首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 434 毫秒
1.
DNA synthesis of adult rat parenchymal hepatocytes alone in primary culture can be stimulated only by the addition of humoral growth factors to the culture medium. However, when parenchymal hepatocytes were cocultured with nonparenchymal liver cells from adult rats, their DNA synthesis was markedly stimulated in the absence of added growth factors or calf serum. DNA synthesis of parenchymal hepatocytes was not stimulated by conditioned medium from nonparenchymal liver cells and was greatest when the parenchymal cells were plated on 24-h cultures of nonparenchymal liver cells. A dead feeder layer of nonparenchymal cells was almost as effective as a feeder layer of viable nonparenchymal cells. These results suggest that the stimulation of DNA synthesis in parenchymal hepatocytes was not due to some soluble factors secreted by nonparenchymal liver cells but to an insoluble material(s) produced by the nonparenchymal liver cells. This insoluble material(s) was collagenase- and acid-sensitive, suggesting that it was a protein containing collagen. The effect of nonparenchymal liver cells was specific: coculture with hepatoma cells, liver epithelial cells, or Swiss 3T3 cells did not stimulate DNA synthesis in parenchymal hepatocytes. Added insulin and epidermal growth factor showed additive effects with nonparenchymal cells in the cocultures. These results suggest that DNA synthesis in parenchymal hepatocytes is stimulated not only by various humoral growth factors but also by cell-cell interaction between parenchymal and nonparenchymal hepatocytes, possibly endothelial cells. This cell-cell interaction may be important in repair of liver damage and liver regeneration.  相似文献   

2.
To identify the proteomic alterations associated with carcinogenesis of hepatocellular carcinoma (HCC), we compared the protein expression profiles of nine HCC cell lines with those of primary cultured hepatocytes established from five individuals. A differential proteomic study was performed by two-dimensional difference gel electrophoresis, in which protein samples are labeled with different fluorescent dyes and separated according to their isoelectric point and molecular weight. To label the protein samples, we used a newly developed and highly sensitive fluorescent dye, which reacts with all reduced cysteine residues of proteins. Principal component analysis based on the intensity of 1238 protein spots indicated that the HCC cells and the normal hepatocytes had distinct proteomic profiles. The Wilcoxon test was used to determine the protein spots whose intensity was differentially regulated in the HCC cells compared with the normal hepatocytes, and mass spectrometric analysis was used to identify the proteins corresponding to the spots. The proteins identified are involved in cell cycle regulation, binding to a tumor-suppressor gene product, fatty acid binding, and regulation of translation. Western blotting with specific antibodies revealed the overexpression of PCNA, EB1 and E-FABP in HCC tissues compared with noncancerous tissues. Aberrant regulation of EB1 and E-FABP has not previously been implicated in the development of HCC.  相似文献   

3.
Hepatocytes are induced in the pancreas of rats maintained first on a copper-deficient diet for 8 weeks and then on normal rat chow. These cells are morphologically identical to parenchymal cells of the liver. These hepatocytes contain two liver-specific proteins: carbamyl phosphate synthetase I, a mitochondrial matrix protein that participates in the conversion of ammonia to carbamyl phosphate; and urate oxidase, an enzyme that catalyzes the oxidation of uric acid to allantoin. In addition, we also present evidence indicating that dietary administration of ciprofibrate induces peroxisomal beta-oxidation pathway enzymes, while the levels of catalase are unaltered in pancreatic hepatocytes. These observations along with the previously published results further establish the identity of pancreatic hepatocytes to parenchymal cells of liver and clearly indicate that transdifferentiation of pancreatic cells to hepatocytes is associated with activation of several liver-specific genes.  相似文献   

