首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Population dynamics and vertical migration of Daphnia longispina in Lake Yunoko were studied. The Daphnia population was small in spring and early summer, probably because of high predation pressure by fish. The population grew in midsummer, when thermal stratification developed and the dissolved oxygen became very low in the deeper layer of the hypolimnion. In this season, adults of D. longispina concentrated in the daytime near the lake bottom, where fish were absent because of the anoxic conditions, but ascended at night to the upper layer of the hypolimnion, where food was most abundant. The low oxygen layer near the bottom kept out the predators and protected Daphnia from predation, and consequently contributed to the built-up of its population. However, the low oxygen layer was unfavorable for reproduction of Daphnia, as reflected in the low egg ratio and high percentage of males in the population. The population decreased in the fall, when thermal stratification disappeared and predation pressure seemed to increase.  相似文献   

2.
Lathrop  R. C. 《Hydrobiologia》1992,(1):353-361
High densities of zoobenthos inhabited Lake Mendota's profundal zone in the early 1900s through the mid-1940s. Chaoborus punctipennis was the most abundant organism during the winter, along with moderate densities of Chironomus spp., Pisidium sp., oligochaetes, and Procladius sp. By the early 1950s, Chaoborus punctipennis densities had declined to 10% of former levels, while Chironomus increased significantly. However, by the mid-1960s, Chaoborus, Chironomus, and Pisidium densities had decreased to very low population levels. By 1987–89, Pisidium was no longer found. Zoobenthos that had not decreased from earlier surveys were oligochaetes and Procladius, although further sampling of oligochaetes is needed to confirm current densities. These organisms are the most tolerant of severe anoxia.Four possible reasons for this decline were evaluated: (a) decline in food availability, (b) increase in fish predation, (c) use of toxic insecticides in the drainage basin, and (d) changes in the profundal sediment environment. Based on literature information and long-term data for Lake Mendota, a change in the profundal sediment environment is the most likely explanation for the decline in the less-tolerant zoobenthos species. Although the duration and extent of anoxia in the hypolimnion have not changed since the early 1900s, hypolimnetic ammonia and hydrogen sulfide concentrations apparently have increased as Mendota became more eutrophic after the mid-1940s. However, further study is needed to determine if these higher concentrations or other factors were responsible for the dramatic decline in lake Mendota's profundal zoobenthos.  相似文献   

3.
1. The vertical distribution of zooplankton results from active habitat choice aiming to optimise fitness gain in a system of trade‐offs. 2. Using large, controlled indoor mesocosms (Plön Plankton Towers), we monitored the behavioural response of Daphnia pulicaria to vertical gradients of temperature, food, oxygen and light, in the presence and absence of fish predation. 3. In the absence of fish, Daphnia distributed as predicted by an ideal ‘free distribution with costs’. If the food was distributed homogeneously, they stayed in the warm epilimnion, while they balanced their time dwelling in epi‐ and hypolimnion if the food was concentrated in a deep‐water maximum. 4. However, oxygen depletion in the hypolimnion, representing an additional cost, prevented Daphnia from completely exploiting the hypolimnetic food maximum. Consequently, the proportion dwelling in the hypolimnion was larger if oxygen was not limiting. 5. Fish predation had an overwhelming effect, driving Daphnia into the hypolimnion under all experimental conditions. If permitted by oxygen availability, Daphnia used the whole hypolimnion, but oxygen depletion reduced their possible habitat to the upper hypolimnion with oxygen concentrations above c. 0.7 mg L?1. As fish were less tolerant of low oxygen, the layer below the thermocline formed a predation refuge for Daphnia.  相似文献   

4.
The vertical distribution of some ciliated Protozoa in the plankton of a pond in north-west England was investigated during August 1971. At this time, when the pond was stratified with an oxygen dificient hypolimnion, ciliates were counted at 10-cm depth intervals every 5 h over 25 h. The most common species (Loxodes magnus and L. striatus) were confined to the hypolimnion; there was no diurnal migration into the epilimnion. Earlier work had shown that Loxodes species require oxygen; it is therefore possible that these ciliates, which inhabited the oxygen dificient hypolimnion, migratedvertically, from time to time, to an oxygen supply at the boundary with the well-oxygenated epilimnion. To test this, Loxodes populations were confined in cellophane tubese both in the hypolimnion (at 3 m) and epilimnion (0.5 m) for 12 and 24 h (earlier trials had shown that the tubes were not markedly toxic). The ciliates died at both depths, and in a further experiment when Loxodes were confined at 3 m and 0.5 m and sampled at 5-h intervals up to 25 h it was found that they survived longer in the hypolimnion. It is suggested that ciliatees confined at 3 m died because they were unable to migrate vertically to an oxygen supply, while those at 0.5 m died because some other adverse factor was operating in the eiplimnion. Laboratory experiments showed that Loxodes died inn water in which phytoplankton photosynthesis took place and it is suggested that side effects of photosynthesis in the epilimnion (e.g. a rise in pH) caused the death of ciliates exposed at 0.5 m.  相似文献   

