首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Glucocorticoids decrease type I procollagen synthesis by decreasing the steady state levels of procollagen mRNAs and mRNA synthesis. The present studies were undertaken to determine the functional sequences of the pro alpha 2(I) collagen gene required for the glucocorticoid-mediated decrease of type I procollagen mRNA synthesis. Embryonic mouse fibroblasts were stably transfected with the pR40 DNA CAT construct containing the 5' flanking region fragment from -2048 to +54 and the intronic fragment from +418 to +1524 of the mouse alpha 2(I) collagen gene. Dexamethasone treatment of these pR40 transfected fibroblasts resulted in a significant decrease in CAT activity which agrees with the glucocorticoid-mediated decrease of the steady state levels of type I procollagen mRNAs. To determine the possible role of the first intron fragment in the dexamethasone-mediated decrease of CAT activity, pR36, a CAT plasmid containing the first intron fragment and the SV40 early promoter, was transfected into mouse fibroblasts and treated with dexamethasone. No significant decrease in CAT activity was observed. The dexamethasone-mediated response was then localized within the 5' flanking region by preparing a series of constructs containing internal deletions and transfecting these plasmids into mouse fibroblasts. The regions -2048 to -981 and -506 to -351 were required for the dexamethasone response of gene activity. However, the DNA stretch from -981 to -506 was not. Analysis of the DNA sequences of these regions revealed a single GRE at -1023 to -1018 and a modified doublet at -873 to -856.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
4.
5.
D Cockayne  K R Cutroneo 《Biochemistry》1988,27(8):2736-2745
Nuclei were isolated from control and dexamethasone-treated (2 h) embryonic chick skin fibroblasts and transcribed in vitro. Nuclei isolated from dexamethasone-treated fibroblasts transcribed less pro alpha 1(I) and pro alpha 2(I) mRNAs but not beta-actin mRNA. Fibroblasts receiving dexamethasone and [5,6-3H]uridine also demonstrated decreased synthesis of nuclear type I procollagen mRNAs but not beta-actin mRNA. In fibroblasts treated with cycloheximide the newly synthesized nuclear type I procollagen mRNA species were markedly decreased. An enhanced inhibitory effect was observed when fibroblasts were treated with cycloheximide plus dexamethasone. Since the studies above demonstrate that active protein synthesis is required to maintain the constitutive expression of the type I procollagen genes, we determined if glucocorticoids regulate DNA-binding proteins with sequence specificity for the alpha 2(I) procollagen gene. Nuclear protein blots were probed with the 32P-end-labeled pBR322 vector DNA and 32P-end-labeled alpha 2(I) procollagen promoter containing DNA. Nonhistone proteins remained bound to labeled DNA at stringency washes of 0.05 and 0.1 M NaCl. As the ionic strength was increased to 0.2 and 0.3 M NaCl, the nonhistone-protein DNA binding was preferentially lost. Only the low molecular weight proteins remained bound to labeled DNA at the highest ionic strength, indicating nonspecific binding of these nuclear proteins. Dexamethasone treatment resulted in an increase of binding of nonhistone proteins to vector- and promoter-labeled DNAs over that observed in control fibroblasts at stringency washes of 0.05 and 0.1 M NaCl and to a lesser extent at 0.2 M NaCl. The binding specificities of nonhistone proteins for the alpha 2(I) procollagen promoter containing DNA were calculated. Three nonhistone DNA-binding proteins of Mr 90,000, 50,000, and 30,000 had altered specificities following dexamethasone treatment.  相似文献   

6.
7.
