首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contrary to previous reports brain mitochondria have a substantial capacity for net Ca2+ uptake (approx. 1.2 μeq. Ca2+ per mg protein) providing succinate is the oxidizable substrate. ATP stimulates calcium uptake (to 1.8 μeq. per mg protein), but is not required. The accumulation of Ca2+ with NAD-linked substrates is, however, significantly less. With 2-oxoglutarate, very limited Ca2+ uptake occurs before respiration is inhibited. At low concentrations (10 μM), Ca2+ stimulates the 2-oxoglutarate dehydrogenase activity of detergent solubilized mitochondria. Millimolar [Ca2+] is required for inhibition. Therefore, Ca2+ inhibition of 2-oxoglutarate oxidation can explain the low maximum uptake with this substrate, but probably not by directly effecting the dehydrogenase. Hence, the oxidation of 2-oxoglutarate can be either enhanced or suppressed depending upon the net Ca2+ accumulated by brain mitochondria.  相似文献   

2.
The adsorption of Ca2+ to the mitochondria ofSaccharomyces cerevisiae was investigated and it was found that, in contrast with animal mitochondria, Ca2+ is not accumulated through an energydependent process but is more probably adsorbed to mitochondrial membranes. The adsorption magnitude depends both on the amount of added calcium and on the ionic composition of the medium. It was found by study of the effect of divalent cations on the respiratory activity of yeast mitochondria that (a) Ca2+ and Mg2+ inhibit their oxidation competitively with succinate or citrate, the oxidation of NADH not being affected; (b) stimulation of oxidation of NADH and inhibition of oxidation of citrate and succinate may be observed with Ca2+ in the mitochondria ofTorulopsis utilis and with Co2+ in the mitochondria ofSaccharomyces cerevisiae; (c) Zn2+ inhibits the oxidation of NADH and of citrate; (d) the rate of oxidation of NADH in the presence of Cd2+ is several-fold greater than State 3 activity—on the other hand, oxidation of suceinate and citrate is inhibited by cadmium. In comparison with animal mitochondria, the fate of Ca2+ as well as the effects of other divalent cations on the respiratory activity of yeast mitochondria are different.  相似文献   

3.
The effect of substitution of KCl for sucrose in the reaction medium on succinate oxidation and hydrogen peroxide generation was investigated in the mitochondria isolated from stored taproots of sugar beet (Beta vulgaris L.). In a sucrose-containing medium, oxidation of succinate was inhibited by oxaloacetate; this inhibition was especially pronounced upon a decrease in substrate concentration and eliminated in the presence of glutamate, which removed oxaloacetate in the course of transamination. Irrespective of succinate concentration, substitution of KCl for sucrose in the medium considerably enhanced suppression of succinate oxidation apparently as a result of slow activation of succinate dehydrogenase (SDH) by its substrate. In this case, mitochondria showed the symptoms of uncoupling, lower values of membrane potential (ΔΨ), respiratory control (RC), and ADP/O induced by electrophoretic transport of potassium via K+ channel of mitochondria. KCl-dependent suppression of succinate oxidation by taproot mitochondria was accompanied by a considerable inhibition of H2O2 production as compared with the sucrose-containing medium. These results indicate that in the presence of potassium ions, ΔΨ dissipates, suppression of succinate oxidation by oxaloacetate increases, and succinate-dependent generation of ROS in sugar beet mitochondria is inhibited. A possible physiological role of oxaloacetate-restricted SDH activity in the suppression of respiration of storage organs protecting mitochondria from oxidative stress is discussed.  相似文献   

4.
Chlorotetracycline inhibits the uncoupled oxidation of exogenous NADH by Jerusalem artichoke (Helianthus tuberosus L.) mitochondria extensively (over 80%) and rapidly (inhibition complete in 10 s) in the presence of added Ca2+. Half-maximal inhibition is observed at 15 μM chlorotetracycline in the presence of 2 mM Ca2+. The oxidation of succinate is only affected marginally by chlorotetracycline plus Ca2+. The inhibition of NADH oxidation and the fluorescence of CTC are well correlated. Mn2+ is the only other cation which shows an (increased) inhibition in the presence of chlorotetracycline. The inhibition by Ca2+ and chlorotetracycline disappears at acid pH, and the pH optimum in their presence is 6.4. The inhibition caused by other lipid-soluble Ca2+-chelators is not reversible or is enhanced by the addition of excess Ca2+. In contrast, inhibition caused by relatively water-soluble chelators is completely reversed by added Ca2+. It is suggested that a neutral 1:2 complex is formed between Ca2+ and chlorotetracycline which can substitute for Ca2+ bound at sites in the lipophilic phase of the inner mitochondrial membrane, which are essential for the activity of the external NADH dehydrogenase.  相似文献   

