首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
While searching for effective bio-agents to control harmful algal blooms (HABs), the bacterial strain LP-10, which has strong algicidal activity against Phaeocystis globosa (Prymnesiophyceae), was isolated from surface seawater samples taken from the East China Sea. 16S rDNA sequence analysis and morphological characteristics revealed the strain LP-10 belonged to the genus Bacillus. The lytic effect of Bacillus sp. LP-10 against P. globosa was both concentration- and time-dependent. Algicidal activities of different growth stages of the bacterial culture varied significantly. The lytic effect of different parts of the bacterial cultures indicated that the algal cells were lysed by algicidal active compounds in the cell-free filtrate. Analysis of the properties of the active compounds showed that they had a molecular weight of less than 1000 Da and that the active compounds were stable between −80 and 121 °C. The algicidal range assay indicated that five other algal species were also suppressed by strain LP-10, including: Alexandrium catenella, A. tamarense, A. minutum, Prorocentrum micans and Asterionella japonica. Our results suggested that the algicidal bacterium Bacillus sp. LP-10 could be a potential bio-agent to control the blooms of harmful algal species.  相似文献   

2.
Bacteria in the phycosphere have a unique ecological relationship with host algae due to their utilization of algal extracellular products as nutrients. Some bacteria control the growth of algal cells and even lyse them. The diversity of bacteria and their community dynamics in the phycosphere of microalgae are still relatively little understood, especially of those associated with red tide-causing algae. In this study, scanning electron microscope (SEM) images of algal cell morphology revealed that the phycosphere bacteria of the red tide-causing algae, Skeletonema costatum and Scrippsiella trochoidea, could lyse them within 72 h. The community level physiology of the algicidal bacteria was studied using Biolog ECO microplates, a common method for the ecological study of microbial communities. The average well color development (AWCD) values of bacteria in the phycospheres of both species were low, indicating that the bacteria had low metabolic activity overall. The diversity indices were both lower than the bacterial diversity from natural environments. However, the bacteria associated with S. trochoidea demonstrated a higher AWCD value and diversity than those in the phycosphere of S. costatum. The utilization of carbon sources significantly changed at different lytic times, reflecting that the bacterial community structure changed during the algae-lysing process. These results revealed that the bacterial communities in phycospheres had a simple structure and low diversity. When the balance between algae and bacteria broke down, the total bacterial density increased while the algicidal bacteria accumulated and became the dominant species, changing the bacterial community structure in this micro-ecosystem.  相似文献   

3.
Despite their potential impact on phytoplankton dynamics and biogeochemical cycles, biological associations between algae and bacteria are still poorly understood. The aim of the present work was to characterize the influence of bacteria on the growth and function of the dinoflagellate Alexandrium tamarense. Axenic microalgal cultures were inoculated with a microbial community and the resulting cultures were monitored over a 15-month period, in order to allow for the establishment of specific algal–bacterial associations. Algal cells maintained in these new mixed cultures first experienced a period of growth inhibition. After several months, algal growth and cell volume increased, and indicators of photosynthetic function also improved. Our results suggest that community assembly processes facilitated the development of mutualistic relationships between A. tamarense cells and bacteria. These interactions had beneficial effects on the alga that may be only partly explained by mixotrophy of A. tamarense cells. The potential role of organic exudates in the establishment of these algal–bacterial associations is discussed. The present results do not support a role for algal–bacterial interactions in dinoflagellate toxin synthesis. However, variations observed in the toxin profile of A. tamarense cells during culture experiments give new clues for the understanding of biosynthetic pathways of saxitoxin, a potent phycotoxin.  相似文献   

4.
The effect of metabolic inhibitor, 5-fluoro-2′-deoxyuridine (FUdR) on toxin production and the cell cycle of marine dinoflagellate, Alexandrium tamarense, was investigated. Compared to untreated cells, FUdR at 3 μM (p < 0.05) to 300 μM (p < 0.01) inhibited the cell proliferation and toxin production in a dose-dependent manner for A. tamarense cultured in modified T1 medium. FUdR at 203 μM resulted in cell cycle arrest at the S phase at day 4 and toxigenesis was inhibited after day 2. The toxin profiles of the FUdR-treated cultures were similar to those of the control culture. These results suggest that FUdR inhibits saxitoxin (STX) biosynthesis in the early stage of the pathway. This report is the first to demonstrate the inhibition of toxin production in A. tamarense by a nucleoside analog.  相似文献   