Glucocorticoids have previously been shown to decrease Type 1 collagen synthesis in vivo and in fibroblast cell culture. Several studies have demonstrated that glucocorticoids decrease Type 1 procollagen gene expression. These latter studies have included uridine incorporation into proα1(I) and proα2(1) mRNas and nuclear run-off experiments. Using the ColCat 3.6 plasmid, which contains part of the 5' flanking regionof the proα1 (1) coullagen gene and the reporter gene, chljoramphenicol acetyltransferase, the present studies demonstrate by stable transfection of fetal rat skin fibrolblasts that dexamethasone down regulates the promoter activity of the proα1(I) collagen gene. The glucocorticoid-mediated down-regulastionof procolljagen gene expression was demonstrated using the ColCat 3.6, 2.4, 1.7, or 0.9 plasmid. In addition, competitive oligonucleotide transfection experiments and site specific mutation of the glucocorticoid response element (GRE) in the whoulue ColCat 3.6 plasmid did not elimiinatre the effect. The ipossibility existed that another cis-element inthe 5' flanking region of the proα1(I) collagen gene was also required for the glucocorticoid-mediated down-regulation of procollagen gene expression, since TGF-β has been shown to stimulate collagen proα1(I) and proα2(I) gene activities. Dexamethasone treatment of non-transfected skin fibroblasts did result in a decrease of transforming growth factor-β. The decrease of CVAT activity by dexamethasone was brought back to control value by the addition of exogenous TGF-β to the culture media. Gel mobility studies demonstrated that glucocorticoid treatment of rat skin fibroblasts decreased glucocorticoid recptor binding to the GRE and TGF-β activator protein to the TGF-β element which were brought back to control values by coordinate exogenous TGF-β treatment. Thus the interaction of these TGF-β molecules with cellular membrane receptors and subsequent rtransduction is dramatically decreased resulting in less signals to regulate collagen gene expression. These data indicate that glucocorticoids coordinately regulate procollagen gene expfrssion through both the GRE and TGF-β elements. Depression of procollagen gene expression by glucocorticoids through the TGF-β element is mediated by decreased TGF-β secretion, possibly involving a secondary effect on regulatory protein(s) encoded by noncollagenous protein gene(s). The present studies provide the bassis for a novel mechanism of glucocorticoid-mediated regulation of eukaryotic genes containing the TGF-β element. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Depression is often characterized by increased cortisol secretion caused by hyperactivity of the hypothalamic-pituitary-adrenal axis and by nonsuppression of cortisol secretion following dexamethasone administration. This hyperactivity of the hypothalamic-pituitary-adrenal axis could result from a reduced glucocorticoid receptor (GR) activity in neurons involved in its control. To investigate the effect of reduced neuronal GR levels, we have blocked cellular GR mRNA processing and/or translation by introduction of a complementary GR antisense RNA strand. Two cell lines were transfected with a reporter plasmid carrying the chloramphenicol acetyltransferase (CAT) gene under control of the mouse mammary tumor virus long terminal repeat (a glucocorticoid-inducible promoter). This gene construction permitted assay of the sensitivity of the cells to glucocorticoid hormones. Cells were also cotransfected with a plasmid containing 1,815 bp of GR cDNA inserted in the reverse orientation downstream from either a neurofilament gene promoter element or the Rous sarcoma virus promoter element. Northern (RNA) blot analysis demonstrated formation of GR antisense RNA strands. Measurement of the sensitivity of CAT activity to exogeneous dexamethasone showed that although dexamethasone increased CAT activity by as much as 13-fold in control incubations, expression of GR antisense RNA caused a 2- to 4-fold decrease in the CAT response to dexamethasone. Stable transfectants bearing the GR antisense gene fragment construction demonstrated a 50 to 70% decrease of functional GR levels compared with normal cells, as evidenced by a ligand-binding assay with the type II glucocorticoid receptor-specific ligand [3H]RU 28362. These results validate the use of antisense RNA to GR to decrease cellular response to glucocorticoids.  相似文献   

9.
10.