4.
Protein glutathionylation is a post-translational modification consisting of the formation of a mixed disulfide between protein cysteines and glutathione (GSH). To identify proteins undergoing glutathionylation in primary rat hepatocytes and in human HepG2 hepatoma cells, we radiolabeled the intracellular GSH pool with L-[(35)S] cysteine. Cells were then exposed to oxidative stress. Proteins were separated by two-dimensional gel electrophoresis under nonreducing conditions, and glutathionylated proteins were located by autoradiography and identified by mass spectrometry after tryptic digestion. Several proteins previously not known to undergo glutathionylation were thus recognized. Among the identified proteins some are the same or belong to the same functional class as those we have already identified in a previous paper on T cell blasts (actin, nucleophosmin, phosphogluconolactonase, myosin, profilin, cyclophilin A, stress 70 protein, ubiquitin in HepG2 cells and actin, peroxiredoxin 5, cytochrome C oxidase, heat shock cognate 70 in hepatocytes) while others are newly recognized (Ran specific GTPase activating protein, histidine triad nucleotide binding protein 2 in HepG2 cells and enoyl CoA hydratase in hepatocytes). The technique described proved equally applicable to a variety of cell types.  相似文献   

5.
In vivo stimulation of mononuclear phagocyte system (MPS) by zymosan, dextrane sulfate, and prodigiosan caused almost a two-fold increase in hepatic protein synthesis. The rate of 14C-leucine incorporation increased both into total and soluble proteins. To define the cellular locus of these changes, preparations of hepatic parenchymal and nonparenchymal cells were obtained from the control and LPS-stimulated rats. The results indicate that the treatment of rats with prodigiosan stimulate protein synthesis in hepatocytes. No effect on protein synthesis of non-parenchymal cells was observed. Stimulation of MPS also caused a significant increase in 14C-leucine incorporation into serum lipoproteins. The results suggest that MPS may be involved in regulation of protein synthesis in hepatic parenchymal cells.  相似文献   

6.
Adult rat liver contains a minor population of hepatocytes called small hepatocytes (SHs) that are smaller in size and show a higher replicative potential than conventional parenchymal hepatocytes (PHs). However, SHs have been hitherto characterized using a "SH-fraction" that was contaminated with PHs. In the present study, we isolated a PH-free SH-fraction from the adult rat liver using fluorescence-activated cell sorter combined with centrifugal elutriation and characterized the hepatocytes in the fraction. These hepatocytes were designated R3Hs in this study. R3Hs were mononuclear and of lower ploidy. They expressed at high levels genes of Cdc2, connexin 26, hydroxysteroid sulfotransferase, pancreatic secretory trypsin inhibitor, and prostaglandin E2 receptor EP3 subtype. We conclude that SHs dominate the periportal zone in the adult liver, because mRNA or proteins of these genes were exclusively expressed by periportal hepatocytes.  相似文献   

7.
A S-sens K5 surface acoustic wave biosensor was coupled with mass spectrometry (SAW-MS) for the analysis of a protein complex consisting of human blood clotting cascade factor alpha-thrombin and human antithrombin III, a specific blood plasma inhibitor of thrombin. Specific binding of antithrombin III to thrombin was recorded as a function of time with a S-sens K5 biosensor. Two out of five elements of the sensor chip were used as references. To the remaining three elements coated with RNA anti-thrombin aptamers, thrombin and antithrombin III were bound consecutively. The biosensor measures mass changes on the chip surface showing that 20% of about 400fmol/cm2 thrombin formed a complex with the 1.7-times larger antithrombin III. Mass spectrometry (MS) was applied to identify the bound proteins. Sensor chips with aptamer-captured (1) thrombin and (2) thrombin-antithrombin III complex (TAT-complex) were digested with proteases on the sensor element and subsequently identified by peptide mass fingerprint (PMF) with matrix assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry. A significant identification of thrombin was achieved by measuring the entire digest with MALDI-ToF MS directly from the sensor chip surface. For the significant identification of both proteins in the TAT-complex, the proteolytic peptides had to be separated by nano-capillary-HPLC prior to MALDI-ToF MS. SAW-MS is applicable to protein interaction analysis as in functional proteomics and to miniaturized diagnostics.  相似文献   