5.
The influence of different factors on the lysis of the red microalga, Rhodella reticulata, by Cytophaga sp. LR2 was studied. The pathogenic bacterial strain was more resistant than the alga to the physiological parameters studied, which assured long-term survival of bacteria in algal cultures. Cytophaga sp. LR2 infected R. reticulata at temperatures between 15 and 30 degrees C, in the illuminated as well as the non-illuminated cultures, at pH values between 5.0 and 9.0, and in the presence of NaCl and CaCl2 in the culture medium. SEM showed a different morphology of the bacteria in algal cultures from those of axenic cultures of Cytophaga. Observations of specific associations between algal and bacterial cells revealed that the role of the slime extrusions on the bacterial surface was attachment of Cytophaga to algal cells, and that their clumping leads to rapid lysis.  相似文献   

6.
We studied formation and structural features of biosurfactants produced by five oil-degrading Pseudomonas and Rhodococcus strains. These bacteria were found to be capable of intense formation of extracellular glycolipid biosurfactants when grown on mineral salts medium with 2% hexadecane. Under these conditions, the surface tension of the cultures decreased from 77 mN/m to 31–34 mN/m. The strain Rhodococcus sp. S26 forming up to 780 mg glycolipids/l of culture medium proved the most efficient biosurfactant producer. Extracellular glycolipids were purified from the crude extracts by column chromatography. Their structural features were determined by thin layer chromatography and electrospray ionization mass spectrometry. Strains Pseudomonas putida BS3701 and Pseudomonas fluorescens 142NF synthesized a number of glycolipids identified as rhamnolipid B and its homologues. Glycolipids produced by Rhodococcus sp. X5 and Rhodococcus sp. S26 were assigned to trehalose tetraesters.  相似文献   

7.
The 2011 Great East Japan Earthquake and the subsequent huge tsunami greatly affected both human activity and the coastal marine ecosystem along the Pacific coast of Japan. The tsunami also reached Funka Bay in northern Japan and caused serious damage to the scallop cultures there, and this tsunami was believed to have affected the coastal environments in the bay. Therefore, we investigated the changes in the spatial abundance and distribution of the toxic dinoflagellates Alexandrium tamarense cysts before the tsunami (August 2010) and after the tsunami (May 2011, August 2011, May 2012 and August 2012) in the bay. Further, monthly sampling was conducted after the tsunami to identify seasonal changes of Alexandrium catenella/tamarense cysts and vegetative cells. Significant increases were observed in the populations of A. catenella/tamarense cysts, comparing the abundances before the tsunami (in August 2010; 70 ± 61 cysts g−1 wet sediment) to those just after it (in May 2011; 108 ± 84 cysts g−1 wet sediment), and both A. tamarense bloom (a maximum density was 1.3 × 103 cells L−1) and PSP (Paralytic Shellfish Poisoning) toxin contamination of scallops (9.4 mouse unit g−1 was recorded) occurred in the bay. Seasonal sampling also revealed that the encystment of A. tamarense and the supply of the cysts to bottom sediments did not occur in the bay from September to April. These results strongly suggested that the mixing of the bottom sediments by the tsunami caused the accumulation of the toxic A. tamarense cysts in the surface of bottom sediment through the process of redeposition in Funka Bay. Moreover, this cyst deposition may have contributed to the toxic bloom formation as a seed population in the spring of 2011.  相似文献   