5.
A benthological survey in a deep caldera, Lake Ikeda, southern Kyushu, Japan, in 1998 revealed that no zoobenthos were found in the deep profundal, although two tubificid oligochaetes, Tubifex tubifex and Limnodrilus hoffmeisteri, and a chironomid, Procladius sp., were distributed in the upper profundal zone. This is the first record of oligochaete composition in the lake. Lake Ikeda had been typically oligotrophic until the 1940s, and zoobenthic assemblages were recorded throughout the profundal bottom in the 1920s and 1970s. Recent disappearance of the deep profundal zoobenthos could be caused by the stagnation of anoxic waters in the hypolimnion, in connection with eutrophication triggered by nutrient loading, as well as change in the thermal circulation system presumably caused by global warming.  相似文献   

6.
A. K. Rai 《Limnology》2000,1(1):33-46
Limnological characteristics were studied and analyzed in the subtropical Lakes Phewa, Begnas, and Rupa of Pokhara Valley, Nepal, from 1993 to 1997. The annual water temperature ranged from 12° to 29°C in all lakes. Lake Phewa and Lake Begnas were monomictic and anoxic in the hypolimnion during thermal stratification from April to September. Dissolved oxygen was drastically depleted in April and/or May in shallow Lake Rupa when the macrophyte community began to decompose. NH4 +-N accumulated below 5 m during March–September when dissolved oxygen was depleted in Lakes Phewa and Begnas. The PC : PP ratio was higher, but the PC : PN and PN : PP ratios were close to the Redfield ratio (106C : 16N : 1P) in Lakes Phewa and Begnas, denoting that P was limited. Annual net primary production showed that the lakes were productive but will tend to become heterotrophic in the future. The seasonal variation of chlorophyll a concentration was high, but its annual variation was low. Ceratium hirundinella and Peridinium spp. in Lake Phewa, Microcystis aeruginosa and Aulacoseira granulata in Lake Begnas, and Tabellaria fenestra in Lake Rupa were the dominant species. The zooplankton population and species varied irregularly. On the basis of chlorophyll a concentration in the euphotic zone and phytoplankton species composition, the lakes seem to be oligoeutrophic and to have some characteristics of temperate lakes rather than tropical lakes. Received: April 26, 1999 / Accepted: September 20, 1999  相似文献   

7.
Seasonal population dynamics and the vertical distribution of planktonic ciliates in a hypertrophic and strongly stratified temperate lake were studied from April to October in 2000 and from April to June in 2001. In the epi- and metalimnion the ciliate abundance peaked in spring and late summer, reaching maximum values in the metalimnion (86 cells ml−1) on 7th August 2000. In the epilimnion, the highest biomass content (414 μg C l−1) was observed on 8th May 2000. In the hypolimnion only a late summer peak occurred and the ciliate numbers were always lower than in the epi- and metalimnion. Five groups dominated the community of ciliates: Oligotrichida, Gymnostomatea, Prostomatida, Hymenostomata and Peritrichia, and the community composition varied greatly with depth. In the epilimnion the ciliate numbers were dominated by oligotrichs but small algivorous prostomatids, peritrichs and gymnostomes were also numerous. In the metalimnion these groups were gradually replaced by scuticociliates and mixotrophic Coleps spp. In the hypolimnion scuticociliates and species known as benthic migrants dominated. In the epilimnion and upper metalimnion in spring large herbivores and in summer small bacterivores were more numerous.  相似文献   