8.
As earlier reported, the main component of narrow fractions of chromosomal non-histone proteins (NHP) of kidney and of Zaidel hepatoma cells has its own protein kinase activity, and is identified as a heteroorgan NHP-antigen, which is intrinsic to the definite renal tissue and absent in the liver. Effects of narrow fractions of kidney and Zaidel hepatoma NHP on biosynthetic processes and sizes of hepatocytes were studied in vitro. It has been shown that as a result of a 5 h incubation of rat hepatocytes with a narrow fraction of renal NHP the proportion of small hepatocytes increases approximately by 12% as compared with that of cells cultivated without NHP. Besides, binding of organ-specific anti-kidney immune serum with a small hepatocyte population rises by more than 20%, which results from the expression of tumor-associated heteroorgan kidney-specific antigen on the hepatocyte surface. According to immunoprecipitation and subsequent electrophoresis, the molecular mass of a membrane heteroorgan antigen on the surface of hepatocytes amounts approximately to 65 kDa, and an active phosphorylation of cellular proteins takes place. The same effect on hepatocytes is produced by a narrow NHP fraction of chromatin of Zaidel hepatoma cells, whereas no phosphorylation is observed in the presence of liver NHP as well as in the absence of NHP. It is suggested that the heteroorgan NHP-antigen induces biosynthetic processes including synthesis of membrane tumorassociated antigen on the surface of hepatocytes cultivated in vitro by activation of cellular protein phosphorylation, which can lead to changes in size of cultivated cells.  相似文献   

9.
C Guguen  C Gregori  F Schapira 《Biochimie》1975,57(9):1065-1071
Pyruvate kinase isozymic changes were studied in the adult hepatocyte cultures, by electrophoretic, kinetic and immunological methods. We were able to maintain parenchymal cells from normal adult rat liver in non-proliferating monolayer cultures up to 10 days. Hepatocytes appeared to contain a dominant PK I type up to 4-5 days of culture. After day 5, PK III type was regularly present with PK I and after 7 days PK III type was always the only isozyme detected in culture. It must be pointed out that, by the Ouchterlony method and sometimes by electrophoresis, concentrated extracts from freshly isolated hepatocytes or starting hepatocyte cultures did also contain Pyruvate kinase PK III type. These results suggest that Pyruvate kinase III is present but partly repressed in the adult parenchymal cells and becomes derepressed in culture.  相似文献   

10.
An increase in collagen synthesis by hepatic parenchymal cells (hepatocytes) was observed during 8 days in primary culture by the quantification of total [3H]hydroxyproline as a marker of total collagen synthesis and the ratio of [3H]hydroxyproline in the high-molecular-weight fraction to total [3H]hydroxyproline as a marker of collagen degradation after incubation of the cells with [3H]proline for 24 h. Type analysis of the collagen produced by the cells after 8 days in culture showed the presence of type I and type III collagens in addition to the components corresponding to type IV and type V (alpha A and alpha B) collagens. Only the latter two types were found in the collagens produced by the cells after 2 days in primary culture. The purity of the hepatocytes inoculated was 97%, and the majority of the contaminating small cells were erythrocytes. The rate of serum albumin synthesis, which is a typical function of the hepatocytes, was constant or increased during the culture period. Immuno-electron microscopic observation indicated the production of type I collagen by the hepatocytes after 8 days in primary culture. These results are explained only by the activation of collagen synthesis in the day-8 hepatocytes in primary culture.  相似文献   

11.
Summary A mass of pure adult rat parenchymal hepatocytes, obtained by a newly devised isolation technique, developed into organized micro-liverlike layered multicellular colonies in long-term primary cultures grown in the presence of bovine small intestine mucosal factors (SIMFs). These factors stimulated proliferation, aggregation, and orderly arrangement of the hepatocytes, and differentiation into partially functional micro-livers in vitro. SIMFs derived from other mammalian species affected rat hepatocytes in the same manner. Studies of the effects of mammalian SIMFs on hepatocytes may provide new insights into the kinetics and mechanisms of liver regeneration.  相似文献   