8.
《Harmful algae》2008,7(1):1-10
On 29 April 2003, a Heterosigma akashiwo bloom (9.5 × 104 cells mL−1) associated with a fish kill (>104 dead fishes estimated from aerial surveys) was observed offshore of Bulls Bay, McLellanville, South Carolina, USA. To assess a potential cause of this bloom event, we investigated the bacterial diversity and algal/bacterial interactions in the bloom microbial community. Thirty-five bacterial strains were isolated and screened for algicidal or algal growth-promoting activities. One strain (BBB25) had significant growth-promoting effects on all 7 algal species tested: three raphidophytes (Heterosigma akashiwo, Chattonella subsalsa, Fibrocapsa japonica), two diatoms (Chaetoceros neogracile, Nitzschia sp.), a cryptophyte (Cryptomonas sp.), and a chlorophyte, Ankistrodesmus sp. This strain (BBB25) is a Gram-positive, rod-shaped spore-forming bacterium. Partial 16S rDNA gene sequence and morphological characters indicated that BBB25 is related closely to the genus Bacillus. The general nature of the algal response indicates that the growth-promoting effects of BBB25 are not specific to H. akashiwo, and suggests potentially widespread effects. Since the presence or relative abundance of the other algal species was not assessed during the bloom initiation period, the selective stimulatory effect on H. akashiwo bloom formation in Bulls Bay is unknown. These results demonstrate, however, the potential for bacterial species to play a regulatory role in bloom formation.  相似文献   

9.
Acetamiprid is a chloropyridinyl neonicotinoid that is widely used in agricultural areas, but its contribution to environmental pollution has resulted in its restriction in many countries. Little information is known about whether bacteria can hydrolyze acetamiprid. A bacterial strain that could hydrolyze acetamiprid was newly isolated using enrichment culture techniques. The morphological, biochemical and phylogenetic analysis characterized the isolate as Stenotrophomonas sp. The maximum growth and acetamiprid-degrading ability of the bacterium were observed at 30 °C at pH 7.0, in mineral medium supplemented with 1 g l?1 acetamiprid. A possibly important metabolite, N-methyl-(6-chloro-3-pyridyl)-methylamine (ACE-3), was identified based on nuclear magnetic resonance and gas chromatography–mass spectrometry analyses. This paper demonstrates for the first time that a pure bacterium is able to hydrolyze acetamiprid by targeting the magic nitro or cyano substituent groups of the compound. The end product ACE-3 is known to be less toxic to mammals and bees. The hydrolytic mechanism is similar to the metabolic conversion of the compound in mammals and insects.  相似文献   

10.
The algicidal and growth-inhibiting bacteria associated with seagrasses and macroalgae were characterized during the summer of 2012 and 2013 throughout Puget Sound, WA, USA. In 2012, Heterosigma akashiwo-killing bacteria were observed in concentrations of 2.8 × 106 CFU g−1 wet in the outer organic layer (biofilm) on the common eelgrass (Zostera marina) in north Padilla Bay. Bacteria that inhibited the growth of Alexandrium tamarense were detected within the biofilm formed on the eelgrass canopy at Dumas Bay and North Bay at densities of ∼108 CFU g−1 wet weight. Additionally, up to 4100 CFU mL−1 of algicidal and growth-inhibiting bacteria affecting both A. tamarense and H. akashiwo were detected in seawater adjacent to seven different eelgrass beds. In 2013, H. akashiwo-killing bacteria were found on Z. marina and Ulva lactuca with the highest densities of ∼108 CFU g−1 wet weight at Shallow Bay, Sucia Island. Bacteria that inhibited the growth of H. akashiwo and A. tamarense were also detected on Z. marina and Z. japonica at central Padilla Bay. Heterosigma akashiwo cysts were detected at a concentration of 3400 cysts g−1 wet weight in the sediment from Westcott Bay (northern San Juan Island), a location where eelgrass disappeared in 2002. These findings provide new insights on the ecology of algicidal and growth-inhibiting bacteria, and suggest that seagrass and macroalgae provide an environment that may influence the abundance of harmful algae in this region. This work highlights the importance of protection and restoration of native seagrasses and macroalgae in nearshore environments, in particular those regions where shellfish restoration initiatives are in place to satisfy a growing demand for seafood.  相似文献   

