首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Real-time quantitative PCR assay for measurement of avian telomeres   总被引:1,自引:0,他引:1  
We present the application of a real-time quantitative PCR assay, previously developed to measure relative telomere length in humans and mice, to two bird species, the zebra finch Taeniopygia guttata and the Alpine swift Apus melba . This technique is based on the PCR amplification of telomeric (TTAGGG)n sequences using specific oligonucleotide primers. Relative telomere length is expressed as the ratio (T/S) of telomere repeat copy number (T) to control single gene copy number (S). This method is particularly useful for comparisons of individuals within species, or where the same individuals are followed longitudinally. We used glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a single control gene. In both species, we validated our PCR measurements of relative telomere length against absolute measurements of telomere length determined by the conventional method of quantifying telomere terminal restriction fragment (TRF) lengths using both the traditional Southern blot analysis (Alpine swifts) and in gel hybridization (zebra finches). As found in humans and mice, telomere lengths in the same sample measured by TRF and PCR were well correlated in both the Alpine swift and the zebra finch.. Hence, this PCR assay for measurement of bird telomeres, which is fast and requires only small amounts of genomic DNA, should open new avenues in the study of environmental factors influencing variation in telomere length, and how this variation translates into variation in cellular and whole organism senescence.  相似文献   

2.
Two different real-time quantitative PCR (RTQ-PCR) approaches were applied for PCR-based quantification of Staphylococcus aureus cells by targeting the thermonuclease (nuc) gene. Purified DNA extracts from pure cultures of S. aureus were quantified in a LightCycler system using SYBR Green I. Quantification proved to be less sensitive (60 nuc gene copies/microl) than using a fluorigenic TaqMan probe (6 nuc gene copies/microl). Comparison of the LightCycler system and the well-established ABI Prism 7700 SDS with TaqMan probes revealed no statistically significant differences with respect to sensitivity and reproducibility. Application of the RTQ-PCR assay to quantify S. aureus cells in artificially contaminated cheeses of different types achieved sensitivities from 1.5 x 10(2) to 6.4 x 10(2) copies of the nuc gene/2 g, depending on the cheese matrix. The coefficients of correlation between log CFU and nuc gene copy numbers ranged from 0.979 to 0.998, thus enabling calculation of the number of CFU of S. aureus in cheese by performing RTQ-PCR.  相似文献   

3.

Objective

Abuse victimization in childhood is associated with a variety of age-related cardiometabolic diseases, but the mechanisms remain unknown. Telomeres, which form the protective caps at the ends of chromosomes, have been proposed as measures of biological age, and a growing body of research suggests that telomere attrition may help to explain relationships between stress and cardiometabolic degradation. We examined the association between childhood abuse victimization and leukocyte telomere length among 1,135 participants in the Nurses’ Health Study II (NHSII).

Methods

The NHSII ascertained physical and sexual child abuse histories in 2001. Telomere length was measured in genomic DNA extracted from peripheral blood leukocytes collected between 1996 and 1999. The ratio of telomere repeat copy number to a single gene copy number (T/S) was determined by a modified version of the quantitative real-time PCR telomere assay. Telomere length was log-transformed and corrected for assay variation across batch. We regressed telomere length on childhood abuse exposure variables and covariates using linear regression.

Results

We observed a reduction in telomere length associated with moderate physical abuse versus no physical abuse, but there was no evidence of a dose-response relationship for increased severity of physical abuse. No associations were noted for sexual abuse.

Conclusions

We found no evidence of an association between severity of childhood physical or sexual abuse and leukocyte telomere length in the NHSII.  相似文献   

4.
Two different real-time quantitative PCR (RTQ-PCR) approaches were applied for PCR-based quantification of Staphylococcus aureus cells by targeting the thermonuclease (nuc) gene. Purified DNA extracts from pure cultures of S. aureus were quantified in a LightCycler system using SYBR Green I. Quantification proved to be less sensitive (60 nuc gene copies/μl) than using a fluorigenic TaqMan probe (6 nuc gene copies/μl). Comparison of the LightCycler system and the well-established ABI Prism 7700 SDS with TaqMan probes revealed no statistically significant differences with respect to sensitivity and reproducibility. Application of the RTQ-PCR assay to quantify S. aureus cells in artificially contaminated cheeses of different types achieved sensitivities from 1.5 × 102 to 6.4 × 102 copies of the nuc gene/2 g, depending on the cheese matrix. The coefficients of correlation between log CFU and nuc gene copy numbers ranged from 0.979 to 0.998, thus enabling calculation of the number of CFU of S. aureus in cheese by performing RTQ-PCR.  相似文献   

