic myelogenous leukemia and acute lymphoblastic leukemia. To examine the roles of BCR/ABL-activated individual signaling molecules and their cooperation in leukemogenesis, we inducibly expressed a dominant negative (DN) form of Ras, phosphatidylinositol 3-kinase, and STAT5 alone or in combination in p210 BCR/ABL-positive K562 cells. The inducibly expressed DN Ras (N17), STAT5 (694F), and DN phosphatidylinositol 3-kinase (Delta p85) inhibited the growth by 90, 55, and 40%, respectively. During the growth inhibition, the expression of cyclin D2 and cyclin D3 was suppressed by N17, 694F, or Delta p85; that of cyclin E by N17; and that of cyclin A by Delta p85. In addition, N17 induced apoptosis in a small proportion of K562, whereas 694F and Delta p85 were hardly effective. In contrast, coexpression of two DN mutants in any combinations induced severe apoptosis. During these cultures, the expression of Bcl-2 was suppressed by N17, 694F, or Delta p85, and that of Bcl-XL by N17. Furthermore, although K562 was resistant to interferon-alpha- and dexamethasone-induced apoptosis, disruption of one pathway by N17, 694F, or Delta p85 sensitized K562 to these reagents. These results suggested that cooperation among these molecules is required for full leukemogenic activities of BCR/ABL.  相似文献   

19.
NK cells from the blood of chronic myelogenous leukemia (CML) patients are progressively decreased in number as the disease progresses from chronic phase to blast crisis. We hypothesize that BCR/ABL may be directly responsible by interfering with NK cell differentiation. CD34(+)HLA-DR(+) cells from CML patients were studied for their capacity to differentiate into NK cells. The NK cell cloning frequency was significantly decreased from CML CD34(+)HLA-DR(+) cells compared with cells from normal donors, yet CD34(+)HLA-DR(+) cells gave rise to BCR/ABL(+) NK cells in some patients. This finding prompted us to further investigate circulating NK cells from the blood of CML patients. CD56(+)CD3(-) NK cells were sorted from CML patients and examined by fluorescence in situ hybridization (FISH). In contrast to chronic phase CML, significant numbers of NK cells from advanced phase CML patients were BCR/ABL(+), whereas T cells were always BCR/ABL(-) regardless of the disease stage. To test the effects of BCR/ABL as the sole genetic abnormality, BCR/ABL was transduced into umbilical cord blood CD34(+) cells, and NK development was studied. p210-enhanced green fluorescence protein-transduced cells gave rise to significantly decreased numbers of NK cells compared with enhanced green fluorescence protein transduction alone. In addition, the extrinsic addition of BCR/ABL-transduced autologous CD34(+) cells suppressed the NK cell differentiation of normal umbilical cord blood CD34(+)CD38(-) cells. This study provides the first evidence that BCR/ABL is responsible for the altered differentiation of NK cells and that the NK cell lineage can be involved with the malignant clone in advanced stage CML.  相似文献   

20.
Wolff L  Koller R  Hu X  Anver MR 《Journal of virology》2003,77(8):4965-4971
Retroviruses can be used to accelerate hematopoietic cancers predisposed to neoplastic disease by prior genetic manipulations such as in transgenic or knockout mice. The virus imparts a second neoplastic "hit," providing evidence that the initial hit is transforming. In the present study, a unique retrovirus was developed that can induce a high incidence of myeloid disease and has a broad host range. This agent is a Moloney murine leukemia virus (Mo-MuLV)-based virus that has most of the U3 region of the long terminal repeat (LTR) replaced with that of retrovirus 4070A. Like Mo-MuLV, this virus, called MOL4070LTR, is NB-tropic and not restricted by Fv1 allelles. MOL4070LTR causes myeloid leukemias in ca. 50% of mice, a finding in contrast to Mo-MuLV, which induces almost exclusively lymphoid disease. The data suggest that the LTR of the 4070A virus expands the tissue tropism of the disease to the myeloid lineage. Interesting, MCF recombinant envelope was expressed in the lymphoid but not the myeloid neoplasms of BALB/c mice. This retrovirus has the potential for accelerating myeloid disease in genetically engineered mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号