8.
Migrations of Daphnia longispina were studied in a small humic lake with an exceptionally shallow oxic epilimnion. Horizontal distributions showed clear avoidance of the shoreline, which might be explained by the lower density of predators (Chaoborus sp. and Notonecta sp.) in the central parts of the lake. In early summer all size classes of D. longispina exhibited upward nocturnal vertical migration, descending to the upper hypolimnion in daytime. Later in summer, when the nocturnally migrating Chaoborus sp. had grown large enough to graze on small Daphnia, the latter seemed to shift towards twilight migration. However, large Daphnia individuals showed no synchronized migration; rather their bimodal vertical distributions suggested asynchronous vertical migration. Large individuals showed a particular tendency to concentrate near to the oxycline, close to the dense phytoplankton and bacteria populations in the upper part of the anoxic hypolimnion. According to vertical trap experiments, large D. longispina visited the anoxic hypolimnion and might harvest its abundant food resources. The high haemoglobin content of large individuals seems a specific adaptation to allow access to low oxygen water and hence to maximize grazing potential, in both epi- and hypolimnion, and minimize predation pressure. By staying predominantly in cooler water near the oxycline, Daphnia might also minimize its energy consumption to adjust to low food availability while sustaining a sufficiently high population density to exploit those unpredictable short periods with abundant food which are common in small headwater lakes. It is suggested that migrations of zooplankton are a complex behavioural adaptation which may not be explained by any single factor. In humic lakes with shallow stratification, vertical migrations seem to offer particularly high potential advantages, because of the short distances between dramatically different environments in the water column. In further studies more emphasis should be placed on migrations of individuals rather than populations, and migrations should be considered as a dynamic part of the structure and function of the whole planktonic ecosystem.  相似文献   

9.
底栖动物是鱼类重要的天然饵料,评估水体中底栖动物的现存量可以指导渔业生产中鱼类的放养数量。为了探究淡水生态养殖水库中底栖动物群落的季节动态,于2013年4月、7月、10月和2014年1月对三河水库的底栖动物群落进行了调查分析。研究共采集到7个属的底栖动物,隶属于颤蚓科、摇蚊科和蠓科,未采集到软体动物。相对重要性指数(IRI)计算结果表明,菱跗摇蚊属Clinotanypus(IRI=7136)、颤蚓属Tubifex(IRI=6734)和尾鳃蚓属Branchiura(IRI=1384)是优势类群,分别占总捕获数量的34.26%、50.38%和10.96%。不同季节之间底栖动物的总密度和生物量差异显著(P0.05),均为冬季春季夏季秋季。冬季总密度(4100个/m~2)和总生物量(10.14 g/m~2)最高,春季(1446个/m~2;1.07 g/m~2)次之,夏季(579个/m~2;0.66 g/m~2)较低,秋季(492个/m~2;0.64 g/m~2)最低。非度量多维尺度分析(MDS)和群落相似性分析表明底栖动物群落结构季节差异显著(P=0.001),2013年三河水库的底栖动物群落可明显划分为3个:春季群落、夏秋季群落和冬季群落。皮尔森相关分析表明,底栖动物总密度与溶氧和营养盐呈正相关关系,与其他水理化因子呈显著负相关关系(P0.05)。冗余分析表明,氨氮、盐度、pH和浊度是三河水库底栖动物群落季节差异的显著影响因子(P0.05),总氮对底栖动物群落的季节差异具有边缘显著影响(P=0.08)。  相似文献   

10.
The zooplankton community of a flooded opencast sulphur mine was investigated during two years. The complicated physical and chemical relationships in this water-filled pit caused an atypical plankton assemblage. At the time of the investigation 20 species of rotifers, 6 of Cladocera, and 8 species of Copepoda were found. A single Ostracod and Chaoborus flavicans were also noted in the samples. Usually the epilimnion was monopolised by rotifers whereas the hypolimnion had a more diversified assemblage of rotifers, cladocerans and copepods. The result of clustering analysis indicated that each predator was associated with its own group of prey. Discrimination analyses showed weak seasonal differences in the zooplankton and three zones in the vertical profile – epilimnetic, upper hypolimnetic and anaerobic. Principal component analysis reduced the chemical parameters to the main contributors of conductivity (the main anions and cations) plus toxic sulphide and hydrogen sulphide. The animals were classified by the first two components into two groups: cold stenotherms and medium-sized filtrators, such as Bosmina longirostris. A specific analysis of vertical profiles generated five variants of diel vertical migrations. When time–space distributions of the plankters were analysed the highest numbers of different species were usually in different times and depths. The epilimnion was inhabited by small fishes and was dominated by rotifers but was free from C. flavicans which inhabited the cold hypolimnion, together with the remaining invertebrate predators (copepods and Asplanchna).Chaoborus and the other invertebrate predators participated more evenly in the contributions of species to the total density. In the presence of invertebrate predators the structure of the rotifer population shifted from soft-bodied species to spined or fast-moving species. When the predation pressure was too strong, as in the hypolimnion, the soft-bodied species were, in practice, absent. When the pit was in an oligotrophic state the hypolimnion population was composed of up to 60–90% rotifers. When the trophic state shifted to mesotrophy, the proportion of cladocerans increased.  相似文献   