5.
Studies of telomeres and telomere biology often critically rely on the detection of telomeric DNA and measurements of the length of telomere repeats in either single cells or populations of cells. Several methods are available that provide this type of information and it is often not clear what method is most appropriate to address a specific research question. The major variables that need to be considered are the material that is or can be made available and the accuracy of measurements that is required. The goal of this review is to provide a comprehensive summary of the most commonly used methods and discuss the advantages and disadvantages of each. Methods that start with genomic DNA include telomere restriction fragment (TRF) length analysis, PCR amplification of telomere repeats relative to a single copy gene by Q-PCR or MMQPCR and single telomere length analysis (STELA), a PCR-based approach that accurately measures the full spectrum of telomere lengths from individual chromosomes. A different set of methods relies on fluorescent in situ hybridization (FISH) to detect telomere repeats in individual cells or chromosomes. By including essential calibration steps and appropriate controls these methods can be used to measure telomere repeat length or content in chromosomes and cells. Such methods include quantitative FISH (Q-FISH) and flow FISH which are based on digital microscopy and flow cytometry, respectively. Here the basic principles of various telomere length measurement methods are described and their strengths and weaknesses are highlighted. Some recent developments in telomere length analysis are also discussed. The information in this review should facilitate the selection of the most suitable method to address specific research question about telomeres in either model organisms or human subjects.  相似文献   

6.
Law H  Lau Y 《Cytometry》2001,43(2):150-153
BACKGROUND: Telomeres are highly conserved repeats at the ends of chromosomes that maintain chromosome stability and reflect the replicative potential of cells. Telomere length can be determined by Southern blot hybridization or quantitative fluorescence in situ hybridization (Q-FISH). Recently, two flow cytometry-based (Flow) FISH protocols have been published. METHODS: We compared the telomere length measured by Southern blotting and Flow FISH using standard beads to calibrate and quantify the fluorescence intensity. RESULTS: The telomeric fluorescence of cord blood and peripheral blood mononuclear cells was similar to that reported by other studies. There was a linear relationship between the telomeric fluorescence determined by Flow FISH and the telomere fragment size determined by Southern blotting (r = 0.89; P < 0.001). CONCLUSION: It is important to set up a center-specific curve and select appropriate cell lines for reference. This Q-Flow FISH protocol will facilitate the measurement of telomere length and allow more meaningful comparison of data (in standard fluorescence units or fragment size) between institutes.  相似文献   

7.
Lack of telomere shortening with age in mouse resting zone chondrocytes   总被引:1,自引:0,他引:1  
BACKGROUND AND AIM: Telomeres are hexameric repeat sequences that flank eukaryotic chromosomes. The telomere hypothesis of cellular aging proposes that replication of normal somatic cells leads to progressive telomere shortening which induces replicative senescence. Previous studies suggest that growth plate chondrocytes have a finite proliferative capacity in vivo. We therefore hypothesized that telomere shortening in resting zone chondrocytes leads to replicative senescence. METHOD: To test this hypothesis we compared the telomere restriction fragment (TRF) length of Mus casteneus at 1, 4, 8, and 56 weeks of age. RESULTS AND CONCLUSIONS: We found that TRF length did not diminish measurably with age, suggesting that telomere shortening in resting zone chondrocytes is not the mechanism that limits proliferation of growth plate chondrocytes in vivo.  相似文献   