5.
Isolated liver mitochondria oxidized acetaldehyde in the following order: State 4< state 3< valinomycin. Ca2+, in concentrations greater than 0.10 mM, inhibited the oxidation of acetaldehyde by isolated liver mitochondria under all conditions. Valinomycin-stimulated oxidation of acetaldehyde was more sensitive to inhibition by Ca2+ than were the state 3 or 4 rates of acetaldehyde oxidation. Acetaldehyde could support an energy-dependent uptake of Ca2+ at rates about 20 percent that found with succinate. Ruthenium red, an inhibitor of Ca2+ translocation, almost completely prevented the inhibition by Ca2+, under all conditions. The addition of externally added NAD+ or NADH provided complete relief against the inhibitions by Ca2+ of the state 4 and 3 rates of acetaldehyde oxidation. Although some relief was also observed with the valinomycin-stimulated system, significant inhibition persisted. Cations such as Zn2+, Cu2+, or Hg2+ also inhibited acetaldehyde oxidation, whereas Mg2+ and Mn2+ were without effect. These cations also blocked glutamate oxidation and presumably inhibit acetaldehyde oxidation by preventing reoxidation of NADH. The greater sensitivity of the ionophore-stimulated oxidation of acetaldehyde to inhibition by Ca2+ may reflect release of intramitochondria K+, which is known to occur in the presence of Ca2+, suggesting that acetaldehyde oxidation is influenced by the cation environment within the mitochondria.  相似文献   

6.
Oxidative stress caused by mitochondrial dysfunction during reperfusion is a key pathogenic mechanism in cerebral ischemia–reperfusion (IR) injury. Propofol (2,6-diisopropylphenol) has been proven to attenuate mitochondrial dysfunction and reperfusion injury. The current study reveals that propofol decreases oxidative stress injury by preventing succinate accumulation in focal cerebral IR injury. We evaluated whether propofol could attenuate ischemic accumulation of succinate in transient middle cerebral artery occlusion in vivo. By isolating mitochondria from cortical tissue, we also examined the in vitro effects of propofol on succinate dehydrogenase (SDH) activity and various mitochondrial bioenergetic parameters related to oxidative stress injury, such as the production of reactive oxidative species, membrane potential, Ca2+-induced mitochondrial swelling, and morphology via electron microscopy. Propofol significantly decreased the ischemic accumulation of succinate by inhibiting SDH activity and inhibited the oxidation of succinate in mitochondria. Propofol can decrease membrane potential in normal mitochondria but not in ischemic mitochondria. Propofol prevents Ca2+-induced mitochondrial swelling and ultrastructural changes to mitochondria. The protective effect of propofol appears to act, at least in part, by limiting oxidative stress injury by preventing the ischemic accumulation of succinate.  相似文献   

7.
Corasole-induced convulsive fits are accompanied by the activation of succinate oxidation in the isolated mitochondria, paralleled by the mounting effect of factors limiting succinate dehydrogenase activity. Diverse seasonal sensitivity to corasole correlates with the inhibition of succinate-dependent energy supply for the functional neuronal activity.  相似文献   

8.
Oxidation of mitochondrial pyridine nucleotides followed by their hydrolysis promotes Ca2+ release from intact liver mitochondria. In most of the previous studies oxidation was achieved with pro-oxidants which were added to mitochondria respiring on succinate in the presence of rotenone, a site I-specific inhibitor of the respiratory chain. Here we investigate pro-oxidant dependent and independent Ca2+ release from mitochondria when respiration is supported either by the NAD+-linked substrate β-hydroxybutyrate, or by succinate. In the presence, as well as in the absence, of the pro-oxidant t-butylhydroperoxide mitochondria retain Ca2+ much better with succinate than with β-hydroxybutyrate, as respiratory substrate. When Ca2+ release is induced by t-butylhydroperoxide succinate-supported Ca2+ retention is impeded by rotenone. Ca2+ release (pro-oxidant dependent or independent) is paralleled by oxidation and hydrolysis of intramitochondrial pyridine nucleotides, and Ca2+ retention is paralleled by reduction of pyridine nucleotides. It is concluded that the pyridine nucleotide-linked Ca2+ release from mitochondria can be controlled by respiratory substrates which regulate the intramitochondrial hydrolysis of oxidized pyridine nucleotides.  相似文献   