11.
As part of efforts to enhance the strategies employed to manage and mitigate algal blooms and their adverse effects, algicidal bacteria have shown promise as potential suppressors of these events. Nine strains of bacteria algicidal against the toxic dinoflagellate, Alexandrium tamarense, were isolated from the East Sea area, China. Sequence analysis of 16S rDNA showed that all the algicidal bacteria belonged to the γ-proteobacteria subclass and the genera Pseudoalteromonas (strain SP31 and SP44), Alteromonas (strain DH12 and DH46), Idiomarina (strain SP96), Vibrio (strain DH47 and DH51) and Halomonas (strain DH74 and DH77). To assess the algicidal mode of these algicidal bacteria, bacterial cells and the filtrate from bacterial cultures were inoculated into A. tamarense cultures, and fluorescein diacetate vital stain was applied to monitor the growth of the algal cells. The results showed that all the algicidal bacteria exhibited algicidal activity through an indirect attack since algicidal activity was only detected in cell free supernatants but not the bacterial cells. This is the first report of bacteria from the genus Idiomarina showing algicidal activity to the toxic dinoflagellate A. tamarense and these findings would increase our knowledge of bacterial–algal interactions and the role of bacteria during the population dynamics of HABs.  相似文献   

12.
The release of organic material upon algal cell lyses has a key role in structuring bacterial communities and affects the cycling of biolimiting elements in the marine environment. Here we show that already before cell lysis the leakage or excretion of organic matter by infected yet intact algal cells shaped North Sea bacterial community composition and enhanced bacterial substrate assimilation. Infected algal cultures of Phaeocystis globosa grown in coastal North Sea water contained gamma- and alphaproteobacterial phylotypes that were distinct from those in the non-infected control cultures 5 h after infection. The gammaproteobacterial population at this time mainly consisted of Alteromonas sp. cells that were attached to the infected but still intact host cells. Nano-scale secondary-ion mass spectrometry (nanoSIMS) showed ∼20% transfer of organic matter derived from the infected 13C- and 15N-labelled P. globosa cells to Alteromonas sp. cells. Subsequent, viral lysis of P. globosa resulted in the formation of aggregates that were densely colonised by bacteria. Aggregate dissolution was observed after 2 days, which we attribute to bacteriophage-induced lysis of the attached bacteria. Isotope mass spectrometry analysis showed that 40% of the particulate 13C-organic carbon from the infected P. globosa culture was remineralized to dissolved inorganic carbon after 7 days. These findings reveal a novel role of viruses in the leakage or excretion of algal biomass upon infection, which provides an additional ecological niche for specific bacterial populations and potentially redirects carbon availability.  相似文献   

13.
The effect of addition of autoclaved and filter-sterilized culture filtrate of Piriformospora indica (a root endophytic fungus) to the growing Linum album hairy root cultures on growth and lignan production was investigated. The addition resulted in a significant enhancement in lignan production and growth. The podophyllotoxin and 6-methoxypodophyllotoxin (the lignans) concentrations were maximally improved by 3.8 times (233.8 mg/L) and 4.4 times (131.9 mg/L) in comparison to control cultures, respectively, upon addition of 3.0% (v/v) filter-sterilized culture filtrate of P. indica to the hairy root cultures of L. album for exposure time of 48 h. This increase in the lignan content also coincided with the increase in phenylalanine ammonia lyase activity, which was 3.1-fold (371.4 μkat/kg protein) higher compared to control cultures under the same conditions. The maximal increase in hairy root biomass was, however, obtained under different conditions; it was enhanced by 1.4 times (21.8 g/L) in comparison to control cultures, when 2% (v/v) filter-sterilized culture filtrate was in contact with L. album cultures for 96 h.  相似文献   

14.
Batch and continuous cultures ofAnkistrodesmus braunii were established in an inorganic medium with growth rate limited by P. In batch culture, inoculation of lake water bacterial isolates ofPseudomonas sp. andFlavobacterium sp. showed that thePseudomonas isolate was capable of more rapid growth on algal exudates of lytic products than was theFlavobacterium isolate. When inoculated singly into a continuous culture (D=0.267 day–1; P level, 2M), theFlavobacterium isolate initially caused a decrease in the population density of the alga, but then steady states for both organisms were obtained. ThePseudomonas isolate under the same conditions caused a rapid washout of the algal culture, and steady-state conditions were never obtained. When thePseudomonas isolate was added to the two-member, steady-state system ofA. braunii andFlavobacterium, the algal population again washed out of the vessel, followed by theFlavobacterium and then thePseudomonas isolate. A transient increase in the P concentration to 200M in the culture vessel caused the low algal population level to increase, followed by increases in the bacterial isolates when the algal population was high enough to supply the required organic carbon source. The system demonstrated that competition for P between the alga and the bacteria can occur, and the results were dependent on the algal and bacterial relative growth rates. The bacterial growth rates were limited initially by organic substrates produced by the alga, and the different bacterial isolates competed for these substrates.  相似文献   