8.
Quantitative real-time PCR (qPCR) such as TaqMan and SYBR Green qPCR are widely used for gene expression analysis. The drawbacks of SYBR Green assay are that the dye binds to any double-stranded DNA which can generate false-positive signals and that the length of the amplicon affects the intensity of the amplification. Previous results demonstrate that TaqMan assay is more sensitive but generates lower calculated expression levels than SYBR Green assay in quantifying seven mRNAs in tung tree tissues. The objective of this study is to expand the analysis using animal cells. We compared both qPCR assays for quantifying 24 mRNAs including those coding for glucose transporter (Glut) and mRNA-binding protein tristetraprolin (TTP) in mouse 3T3-L1 adipocytes and RAW264.7 macrophages. The results showed that SYBR Green and TaqMan qPCR were reliable for quantitative gene expression in animal cells. This result was supported by validation analysis of Glut and TTP family gene expression. However, SYBR Green qPCR overestimated the expression levels in most of the genes tested. Finally, both qPCR instruments (Bio-Rad’s CFX96 real-time system and Applied Biosystems’ Prism 7700 real-time PCR instrument) generated similar gene expression profiles in the mouse cells. These results support the conclusion that both qPCR assays (TaqMan and SYBR Green qPCR) and both qPCR instruments (Bio-Rad’s CFX96 real-time system and Applied Biosystems’ Prism 7700 real-time PCR instrument) are reliable for quantitative gene expression analyses in animal cells but SYBR Green qPCR generally overestimates gene expression levels than TaqMan qPCR.  相似文献   

9.
目的应用NASBA方法制备SIV/SHIV RNA定量测定标准品。方法应用NASBA方法直接扩增SIVmac251病毒gag基因上1476~1685之间的片段,扩增的RNA产物(RS-NASBA)纯化后10倍系列稀释,测定定量曲线、标准曲线,测定该标准品的稳定性和重复性。结果应用Qiagen公司QuantiTect SYBR GREEN RT-PCRKit,该标准品可精确定量到2.033×10 copies/μL。结论外标准品RS.NASBA纯度高,稳定性好,可用于定量测定SIV/SHIV RNA拷贝数。  相似文献   

10.
A number of quantitative, real-time PCR methods have been developed for determining transgene copy numbers in plants. Here, we demonstrate that the Roche LightCyclerTM system can be used to determine the zygosity of transgenic lines without the use of standard curves or efficiency correction calculations. We have developed a duplex PCR assay which permits the determination of zygosity, relative to a calibrator sample, in transgenic rice lines containing the gene for a viral glycoprotein. Our data demonstrate that unambiguous 2-fold discrimination of copy number can be attained by calculating relative copy number using the threshold crossing point (Ct) calculated by the LightCyclerTM software combined with delta delta Ct calculations, provided that the appropriate calibrator sample is included in each run. The method presented here is rapid, sensitive, robust and easy to optimise.  相似文献   

11.
Telomere Biology and Cellular Aging in Nonhuman Primate Cells   总被引:3,自引:0,他引:3  
To determine how cellular aging is conserved among primates, we analyzed the replicative potential and telomere shortening in skin fibroblasts of anthropoids and prosimians. The average telomere length of the New World primates Ateles geoffroyi (spider monkey) and Saimiri sciureus (squirrel monkey) and the Old World primates Macaca mulatta (rhesus monkey), Pongo pygmaeus (orangutan), and Pan paniscus (pigmy chimpanzee) ranged from 4 to 16 kb. We found that telomere shortening limits the replicative capacity of anthropoid fibroblasts and that the expression of human telomerase produced telomere elongation and the extension of their in vitro life span. In contrast the prosimian Lemur catta (ring-tailed lemur) had both long and short telomeres and telomere shortening did not provide an absolute barrier to immortalization. Following a transient growth arrest a subset of cells showing a reduced number of chromosomes overgrew the cultures without activation of telomerase. Here we show that the presence of continuous TTAGGG repeats at telomeres and rigorous control of replicative aging by telomere shortening appear to be conserved among anthropoid primates but is less effective in prosimian lemurs.  相似文献   

12.
Telomere length measurements using digital fluorescence microscopy.   总被引:11,自引:0,他引:11  
BACKGROUND: The ends of chromosomes (telomeres) are important to maintain chromosome stability, and the loss of telomere repeat sequences has been implicated in cellular senescence and genomic instability of cancer cells. The traditional method for measuring the length of telomeres (Southern analysis) requires a large number of cells (>10(5)) and does not provide information on the telomere length of individual chromosomes. Here, we describe a digital image microscopy system for measurements of the fluorescence intensity derived from telomere repeat sequences in metaphase cells following quantitative fluorescence in situ hybridization (Q-FISH). METHODS: Samples are prepared for microscopy using Q-FISH with Cy3 labeled peptide nucleic acid probes specific for (T(2)AG(3))(n) sequences and the DNA dye DAPI. Separate images of Cy3 and DAPI fluorescence are acquired and processed with a dedicated computer program (TFL-TELO). With the program, the integrated fluorescence intensity value for each telomere, which is proportional to the number of hybridized probes, is calculated and presented to the user. RESULTS: Indirect tests of our method were performed using simulated as well as defined tests objects. The precision and consistency of human telomere length measurements was then analyzed in a number of experiments. It was found that by averaging the results of less than 30 cells, a good indication of the telomere length (SD of 10-15%) can be obtained. CONCLUSIONS: We demonstrate that accurate and repeatable fluorescence intensity measurements can be made from Q-FISH images that provide information on the length of telomere repeats at individual chromosomes from limited number of cells.  相似文献   

