首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 287 毫秒
1.
2.
3.
4.
5.
6.
The diversity of isoforms of retinoic acid (RA) receptors (RARs) and of DNA sequences of retinoic acid-responsive elements (RAREs) suggests the existence of selectivities in the RAR/RARE recognition or in the subsequent gene modulation. Such selectivities might be particularly important for RAREs involved in positive feedback, eg. the RAR beta RARE. In the present work we found that in several epithelial cell lines, reporter constructs containing the RAR beta RARE linked to the HSV-tk promoter were transactivated in the presence of RA by endogenous RARs and co-transfected RAR alpha 1 and RAR beta 2 isoforms, but not by RAR gamam 1. On the contrary, this latter isoform behaved towards the RAR beta RARE as an inhibitor of the transactivation produced by endogenous RARs and by cotransfected RAR alpha 1 and RAR beta 2. RAR gamma 1 also behaved as an antagonist of the transactivation produced by cotransfected RXR alpha. The natural RAR beta gene promoter or RAR beta RARE tk constructs were not activated by the endogenous receptors of normal human keratinocytes (NHK), which are known to contain predominantly RAR gamma 1. It was, however, possible to activate to a certain extent RAR beta RARE-reporter constructs in NHK by co-transfecting RAR alpha 1, RAR beta 2 or RXR alpha. The antagonist behavior of RAR gamma 1 towards the RAR beta RARE may explain why in certain cell types such as keratinocytes, RAR beta is neither expressed nor induced by RA.  相似文献   

7.
Acetaldehyde alone and retinoic acid alone have been shown to increase and decrease, respectively, collagen production by stellate cells in culture. In this study the effects of retinoic acid on alpha(1)(I) and alpha(2)(I) collagen expression and its influence on the enhancing effects of acetaldehyde were determined. Retinoic acid decreased the activation of the alpha(2)(I) collagen promoter and decreased the message of alpha(2)(I) collagen in cultured stellate cells, but had no effect on either the activation of the alpha(1)(I) collagen promoter or on the alpha(1)(I) collagen message. This depressant effect of retinoic acid was also evident in the transfected alpha(2)(I) collagen promoter mutated at the retinoic acid response element (RARE). The activation of the alpha(2)(I) collagen promoter by acetaldehyde was not decreased significantly by retinoic acid, but was suppressed by the retinoic acid receptor (RAR) selective retinoid SRI-6751-84. Retinoic acid, however, decreased the acetaldehyde-induced enhancement of the alpha(1)(I) and alpha(2)(I) collagen messages. Acetaldehyde also resulted in a decrease in RAR beta message and RARbeta protein. This study shows that retinoic acid depresses alpha(2)(I) collagen gene expression but that this effect is less pronounced when the expression of this collagen is enhanced by acetaldehyde, which also decreases RARbeta message and protein. Furthermore, the action of retinoic acid in inhibiting alpha(2)(I) collagen gene expression occurs at sites other than the RARE site.  相似文献   

8.
Receptor-interacting protein 140 (RIP140) contains multiple receptor interaction domains and interacts with retinoic acid receptors in a ligand-dependent manner. Nine LXXLL receptor-interacting motifs are organized into two clusters within this molecule, each differentially interacting with retinoic acid receptor (RAR) and retinoid X receptor (RXR). RAR interacts with the 5' cluster, whereas RXR interacts with both clusters. Additionally, a third ligand-dependent receptor-interacting domain is assigned to the very C terminus of this molecule, which contains no LXXLL motif. In mammalian cells, receptor heterodimerization is required for efficient interaction of RAR/RXR with RIP140. Furthermore, the heterodimeric, holoreceptors cooperatively interact with RIP140, which requires the activation function 2 domains of both receptors. By using different retinoic acid reporter systems, it is demonstrated that RIP140 strongly suppresses retinoic acid induction of reporter activities, but coactivator SRC-1 enhances it. Furthermore, an intrinsic repressive activity of RIP140 is demonstrated in a GAL4 fusion system. Unlike receptor corepressor, which interacts with antagonist-bound RAR/RXRs, RIP140 does not interact with antagonist-occupied RAR/RXR dimers. These data suggest that RIP140 represents a third coregulator category that is able to suppress the activation of certain agonist-bound hormone receptors.  相似文献   