15.
The vernal occurrence of toxic dinoflagellates in the Alexandrium tamarense/Alexandrium fundyense species complex in an enclosed embayment of Narragansett Bay (Wickford Cove, Rhode Island) was documented during 2005 and 2009–2012. This is the first report of regular appearance of the Alexandrium fundyense/Alexandrium tamarense species complex in Narragansett Bay. Thecal plate analysis of clonal isolates using SEM revealed cells morphologically consistent with both Alexandrium tamarense Lebour (Balech) and Alexandrium fundyense Balech. Additionally, molecular analyses confirmed that the partial sequences for 18S through the D1–D2 region of 28S were consistent with the identity of the two Alexandrium species. Toxin analyses revealed the presence of a suite of toxins (C1/2, B1 (GTX-5), STX, GTX-2/3. Neo, and GTX-1/4) in both Alexandrium tamarense (6.31 fmol cell−1 STX equiv.) and Alexandrium fundyense (9.56 fmol cell−1 STX equiv.) isolated from Wickford Cove; the toxicity of a Narragansett Bay Alexandrium peruvianum isolate (1.79 fmol cell−1 STX equiv.) was also determined. Combined Alexandrium tamarense/Alexandrium fundyense abundance in Wickford Cove reached a peak abundance of 1280 cells L−1 (May of 2010), with the combined abundance routinely exceeding levels leading to shellfishing closures in other systems. The toxic Alexandrium tamarense/Alexandrium fundyense species complex appears to be a regular component of the lower Narragansett Bay phytoplankton community, either newly emergent or previously overlooked by extant monitoring programs.  相似文献   

16.
The halophilic bacterial strain Chromohalobacter sp. TVSP 101 was shown to produce extracellular, halotolerant, alkali-stable and moderately thermophilic α-amylase activity. The culture conditions for higher amylase production were optimized with respect to NaCl, pH, temperature and substrates. Maximum amylase production was achieved in a medium containing 20% NaCl or 15% KCl at pH 9.0 and 37 °C in the presence of 0.5% rice flour and tryptone. Addition of 50 mM CaCl2 to the medium increased amylase production by 29%. Two kinds of amylase activity, designated amylase I and amylase II, were purified from culture filtrates to homogeneity with molecular masses of 72 and 62 kDa, respectively. Both enzymes had maximal activity at pH 9.0 and 65 °C in the presence of 0–20% (w/v) NaCl but amylase I was much more stable in the absence of NaCl than amylase II. The enzymes efficiently hydrolyzed carbohydrates to yield maltotetraose, maltotriose, maltose, and glucose as the end products.  相似文献   

17.
AIMS: To define the role of the bacterial strains LR1 and LR3 in the Rhodella cell destruction caused by Cytophaga sp.LR2. METHODS AND RESULTS: The bacteria were obtained from algal culture with destruction. They were isolated in pure culture and tested for biochemical activities using Polymicrotest. The ability of bacteria to degrade and utilize the algal polysaccharide was investigated. The bacteria were grown in a media containing Rhodella polysaccharide as a sole carbon source. The level of the reducing sugars in the culture media was determined. Scanning electron microscopy (SEM) was used to define the location of bacteria in extensively and intensively cultivated Rhodella reticulata previously infected by Cytophaga sp. LR2. CONCLUSIONS: The lysis of Rhodella reticulata cells is due to the joint action of the three bacterial strains with the former pathogen Cytophaga sp. LR2 playing the main role. The accumulation of the polysaccharide and the excreted metabolites of the strains LR1 and LR3 stimulated the development of Cytophaga sp. LR2. The adaptation of the strain to particular conditions of alga cultivation and the utilization of polysaccharide as a sole carbon source supported its stable growth in alga suspension and destruction of Rhodella cells. SIGNIFICANCE AND IMPACT OF THE STUDY: The predominance of Cytophaga sp. LR2 over the two other contaminants and the lysis of Rhodella reticulata cells resulted from the ability of the bacterium to attach to the algal polysaccharide sheath. The formation of slime and extrusions facilitated the phenomenon of bacterial adhesion to the algal surface as well as the formation of colonial alga - bacterial spherules. The sedimentation of these aggregates decreased the ability of the algal strain to photosynthesize, led to the lysis of the cells and finally caused the death of Rhodella.  相似文献   