13.
Human mesenchymal stem cells (hMSCs) have attracted much attention for tissue repair and wound healing because of their self-renewal capacity and multipotentiality. In order to mediate an effective therapy, substantial numbers of cells are required, which necessitates extensive sub-culturing and expansion of hMSCs. Throughout ex vivo expansion, the cells undergo telomere shortening, and critically short telomeres can trigger loss of cell viability. Telomeres are nucleoprotein structures that cap the ends of chromosomes, and serve to protect the DNA from the degradation which occurs due to the end-replication problem in all eukaryotes. As hMSCs have only a finite ability for self-renewal like most somatic cells, assaying for telomere length in hMSCs provides critical information on the replicative capacity of the cells, an important criterion in the selection of hMSCs for therapy. Telomere length is generally quantified by Southern blotting and fluorescence in situ hybridization, and more recently by PCR-based methods. Here we describe the quantification of hMSC telomere length by real-time PCR; our results demonstrate the effect of telomere shortening on the proliferation and clonogenicity of hMSCs. Thus, this assay constitutes a useful tool for the determination of relative telomere length in hMSCs.  相似文献   

14.
15.
Naegleria fowleri is a free-living amoeba that can cause primary amoebic meningoencephalitis (PAM). While, traditional methods for diagnosing PAM still rely on culture, more current laboratory diagnoses exist based on conventional PCR methods; however, only a few real-time PCR processes have been described as yet. Here, we describe a real-time PCR-based diagnostic method using hybridization fluorescent labelled probes, with a LightCycler instrument and accompanying software (Roche), targeting the Naegleria fowleriMp2Cl5 gene sequence.Using this method, no cross reactivity with other tested epidemiologically relevant prokaryotic and eukaryotic organisms was found. The reaction detection limit was 1 copy of the Mp2Cl5 DNA sequence. This assay could become useful in the rapid laboratory diagnostic assessment of the presence or absence of Naegleria fowleri.  相似文献   

16.
A human subtelomeric repeat (designated as the HST repeat) has been isolated and characterized from a yeast artificial chromosome containing one human telomere. This repeat is located immediately adjacent to the telomeric T2AG3 repeats at the extreme termini of the human chromosomes. The DNA sequence of 3.6 kb of the HST repeat has been determined. The HST repeat spans over 3.6 kb in length, and contains one evolutionarily conserved CpG-rich region. The copy number of the HST repeat varies among telomeres. Genomic hybridization experiments suggest that the HST repeat consists of two distinct segments, and the distal portions of the HST repeat are also distributed elsewhere in the genome. In HeLa cells, the HST repeat sequence appears to be transcribed into a 6 kb polyadenylated RNA and a variety of non-polyadenylated RNA species.  相似文献   

17.

Purpose

Both telomere length and mitochondrial function are accepted as reflective indices of aging. Recent studies have shown that telomere dysfunction may influence impaired mitochondrial biogenesis and function. However, there has been no study regarding the possible association between telomere and mitochondrial function in humans. Therefore, the purpose of the study was to identify any relationships between mitochondrial and telomere function.

Methods

The present study included 129 community-dwelling, elderly women. The leukocyte mitochondrial DNA copy number and telomere length were measured using a quantitative real-time polymerase chain reaction method. Anthropometric measurement, biochemical blood testing, a depression screening questionnaire using a 15-question geriatric depression scale (GDS-15), and a cognitive function test using the Korean version of the mini mental state examination (K-MMSE) were performed.