9.
10.
11.
12.
A role for retinoic acid in regulating the regeneration of deer antlers   总被引:14,自引:0,他引:14  
Deer antlers are the only mammalian organs that can be repeatedly regenerated; each year, these complex structures are shed and then regrow to be used for display and fighting. To date, the molecular mechanisms controlling antler regeneration are not well understood. Vitamin A and its derivatives, retinoic acids, play important roles in embryonic skeletal development. Here, we provide several lines of evidence consistent with retinoids playing a functional role in controlling cellular differentiation during bone formation in the regenerating antler. Three receptors (alpha, beta, gamma) for both the retinoic acid receptor (RAR) and retinoid X receptor (RXR) families show distinct patterns of expression in the growing antler tip, the site of endochondral ossification. RAR alpha and RXR beta are expressed in skin ("velvet") and the underlying perichondrium. In cartilage, which is vascularised, RXR beta is specifically expressed in chondrocytes, which express type II collagen, and RAR alpha in perivascular cells, which also express type I collagen, a marker of the osteoblast phenotype. High-performance liquid chromatography analysis shows significant amounts of Vitamin A (retinol) in antler tissues at all stages of differentiation. The metabolites all-trans-RA and 4-oxo-RA are found in skin, perichondrium, cartilage, bone, and periosteum. The RXR ligand, 9-cis-RA, is found in perichondrium, mineralised cartilage, and bone. To further define sites of RA synthesis in antler, we immunolocalised retinaldehyde dehydrogenase type 2 (RALDH-2), a major retinoic acid-generating enzyme. RALDH-2 is expressed in the skin and perichondrium and in perivascular cells in cartilage, although chondroprogenitors and chondrocytes express very low levels. At sites of bone formation, differentiated osteoblasts which express the bone-specific protein osteocalcin express high levels of RALDH2. The effect of RA on antler cell differentiation was studied in vitro; all-trans-RA inhibits expression of the chondrocyte phenotype, an effect that is blocked by addition of the RAR antagonist Ro41-5253. In monolayer cultures of mesenchymal progenitor cells, all-trans-RA increases the expression of alkaline phosphatase, a marker of the osteoblastic phenotype. In summary, this study has shown that antler tissues contain endogenous retinoids, including 9-cis RA, and the enzyme RALDH2 that generates RA. Sites of RA synthesis in antler correspond closely with the localisation of cells which express receptors for these ligands and which respond to the effects of RA.  相似文献   

13.
Epstein-Barr virus (EBV) reactivation, indicated by induction of EBV early antigens from latently infected lymphoid cell lines by phorbol esters, is inhibited by retinoic acid (RA). Viral reactivation, which is triggered by the immediate-early BZLF-1 (Z) viral gene product, is repressed by retinoic acid receptors (RARs) RAR alpha and RXR alpha. These proteins negatively regulate Z-mediated transactivation of the promoter for an EBV early gene product, early antigen-diffuse (EaD). Here we confirm a direct physical interaction between the AP1-like protein Z and RXR alpha and map the domains of interaction in the Z protein and RXR alpha. The domain required for homodimerization of Z is separate from that required for its interaction with RXR alpha. Z also has the effect of repressing activation of an RAR-responsive cellular promoter (BRE). Point mutants in the dimerization domain of Z unable to interact with RXR alpha do not repress RXR alpha-mediated transactivation of BRE, the promoter for RAR beta, which suggests that interaction between the two proteins is required for this repressor effect. The domain of RXR alpha required for interaction with Z has been mapped, and is again separate from that required for homodimerization. These results indicate that a 'cross-coupling' or direct interaction between Z and RAR alpha and RXR alpha can modulate the reactivation of latent EBV infection and suggest that, reciprocally, the viral protein Z may influence cellular regulatory pathways.  相似文献   

14.
Ligand-dependent exchange of coactivators and corepressors is the fundamental regulator of nuclear hormone receptor (NHR) function. The interaction surfaces of coactivators and corepressors are similar but distinct enough to allow the ligand to function as a switch. Multiple NHRs share features that allow corepressor binding, and each of two distinct corepressors (N-CoR and SMRT) contains two similar CoRNR motifs that interact with NHRs. Here we report that the specificity of corepressor-NHR interaction is determined by the individual NHR interacting with specific CoRNR boxes within a preferred corepressor. First, receptors have distinct preferences for CoRNR1 versus CoRNR2. For example, the retinoic acid receptor binds CoRNR1, while RXR interacts almost exclusively with CoRNR2. Second, the NHR preference for N-CoR or SMRT is due to differences in CoRNR1 but not CoRNR2. Moreover, within a single corepressor, affinity for different NHRs is determined by distinct regions flanking CoRNR1. The highly specific determinants of NHR-corepressor interaction and preference suggest that repression is regulated by the permissibility of selected receptor-CoRNR-corepressor combinations. Interestingly, different NHR surfaces contribute to binding of CoRNR1 and CoRNR2, suggesting a model to explain corepressor binding to NHR heterodimers.  相似文献   

15.
16.
17.
18.
19.
We have previously shown that retinoic acid (RA) is able to act on the development of Leydig, Sertoli, and germ cells in the testis in culture (Livera et al., Biol Reprod 2000; 62:1303-1314). To identify which receptors mediate these effects, we have now added selective agonists and antagonists of retinoic acid receptors (RARs) or retinoid X receptors (RXRs) in the same organotypic culture system. The RAR alpha agonist mimicked most of the effects of RA on the cultured fetal or neonatal testis, whereas the RAR beta, gamma, and pan RXR agonists did not. The RAR alpha agonist decreased the testosterone production, the number of gonocytes, and the cAMP response to FSH of fetal testis explanted at 14.5 days postconception (dpc). The RAR alpha agonist disorganized the cords of the 14.5-dpc cultured testis and increased the cord diameter in cultured 3-days-postpartum (dpp) testis in the same way as RA. All these RA effects could be reversed by an RAR alpha antagonist and were unchanged by an RAR beta/gamma antagonist. The RAR beta agonist, however, increased Sertoli cell proliferation in the 3-dpp testis in the same way as RA, and this effect was blocked by an RAR beta antagonist. The RAR gamma and the pan RXR agonists had no selective effect. These results suggest that all the effects of RA on development of the fetal and neonatal testis are mediated via RAR alpha, except for its effect on Sertoli cell proliferation, which involves RAR beta.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号