18.
19.
Mesorhizobium sp. F28 contains cobalt-NHase, which effectively converts acrylonitrile into acrylamide. When urea was added to the culture medium, the NHase activity was 62.3 U ml?1 (R2A–R2A/urea) after 22.5 h of cultivation, which was similar to that in the medium without addition (R2A–R2A, 70.0 U ml?1). The relative activity of the purified NHase was 100%, 92%, 94%, and 92% in the medium containing, respectively, 0 mM, 2 mM, 5 mM, and 10 mM of urea. Urea had no significant effect on the purified NHase activity of Mesorhizobium sp. F28. This research did not observe the NHase production by Mesorhizobium sp. F28 when acrylonitrile was supplemented in the culture medium except that cobalt ions existed. The highest enzyme activity was 328.5 U ml?1 as cobalt ions were added in the pre-culture and culture medium after 22.5 h of cultivation (R2A/Co-R2A/Co); compared to media without cobalt ions (R2A–R2A, 22.5 h, 70.5 U ml?1) this is an almost five-fold enhancement. It can be concluded that culture media containing cobalt ions was beneficial for the formation of active NHase of Mesorhizobium sp. F28.  相似文献   

20.
Harmful algal blooms caused by Cochlodinium polykrikoides are annual occurrences in coastal systems around the world. In New York (NY), USA, estuaries, bloom densities range from 103 to 105 mL?1 with higher densities (≥104 cells mL?1) being acutely toxic to multiple fish and shellfish species. Here, we report on the toxicity of C. polykrikoides strains recently isolated from New York and Massachusetts (USA) estuaries to juvenile fish (Cyprinodon variegates) and bay scallops (Argopecten irradians), as well as on potential mechanisms of toxicity. Cultures of C. polykrikoides exhibited dramatically more potent ichthyotoxicity than raw bloom water with 100% fish mortality occurring within ~1 h at densities as low as 3.3 × 102 cells mL?1. More potent toxicity in culture was also observed in bioassays using juvenile bay scallops, which experienced 100% mortality during 3 days exposure to cultures at cell densities an order of magnitude lower than raw bloom water (~3 × 103 cells mL?1). The toxic activity per C. polykrikoides cell was dependent on the growth stages of cultures with early exponential growth cultures being more potent than cultures in late-exponential or stationary phases. The ichthyotoxicity of cultures was also dependent on both cell density and fish size, as a hyperbolic relationship between the death time of fish and the ratio of algal cell density to length of fish was found (~103 cells mL?1 cm?1 yielded 100% fish mortality in 24 h). Simultaneous exposure of fish to C. polykrikoides and a second algal species (Rhodomonas salina or Prorocentrum minimum) increased survival time of fish, and decreased the fish mortality suggesting additional cellular biomass mitigated the ichthyotoxicity. Frozen and thawed-, sonicated-, or heat-killed-, C. polykrikoides cultures did not cause fish mortality. In contrast, cell-free culture medium connected to an active culture through a 5 μm nylon membrane caused complete mortality in fish, although the time required to kill fish was significantly longer than direct exposure to the whole culture. These results indicate that ichthyotoxicity of C. polykrikoides isolates is dependent on viability of cells and that direct physical contact between fish and cells is not required to cause mortality. The ability of the enzymes peroxidase and catalase to significantly reduce the toxicity of live cultures and the inability of hydrogen peroxide to mimic the ichthyotoxicity of C. polykrikoides isolates suggests that the toxicity could be caused by non-hydrogen peroxide, highly reactive, labile toxins such as ROS-like chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号