9.
10.
Dehydrogenase activities of potato tuber mitochondria and corresponding phosphorylation rates were measured for the dependence on external and mitochondrial matrix Mg2+. Magnesium stimulated state 3 and state 4 respiration, with significantly different concentrations of matrix Mg2+ required for optimal activities of the several substrates. Maximal stimulation of respiration with all substrates was obtained at 2-mM external Mg2+. However, respiration of malate, citrate, and -ketoglutarate requires at least 4-mM Mg2+ inside mitochondria for maximization of dehydrogenase activities. The phosphorylation system, requires a low level of internal Mg2+ (0.25 mM) to reach high activity, as judged by succinate-dependent respiration. However, mitochondria respiring on citrate or -ketoglutarate only sustain high levels of phosphorylation with at least 4-mM matrix Mg2+. Respiration of succinate is active without external and matrix Mg2+, although stimulated by the cation. Respiration of -ketoglutarate was strictly dependent on external Mg2+ required for substrate transport into mitochondria, and internal Mg2+ is required for dehydrogenase activity. Respiration of citrate and malate also depend on internal Mg2+ but, unlike -ketoglutarate, some activity still remains without external Mg2+. All the substrates revealed insensitive to external and internal mitochondrial Ca2+, except the exogenous NADH dehydrogenase, which requires either external Ca2+ or Mg2+ for detectable activity. Calcium is more efficient than Mg2+, both having cumulative stimulation. Unlike Ca2+, Mn2+ could substitute for Mg2+, before and after addition of A23, showing its ability to regulate phosphorylation and succinate dehydrogenase activities, with almost the same efficiency as Mg2+.  相似文献   

11.
The addition of calcium ions (Ca2+) to rat liver mitochondria, under conditions of rapid accumulation of 10–40 nmol Ca2+/mg protein, inhibited the oxidation of long and medium chain fatty acids to ketone bodies, whereas higher quantities of Ca2+ activated the process. The mitochondrial NADH:NAD ratio exhibited corresponding depression and elevation. Both inhibitory and stimulatory actions of Ca2+ were operative in liver mitochondria from fed and fasted rats and appear to be localized in the mitochondrial inner membranematrix region. These observations may signify involvement of Ca2+ in the regulation of fatty acid oxidation and ketogenesis.  相似文献   

12.
《Autophagy》2013,9(11):1710-1719
Calcium (Ca2+) has long been known as a ubiquitous intracellular second messenger, exploited by cells to control processes as diverse as development, proliferation, learning, muscle contraction and secretion. The spatial and temporal patterns of these Ca2+-associated signals, as well as their amplitude, is precisely controlled to create gradients of the ion, varying considerably depending on cell type and function. Tuning of intracellular Ca2+ is achieved in part by the buffering role of mitochondria, whose unperturbed function is essential for maintaining cellular energy balance. Quality of mitochondria is ensured by the process of targeted autophagy or mitophagy, which depends on a molecular cascade driving the catabolic process of autophagy toward damaged or deficient organelles for elimination via the lysosomal pathway. Nonspecific and targeted autophagy are highly regulated processes fundamental to cell growth and tissue homeostasis, allowing resources to be reallocated in nutrient-deprived cells as well as being instrumental in the repair of damaged organelles or the elimination of those in excess. Given the role of Ca2+ signaling in many fundamental cellular processes requiring precise regulation, the involvement of Ca2+ in autophagy is still somewhat ill-defined, and only in the past few years has evidence emerged linking the two. This mini-review aims to summarize recent work implicating Ca2+ as an important regulator of autophagy, outlining a role for Ca2+ that may be even more critical in the regulation of targeted mitochondrial autophagy.  相似文献   

13.
The swelling of rat liver mitochondria observed after addition of Ca2+, phosphate or valinomycin under suitable experimental conditions is inhibited by 19-nor-ethynyl-testosterone acetate (NEA) in the concentration range from 3 to 60 μm. The inhibition is proportional to NEA concentration and occurs when swelling is supported by oxidation of NAD-linked substrates (malate-glutamate), or endogenous substrate. Little or no inhibition occurs when swelling is supported by succinate oxidation. These observations suggest a site-specific effect near the NADH-flavoprotein portion of the respiratory chain. NEA also inhibits slightly the ATP-dependent contraction of Ca2+ swollen mitochondria, indicating a secondary effect on the energy-transfer mechanism. In contrast to these effects, NEA does not significantly affect: (a) H+ ejection after Ca2+ uptake supported by succinate oxidation; (b) valinomycin-induced swelling supported by ATP addition; (c) Na-acetate-induced swelling, in which the permeability of membranes to Na+ is rate limiting; and (d) loss of endogenous mitochondrial pyridine nucleotide. Other steroids such as androsterone, 17β-estradiol, and testosterone derivatives affect mitochondrial swelling like NEA, though to a lesser extent. Effects (a) and (d) are at variance with a previously postulated increase of mitochondrial permeability by steroids, accompanied by swelling. The studies which led to this postulate were carried out at steroid concentrations above 200 μm, where nonspecific effects on membrane permeability may well occur.  相似文献   