12.
Endocytosis of [125I]iodixanol was studied in vivo and in vitro in rat liver cells to determine fluid phase endocytic activity in different liver cells (hepatocytes, Kupffer cells and endothelial cells). The Kupffer cells were more active in the uptake of [l25I]iodixanol than parenchymal cells or endothelial cells. Inhibition of endocytic uptake via clathrin-coated pits (by potassium depletion and hypertonic medium) reduced uptake of [125I]iodixanol much more in Kupffer cells and endothelial cells than in hepatocytes. To gain further information about the importance of clathrin-mediated fluid phase endocytosis, the expression of proteins known to be components of the endocytic machinery was investigated. Using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting, endothelial cells and Kupffer cells were found to express approximately fourfold more rab4, rab5 and rab7 than parenchymal cells, while clathrin was expressed at a higher level in endothelial cells than in Kupffer cells and hepatocytes. Using electron microscopy it was shown that liver endothelial cells contained approximately twice as many coated pits per membrane unit than the parenchymal and Kupffer cells, thus confirming the immunoblotting results concerning clathrin expression. Electron microscopy on isolated liver cells following fluid phase uptake of horseradish peroxidase (HRP) showed that HRP-containing organelles had a different morphology in the different cell types: In the liver endothelial cells HRP was in small, tubular endosomes, while in Kupffer cells HRP was mainly found in larger structures, reminiscent of macropinosomes. Parenchymal cells contained HRP in small vacuolar endosomes with a punctuated distribution. In conclusion, we find that the Kupffer cells and the endothelial cells have a higher pinocytic activity than the hepatocytes. The hepatocytes do, however, account for most of the total hepatic uptake. The fluid phase endocytosis in liver endothelial cells depends mainly on clathrin-mediated endocytosis, while the parenchymal cells have additional clathrin-independent mechanisms that may play an important role in the uptake of plasma membrane components. In the Kupffer cells the major uptake of fluid phase markers seems to take place via a macropinocytic mechanism.  相似文献   

13.
14.
Parenchymal and non-parenchymal cells were isolated from adult rat liver that had been fully regenerated after a 70% partial hepatectomy. The characteristics of the parenchymal cell preparations from regenerated rat liver indicated that they were a homogeneous population and comparable with parenchymal cells isolated from intact liver. The parenchymal cells from regenerated adult rat liver contain glucokinase, hexokinase, pyruvate kinase type I and aldolase B. The non-parenchymal cells contain hexokinase, pyruvate kinase type III and aldolase B. When cells were isolated at different times of the day from rats on controlled feeding schedules, variation of tyrosine aminotransferase activity and liver glycogen content were observed in the parenchymal cells in keeping with the reported diurnal oscillations found in whole liver extracts. When parenchymal cells were isolated from rats 48 and 72h after partial hepatectomy, different isoenzyme patterns were observed. These cells appeared to synthesize pyruvate kinase type III, a function that was assigned previously to non-parenchymal cells or to foetal rat liver hepatocytes.  相似文献   