11.
Seasonal fluctuations in numbers of some mesosaprobic ciliated Protozoa were followed from May 1969 to December 1970 in a eutrophic pond in north-west England. The most common species were Loxodes magnus and Loxodcs striatus; some counts of Frontonia leucas, Spirostomum teres, Stentor coeruleus and Paramecium caudatum were also made. From about October to May, when the pond was mixed and the bottom water was well oxygenated, dense benthic populations of these ciliates were found (maxima 221 L. magnus and 293 L. striatus in 0·1 ml of sediment). They were absent from the plankton. In summer, stratification occurred, conditions in the hypolimnion became saprobic (i.e. low oxygen and high levels of potentially toxic substances such as sulphide, ammonia, and carbon dioxide), and very few benthic ciliates were present. Some planktonic Loxodes (up to 34 L. magnus and 137 L. striatus/ml) were, however, found in the hypolimnion. Possibly conditions in the water column were less severe than in the sediment, or perhaps the planktonic ciliates migrated vertically, from time to time, to an oxygen supply at the boundary with the epilimnion. Experimental exposure of the Loxodes species (also S. teres) to saprobic conditions in closed bottles caused the death of most ciliates within 50–150 h of closing the bottles. Deoxygenation of Loxodes was also carried out in a stream of argon, when there was no build-up of the potential toxins associated with anoxia. Almost all Loxodes were lost between 20 and 70 h, hence, oxygen deficiency alone is probably sufficient to explain the low populations in the summer benthos.  相似文献   

12.
13.
Distribution patterns of the larvae of Chironomidae are compared in three water systems in The Netherlands, which vary in trophic state and oxygen regimes. The life cycles and flying periods of some dominant chironomid species in two of the investigated lakes, Lakes Maarsseveen I and II, are determined by comparing data on the seasonal variations in larval densities with existing literature on Chironomidae in the Maarsseveen lakes. In the oligo-mesotrophic Lake Maarsseveen I (LM I), hypoxic or anoxic conditions in the hypolimnion are observed only at the end of the stratification period. A clear zonation of the chironomid fauna is present in this lake. The littoral zone is dominated byCladotanytarsus gr.mancus andStictochironomus sticticus, the littoriprofundal zone byTanytarsus bathophilus, and the profundal zone byChironomus anthracinus. In comparison with the other species in LM I,T. bathophilus larvae show the most variable distribution patterns over time. Larvae are found in all depths from July to September, but disappear from the hypolimnion as soon as oxygen conditions deteriorate. In the eutrophic Lake Maarsseveen II (LM II), oxygen depletion of the hypolimnion starts immediately after the onset of the thermal stratification in June, and continues until autumnal turnover in November. In this lake, the chironomid community consists primarily ofS. sticticus andCl. gr.mancus, and is confined to the narrow littoral zone. No chironomid larvae are found in the deeper parts of the lake. The eutrophic Lake Gijster in the Brabantse Biesbosch is a deep, man-made reservoir, that is artificially destratified during the summer. In this lakeTanytarsus bathophilus is found in the profundal sediments, whereas almost noChironomus is found in this zone. It is concluded that oxygen conditions existing in the deeper regions of the investigated lakes in large part determine the occurrence and distribution of chironomid species. The distribution ofT. bathophilus is limited by unfavorable oxygen conditions and not by the trophic state of the lake. These findings are part of a thesis (HEINIS, 1993).  相似文献   

14.
A dose of 2 ppm of temephos in emulsifiable formulation was applied to a mountain stream to observe its effects on the zoobenthos and the subsequent changes in benthic algae. Most zoobenthos in the treated region drifted but there were slight differences among taxa. Ephemeroptera and Plecoptera disappeared but some Trichoptera and Diptera survived. Chironomids recolonized earlier than other invertebrates and reached a higher density level than before the treatment. A bloom of benthic algae occurred following the destruction of fauna. The increase in the standing crop of algae was accompanied by an increase in the number of species. Among these, Achnanthes lanceolata, Meridion circulare and Tetraspora gelatinosa were predominant. The end of the bloom began with the recovery of the zoobenthos population.  相似文献   