14.
Elzam OE  Hodges TK 《Plant physiology》1968,43(7):1108-1114
Experimental conditions which optimize both substrate- and ATP-dependent Ca2+ transport in corn (Zea mays) mitochondria have been determined. It has been found that a substrate (pyruvate + succinate) dependent, Pi independent, binding of Ca2+ occurs. This reaction is very rapid and complete in less than 30 seconds. For massive accumulation of calcium, Pi is essential. Phosphate is accumulated along with the calcium and the ratio of Ca:Pi accumulated is about 1.6:1 indicating the precipitation of hydroxyapatite inside the mitochondria.

The activation energies and Michaelis constants for both the substrate- and ATP-driven reactions have been determined. It has also been shown that the substrate-driven system is more efficient in Ca2+ accumulation than the ATP-driven system. This is partially due to the fact that Mg2+ is essential for the ATP-driven system but not for the substrate-driven system and that Mg2+ acts as a strong competitor of Ca2+ transport. The effect of other inorganic ions on Ca2+ transport energized by both substrate and ATP were examined.

The results lend support to the hypothesis that high energy intermediates of oxidative phosphorylation participate directly in Ca2+ binding and transport in plant mitochondria.

  相似文献   

15.
Duchenne Muscular Dystrophy is a chronic, progressive and ultimately fatal skeletal muscle wasting disease characterised by sarcolemmal fragility and intracellular Ca2+ dysregulation secondary to the absence of dystrophin. Mounting literature also suggests that the dysfunction of key energy systems within the muscle may contribute to pathological muscle wasting by reducing ATP availability to Ca2+ regulation and fibre regeneration. No study to date has biochemically quantified and contrasted mitochondrial ATP production capacity by dystrophic mitochondria isolated from their pathophysiological environment such to determine whether mitochondria are indeed capable of meeting this heightened cellular ATP demand, or examined the effects of an increasing extramitochondrial Ca2+ environment. Using isolated mitochondria from the diaphragm and tibialis anterior of 12 week-old dystrophin-deficient mdx and healthy control mice (C57BL10/ScSn) we have demonstrated severely depressed Complex I-mediated mitochondrial ATP production rate in mdx mitochondria that occurs irrespective of the macronutrient-derivative substrate combination fed into the Kreb’s cycle, and, which is partially, but significantly, ameliorated by inhibition of Complex I with rotenone and stimulation of Complex II-mediated ATP-production with succinate. There was no difference in the MAPR response of mdx mitochondria to increasing extramitochondrial Ca2+ load in comparison to controls, and 400 nM extramitochondrial Ca2+ was generally shown to be inhibitory to MAPR in both groups. Our data suggests that DMD pathology is exacerbated by a Complex I deficiency, which may contribute in part to the severe reductions in ATP production previously observed in dystrophic skeletal muscle.  相似文献   

16.
The oxidation of ethanol by the liver produces acetaldehyde, which is a highly reactive compound. Low concentrations of acetaldehyde inhibited mitochondrial respiration with glutamate, β-hydroxybutyrate, or α-ketoglutarate as substrates, but not with succinate or ascorbate. High concentrations led to respiratory inhibition with all substrates. Inhibition of succinate- and ascorbate-linked oxidation by acetaldehyde correlates with the inhibition of the activities of succinic dehydrogenase and cytochrome oxidase. A site more sensitive to acetaldehyde appears to be localized prior to the NADH-ubiquinone oxidoreductase segment of the respiratory chain. Acetaldehyde inhibits energy production by the mitochondria, as evidenced by its inhibition of respiratory control, oxidative phosphorylation, the rate of phosphorylation, and the ATP-32P exchange reaction. Energy utilization is also inhibited, in view of the decrease in both substrate- and ATP-supported Ca2+ uptake, and the reduction in Ca2+-stimulated oxygen uptake and ATPase activity. The malate-aspartate, α-glycerophosphate, and fatty acid shuttles for the transfer of reducing equivalents, and oxidation by mitochondria, were highly sensitive to acetaldehyde. Acetaldehyde also inhibited the uptake of anions which participate in the shuttles. The inhibition of the shuttles is apparently caused by interference with NAD+-dependent state 3 respiration and anion entry and efflux. Ethanol (6–80 mm) had no significant effect on oxygen consumption, anion uptake, or mitochondrial energy production and utilization. The data suggest that acetaldehyde may be implicated in some of the toxic effects caused by chronic ethanol consumption.  相似文献   