15.
Heme-binding protein 23 (HBP23), also termed peroxiredoxin (Prx) I, and heme oxygenase-1 (HO-1) are distinct antioxidant stress proteins that are co-ordinately induced by oxidative stress. HBP23/Prx I has thioredoxin-dependent peroxidase activity with high binding affinity for the pro-oxidant heme, while HO-1 is the inducible isoform of the rate-limiting enzyme of heme degradation. We investigated the cellular and subcellular localization of both proteins in rat liver. Whereas by immunohistochemistry (IHC) a uniformly high level of HBP23/Prx I expression was observed in liver parenchymal and different sinusoidal cells, HO-1 expression was restricted to Kupffer cells. By immunoelectron microscopy using the protein A-gold technique, HBP23/Prx I immunoreactivity was detected in cytoplasm, nuclear matrix, mitochondria, and peroxisomes of parenchymal and non-parenchymal liver cell populations. In contrast, the secretory pathway, i.e., the endoplasmic reticulum and Golgi complex, was free of label. As determined by immunocytochemical (ICC) studies in liver cell cultures and by Western and Northern blotting analysis, HBP23/Prx I was highly expressed in cultures of isolated hepatocytes and Kupffer cells. In contrast, HO-1 was constitutively expressed only in Kupffer cell cultures but was also inducible in hepatocytes. These data suggest that HBP23/Prx I and HO-1 may have complementary antioxidant functions in different cell populations in rat liver.  相似文献   

16.
In blood circulation, low density lipoproteins (LDL) can undergo modification, such as oxidation, and become key factors in the development of atherosclerosis. Although the liver is the major organ involved in the elimination of oxidized LDL (oxLDL), the identity of the receptor(s) involved remains to be defined. Our work aims to clarify the role of the scavenger receptor class B type I (SR-BI) in the hepatic metabolism of mildly and standardly oxLDL as well as the relative contribution of parenchymal (hepatocytes) and nonparenchymal liver cells with a special emphasis on CE-selective uptake. The association of native LDL and mildly or standardly oxLDL labeled either in proteins or in cholesteryl esters (CE) was measured on primary cultures of mouse hepatocytes from normal and SR-BI knock-out (KO) mice. These in vitro assays demonstrated that hepatocytes are able to mediate CE-selective uptake from both LDL and oxLDL and that SR-BI KO hepatocytes have a 60% reduced ability to selectively take CE from LDL but not towards mildly or standardly oxLDL. When lipoproteins were injected in the mouse inferior vena cava, parenchymal and nonparenchymal liver cells accumulated more CE than proteins from native, mildly and standardly oxLDL, indicating that selective uptake of CE from these lipoproteins occurs in vivo in these two cell types. The parenchymal cells contribute near 90% of the LDL-CE selective uptake and SR-BI for 60% of this pathway. Nonparenchymal cells capture mainly standardly oxLDL while parenchymal and nonparenchymal cells equally take up mildly oxLDL. An 82% reduction of standardly oxLDL-CE selective uptake by the nonparenchymal cells of SR-BI KO mice allowed emphasizing the contribution of SR-BI in hepatic metabolism of standardly oxLDL. However, SR-BI is not responsible for mildly oxLDL metabolism. Thus, SR-BI is involved in LDL- and standardly oxLDL-CE selective uptake in parenchymal and nonparenchymal cells, respectively.  相似文献   