Results

Leukocyte mtDNA copy number was positively associated with telomere length (r=0.39, p=<0.0001) and K-MMSE score (r=0.06, p=0.02). Additionally, leukocyte mtDNA copy number was negatively correlated with GDS-15 score (r=-0.17, p=0.04). Age (r=-0.15, p=0.09), waist circumference (r=-0.16, p=0.07), and serum ferritin level (r=-0.13, p=0.07) tended to be inversely correlated with leukocyte mtDNA copy number. With a stepwise multiple regression analysis, telomere length was found to be an independent factor associated with leukocyte mtDNA copy number after adjustment for confounding variables including age, body mass index, waist circumference, total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, hs-CRP, serum ferritin, HOMA-IR, K-MMSE, GDS-15, hypertension, diabetes, dyslipidemia, currently smoking, alcohol drinking, and regular exercise.

Conclusions

This study showed that leukocyte mtDNA copy number was positively correlated with leukocyte telomere length in community-dwelling elderly women. Our findings suggest that telomere function may influence mitochondrial function in humans.  相似文献   

18.
Telomeres are the ends of eukaryotic chromosomes, consisting of consecutive short repeats that protect chromosome ends from degradation. Telomeres shorten with each cell division, leading to replicative cell senescence. Deregulation of telomere length homeostasis is associated with the development of various age-related diseases and cancers. A number of experimental techniques exist for telomere length measurement; however, until recently, the absence of tools for extracting telomere lengths from high-throughput sequencing data has significantly obscured the association of telomere length with molecular processes in normal and diseased conditions. We have developed Computel, a program in R for computing mean telomere length from whole-genome next-generation sequencing data. Computel is open source, and is freely available at https://github.com/lilit-nersisyan/computel. It utilizes a short-read alignment-based approach and integrates various popular tools for sequencing data analysis. We validated it with synthetic and experimental data, and compared its performance with the previously available software. The results have shown that Computel outperforms existing software in accuracy, independence of results from sequencing conditions, stability against inherent sequencing errors, and better ability to distinguish pure telomeric sequences from interstitial telomeric repeats. By providing a highly reliable methodology for determining telomere lengths from whole-genome sequencing data, Computel should help to elucidate the role of telomeres in cellular health and disease.  相似文献   

19.

Background

Studies examining the association between telomere length and cancer risk have often relied on measurement of telomere length from a single blood draw using a real-time PCR technique. We examined the reliability of telomere length measurement using sequential samples collected over a 9-month period.

Methods and Findings

Relative telomere length in peripheral blood was estimated using a single tube monochrome multiplex quantitative PCR assay in blood DNA samples from 27 non-pregnant adult women (aged 35 to 74 years) collected in 7 visits over a 9-month period. A linear mixed model was used to estimate the components of variance for telomere length measurements attributed to variation among women and variation between time points within women. Mean telomere length measurement at any single visit was not significantly different from the average of 7 visits. Plates had a significant systematic influence on telomere length measurements, although measurements between different plates were highly correlated. After controlling for plate effects, 64% of the remaining variance was estimated to be accounted for by variance due to subject. Variance explained by time of visit within a subject was minor, contributing 5% of the remaining variance.

Conclusion

Our data demonstrate good short-term reliability of telomere length measurement using blood from a single draw. However, the existence of technical variability, particularly plate effects, reinforces the need for technical replicates and balancing of case and control samples across plates.  相似文献   

20.
Real-time quantitative polymerase chain reaction (PCR) with on-line fluorescence detection has become an important technique not only for determination of the absolute or relative copy number of nucleic acids but also for mutation detection, which is usually done by measuring melting curves. Optimum assay conditions have been established for a variety of targets and experimental setups, but only limited attention has been directed to data evaluation and validation of the results. In this work, algorithms for the processing of real-time PCR data are evaluated for several target sequences (p53, IGF-1, PAI-1, Factor VIIc) and compared to the results obtained by standard procedures. The algorithms are implemented in software called SoFAR, which allows fully automatic analysis of real-time PCR data obtained with a Roche LightCycler instrument. The software yields results with considerably increased precision and accuracy of quantifications. This is achieved mainly by the correction of amplification-independent signal trends and a robust fit of the exponential phase of the signal curves. The melting curve data are corrected for signal changes not due to the melting process and are smoothed by fitting cubic splines. Therefore, sensitivity, resolution, and accuracy of melting curve analyses are improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号