15.
Lake Sempach, located in the central part of Switzerland, has a surface area of 14 km2, a maximum depth of 87 m and a water residence time of 15 years. Restoration measures to correct historic eutrophication, including artificial mixing and oxygenation of the hypolimnion, were implemented in 1984. By means of the combination of external and internal load reductions, total phosphorus concentrations decreased in the period 1984–2000 from 160 to 42 mg P m–3. Starting from 1997, hypolimnion oxygenation with pure oxygen was replaced by aeration with fine air bubbles. The reaction of the plankton has been investigated as part of a long-term monitoring program. Taxa numbers, evenness and biodiversity of phytoplankton increased significantly during the last 15 years, concomitant with a marked decline of phosphorus concentration in the lake. Seasonal development of phytoplankton seems to be strongly influenced by the artificial mixing during winter and spring and by changes of the trophic state. Dominance of nitrogen fixing cyanobacteria (Aphanizomenon sp.), causing a severe fish kill in 1984, has been correlated with lower N/P-ratio in the epilimnion. Buoyant algae such as Planktothrix rubescens (syn. Oscillatoria rubescens) increased in abundance due to enlargement of the trophogenic layer and extended mixing depth during winter. The interactions between zoo- and phytoplankton seemed to be depressed as a result of restoration measures. Zooplankton composition changed to more carnivorous and less herbivorous species. Oxygenation of the hypolimnion induced bioturbation of sediments, mainly by oligochaetae worms, and stimulated germination of spores and cysts and hatching of resting eggs.  相似文献   

16.
1. The unicellular green alga Chlamydomonas acidophila accumulates in a thin phytoplankton layer in the hypolimnion (deep chlorophyll maximum, DCM) of an extremely acidic lake (Lake 111, pH 2.6, Lusatia, Germany), in which the underwater light spectrum is distorted and red‐shifted. 2. Chlamydomonas acidophila exhibited a significantly higher absorption efficiency and a higher cellular chlorophyll b content when incubated in the red shifted underwater light of Lake 111 than in a typical, blue‐green dominated, light spectrum. 3. Chlamydomonas acidophila has excellent low light acclimation properties (increased chlorophyll b content, increased oxygen yield and a low light saturation point for photosynthesis) that support survival of the species in the low light climate of the DCM. 4. In situ acclimation to the DCM under low light and temperature decreased maximum photosynthetic rate in autotrophic C. acidophila cultures, whereas the presence of glucose under these conditions enhanced photosynthetic efficiency and capacity. 5. The adaptive abilities of C. acidophila to light and temperature shown in this study, in combination with the absence of potent competitors because of low lake pH, most probably enable the unusual dominance of the green alga in the DCM of Lake 111.  相似文献   

17.
Tolerance to low oxygen concentrations is expected in Brachionus plicatilis, a rotifer adapted to live in saline warm waters. The population dynamics of a clone of this species, isolated from an endorreic saline lake, was studied under controlled laboratory conditions. Although their growth and metabolism is extremely reduced, B. plicatilis populations are able to maintain relatively high-density populations (a mean of 35 ind ml–1) in oxygen concentrations below 1 mg 1–1, for more than one month. Major features of population growth related to oxygen are discussed.  相似文献   

18.
Observations indicating gliding motility in the gas-vacuolate, filamentous organism Peloploca were made using microcapillary tubes. Tubes containing semi-solid agar, incubated in sediment cores gave good enrichments of Peloploca spp. The organisms, which had the form of helical bundles of filaments, were seen to corkscrew through the agar at up to 2–3 m s-1.The vertical distribution of Peloploca spp. in the sediment and water column of a eutrophic lake was examined periodically during summer stratification. The organisms were confined to anoxic conditions in the sediment prior to stratification. With increasing anoxia in the hypolimnion, the population shifted upwards in the sediment, and towards the end of stratification, in the most reducing conditions, appeared in the lower hypolimnion. Anaerobically incubated sediment cores also showed the movement of the Peloploca population from sediment into the overlying water.It is suggested that the gliding motility and helical morphology of Peloploca bundles enable them to migrate through sediment in response to oxygen and Eh gradients, in addition to their use of gas vacuoles to adjust their position in the water column. The taxonomic implications of gliding motility in Peloploca spp. are discussed.  相似文献   

19.
The response of four benthic cyclopoid copepods,Acanthocyclops viridis (Megacyclops viridis) (Jurine, 1820),Macrocyclops albidus (Jurine),Eucyclops agilis (Koch, Sars) (Eucyclops serrulatus) (Fischer, 1851) andParacyclops fimbriatus (Fischer), to hypoxia and anoxia was investigated. All of these species died within six hours when confronted by totally anoxic conditions, but all survived four days at oxygen saturation levels as low as 25%. Males succumbed to the effects of anoxia more rapidly than the larger females of each species, and larger species survived for shorter periods than smaller species. In artificially stratified columns, where the lower layer was anoxic, all four species displayed an upward migratory response towards oxygenated conditions. Where the artificial hypolimnion was hypoxic, however, the migratory response was not observed. The results suggest that some benthic copepods cope with seasonal anoxia in eutrophic stratified lakes by migration rather than the various physiological adaptations shown by planktonic and semi-planktonic species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号