17.
To clarify the role of transforming growth factor-β (TGF-β) and its receptors in hepatocyte growth, we studied the expression of TGF-β1 and its receptors and the sensitivity to growth inhibition by TGF-β1 protein in rat hepatocytes derived from resting and regenerating livers. In hepatocytes derived from resting livers, mRNAs for TGF-β type II receptor (TβR-II), insulin-like growth factor-II/mannose 6-phosphate receptor (IGF-II/M-6-PR), and TGF-β1 increased with time in primary culture. The cell surface TGF-β receptor proteins (TβR-I, II, and III), examined by the receptor affinity-labeling assay using 125I-TGF-β1, also increased, especially after 48 hr of culture. Hepatocytes were more sensitive to inhibition of DNA synthesis, when the TGF-β1 protein was added at later times in culture, corresponding to the presence of increased TGF-β receptors. In hepatocytes from regenerating livers after a partial hepatectomy (PH), an increase of TβR-I, TβR-II, TβR-III, IGF-II/M-6-PR, and TGF-β1 mRNAs was found, compared with hepatocytes from resting livers. Similarly, using TGF-β receptor affinity-labeling assay, hepatocytes from PH livers were found to have an increase in TβR-I, II, and III proteins, with a peak at 4 days post-PH, compared with hepatocytes from resting livers. When TGF-β1 protein was added for a short period (6 or 24 hr) after cell attachment to hepatocyte cultures, it inhibited DNA synthesis more effectively in hepatocytes from regenerating compared with resting livers. Our results show that hepatocyte TGF-β receptors and sensitivity to growth inhibition by TGF-β1 protein change together and are modulated during liver regeneration, as well as during the conditions of primary culture. J. Cell. Physiol. 176:612–623, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Transferrin was localized in 48-hr cultured adult rat hepatocytes by indirect immunoperoxidase following paraformaldehyde--glutaraldehyde fixation and the use of saponin as a membrane permeabilizing agent. The protein, present in all the parenchymal cells in variable amounts, was found to be specifically located in the endoplasmic reticulum and Golgi apparatus. These results are consistent with recent reports claiming that all adult hepatocytes may synthesize a given liver plasma protein at a given time. The procedure used in this study should be particularly useful for the detection of intracellular antigens in various intact cell types.  相似文献   

19.
Two proctolin-binding proteins solubilized from 1600 cockroach hindgut membranes were purified 1000-fold using five chromatography steps. Twenty-five micrograms of protein were recovered from the final size-exclusion chromatography as a single peak eluting at 74 kDa, whereas two major bands at 80 and 76 kDa were identified after silver staining of electrophoresis gels. The fragments, sequenced by tandem mass spectrometry and the Edman method, revealed a high homology with rat liver dipeptidyl aminopeptidase (DPP) III and a significant homology between the cockroach-purified proteins. From analysis of the Drosophila genome sequence database, it was possible to identify a putative DPP sharing high homology with the sequences obtained from the cockroach purified proteins and with the rat DPP III. Anti-(rat liver DPP III) Ig reacted specifically with both cockroach-purified proteins in Western blot analysis. The purified proteins removed the N-terminal dipeptide from the insect myotropic neuropeptide proctolin (Arg-Tyr-Leu-Pro-Thr) with a Km value of 3.8 +/- 1.1 microM. The specific DPP III inhibitor tynorphin prevented the degradation of proctolin by the purified insect DPP (IC50 = 0.68 microM). These results provide strong evidence that the cockroach-purified proteins represent an insect membrane DPP, presumably present in Drosophila, and that it is closely related to vertebrate DPP III.  相似文献   

20.
To better define the molecules involved in the initial interaction between hepadnaviruses and hepatocytes, we performed binding and infectivity studies with the duck hepatitis B virus (DHBV) and cultured primary duck hepatocytes. In competition experiments with naturally occurring subviral particles containing DHBV surface proteins, these DNA-free particles were found to interfere with viral infectivity if used at sufficiently high concentrations. In direct binding saturation experiments with radiolabelled subviral particles, a biphasic titration curve containing a saturable component was obtained. Quantitative evaluation of both the binding and the infectivity data indicates that the duck hepatocyte presents about 10(4) high-affinity binding sites for viral and subviral particles. Binding to these productive sites may be preceded by reversible virus attachment to a large number of less specific, nonsaturable primary binding sites. To identify which of the viral envelope proteins is responsible for hepatocyte-specific attachment, subviral particles containing only one of the two DHBV surface proteins were produced in Saccharomyces cerevisiae. In infectivity competition experiments, only particles containing the large pre-S/S protein were found to markedly reduce the efficiency of DHBV infection, while particles containing the small S protein had only a minor effect. Similarly, physical binding of radiolabelled serum-derived subviral particles to primary duck hepatocytes was inhibited well only by the yeast-derived pre-S/S particles. Together, these results strongly support the notion that hepadnaviral infection is initiated by specific attachment of the pre-S domain of the large DHBV envelope protein to a limited number of hepatocellular binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号