17.
Store-operated Ca2+ entry (SOCE) machinery, including Orai channels, TRPCs, and STIM1, is key to cellular calcium homeostasis. The following characteristics of mitochondria are involved in the physiological and pathological regulation of cells: mitochondria mediate calcium uptake through calcium uniporters; mitochondria are regulated by mitochondrial dynamic related proteins (OPA1, MFN1/2, and DRP1) and form mitochondrial networks through continuous fission and fusion; mitochondria supply NADH to the electron transport chain through the Krebs cycle to produce ATP; under stress, mitochondria will produce excessive reactive oxygen species to regulate mitochondria-endoplasmic reticulum interactions and the related signalling pathways. Both SOCE and mitochondria play critical roles in mediating cardiac hypertrophy, diabetic cardiomyopathy, and cardiac ischaemia-reperfusion injury. All the mitochondrial characteristics mentioned above are determinants of SOCE activity, and vice versa. Ca2+ signalling dictates the reciprocal regulation between mitochondria and SOCE under the specific pathological conditions of cardiomyocytes. The coupling of mitochondria and SOCE is essential for various pathophysiological processes in the heart. Herein, we review the research focussing on the reciprocal regulation between mitochondria and SOCE and provide potential interplay patterns in cardiac diseases.  相似文献   

18.
Fluctuations of intracellular Ca2+ ([Ca2+]i) regulate a variety of cellular functions. The classical Ca2+ transport pathways in the endoplasmic reticulum (ER) and plasma membrane are essential to [Ca2+]i oscillations. Although mitochondria have recently been shown to absorb and release Ca2+ during G protein-coupled receptor (GPCR) activation, the role of mitochondria in [Ca2+]i oscillations remains to be elucidated. Using fluo-3-loaded human teratocarcinoma NT2 cells, we investigated the regulation of [Ca2+]i oscillations by mitochondria. Both the muscarinic GPCR agonist carbachol and the ER Ca2+-adenosine triphosphate inhibitor thapsigargin (Tg) induced [Ca2+]i oscillations in NT2 cells. The [Ca2+]i oscillations induced by carbachol were unsynchronized among individual NT2 cells; in contrast, Tg-induced oscillations were synchronized. Inhibition of mitochondrial functions with either mitochondrial blockers or depletion of mitochondrial DNA eliminated carbachol—but not Tg-induced [Ca2+]i oscillations. Furthermore, carbachol-induced [Ca2+]i oscillations were partially restored to mitochondrial DNA-depleted NT2 cells by introduction of exogenous mitochondria. Treatment of NT2 cells with gap junction blockers prevented Tg-induced but not carbachol-induced [Ca2+]i oscillations. These data suggest that the distinct patterns of [Ca2+]i oscillations induced by GPCR and Tg are differentially modulated by mitochondria and gap junctions.  相似文献   

19.
The oxidation of reduced nicotinamide adenine dinucleotide, malate-pyruvate, and succinate by corn mitochondria in buffered 0.2 m KCl was determined as a function of divalent cations. Ni2+, Mg2+, Co2+, Ca2+, Mn2+, Sr2+, and Ba2+ stimulated reduced nicotinamide adenine dinucleotide oxidation in the absence of inorganic phosphate, with Ca2+ and Sr2+ having the greatest effect. Malate-pyruvate and succinate oxidation was stimulated by Ca2+, Ba2+, and Sr2+, but only in the presence of inorganic phosphate. Ca2+, Sr2+, and Ba2+ produced a simulated state 4 to state 3 transition with all three substrates, but only with malate-pyruvate and succinate was there a return to state 4. The order of divalent cation effectiveness suggests that the rate of water substitution from the cation inner coordination hydration sphere may be a rate-limiting step in certain mitochondrial reactions involving electron transport and phosphorylation.  相似文献   

20.
The accumulation of 45Ca2+ by intact mouse mastocytoma cells was examined before and after treatment of the cells with N6,O2′-dibutyryladenosine 3′,5′, cyclic monophosphate and theophylline to inhibit growth. In the presence of phosphate either glycolysis, respiration or ATP supported 45Ca2+ uptake by the cells and in each case the accumulated 45Ca2+ appeared to be retained by mitochondria. Inhibition of growth by drug treatment for 20h increased subsequent 45Ca2+ accumulation when cells were incubated with 45CaCl2, succinate and phosphate. Since prior drug treatment did not increase 45Ca2+ accumulation with glucose, ATP or malate the drugs appeared to increase 45Ca2+ accumulation by affecting succinate metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号