The effect of 6-O-palmitoyl ascorbate on procollagen mRNA levels, collagen synthesis, and collagen secretion was investigated and compared with the effect of L-ascorbate in human intestinal smooth muscle (HISM) cells in vitro. Collagen synthesis, determined by the incorporation of 3H-proline into pepsin-resistant, salt-precipitated collagen, increased in a concentration-dependent manner in response to palmitoyl ascorbate. There was a twofold increase in collagen synthesis at 2.5 and 5 microM. By contrast, L-ascorbate was required at 4-5 times the concentration for the same response. However, at 20 microM, both palmitoyl and L-ascorbate induced similar 2.7-fold increases in collagen synthesis. Palmitoyl ascorbate induced a 1.6- and 3.5-fold increase in steady-state levels of procollagen I and III mRNA levels respectively, whereas L-ascorbate had no effect. Palmitoyl ascorbate and L-ascorbate induced similar increases in the amounts of newly synthesized procollagen secreted into the medium and in the amounts of collagen types I, III and V accumulating in the cell layer. There was no effect of either palmitoyl ascorbate or L-ascorbate on the activity of a procollagen alpha2 (I) promoter construct transiently transfected into HISM cells. Palmitoyl ascorbate augments HISM cell procollagen synthesis and mRNA levels more efficiently than L-ascorbate. This property may be due to the greater resistance of the ascorbate ester to oxidation and suggests that palmitoyl ascorbate could be an important agent for studies of collagen synthesis in vitro.  相似文献   

11.
Glucocorticoids decrease the synthesis of type I procollagen mRNAs   总被引:2,自引:0,他引:2  
Glucocorticoids selectively decrease procollagen synthesis in animal and human skin fibroblasts. beta-Actin content and beta-actin mRNA are not affected by glucocorticoid treatment of chick skin fibroblasts. The inhibitory effect of glucocorticoids on procollagen synthesis is associated with a decrease in total cellular type I procollagen mRNAs in chick skin fibroblasts. These effects of dexamethasone are receptor mediated as determined by pretreatment with the glucocorticoid antagonists progesterone and RU-486 and with the agonist beta-dihydrocortisol. Dexamethasone has a small but significant inhibitory effect on cell growth of chick skin fibroblasts. The ability of this corticosteroid to decrease the steady-state levels of type I procollagen mRNAs in nuclei, cytoplasm, and polysomes varies. The largest decrease of type I procollagen mRNAs is observed in the nuclear and cytoplasmic subcellular fractions 24 h after dexamethasone treatment. Type I procollagen hnRNAs are also decreased as determined by Northern blot analysis of total nuclear RNA. The synthesis of total cellular type I procollagen mRNAs is reversibly decreased by dexamethasone treatment. In addition the synthesis of total nuclear type I procollagen mRNA sequences is decreased at 2, 4, and 24 h following the addition of radioactive nucleoside and dexamethasone to cell cultures. Although the synthesis of pro alpha 1(I) and pro alpha 2(I) mRNAs is decreased in dexamethasone-treated chick skin fibroblasts, the degradation of the total cellular procollagen mRNAs is not altered while the degradation of total cellular RNA is stabilized. These data indicate that the dexamethasone-mediated decrease of procollagen synthesis in embryonic chick skin fibroblasts results from the regulation of procollagen gene expression.  相似文献   

12.
13.
A single-stranded 27-mer phosphorothioate oligodeoxynucleotide (ssPT) containing the transforming growth factor-beta (TGF-beta) response element was synthesized. Rat fetal lung fibroblasts were stably transfected with the ColCat 3.6 plasmid, which contains a portion of the 5'-flanking region of the proalpha1(I) collagen gene linked to the chloramphenicol acetyltransferase (CAT) gene. The cells were transiently transfected with the modified oligodeoxynucleotides in both the presence and absence of bleomycin, a fibrogenic antineoplastic agent. At 50 microg ssPT, the bleomycin-induced increase in CAT activity was abrogated. The ability of ssPT to inhibit collagen synthesis in rat fetal lung fibroblasts was determined. Single-stranded PTs inhibited both collagen synthesis and noncollagen protein synthesis induced by TGF-beta1, the mediator of the bleomycin fibrogenic effect. Inflamed granulation tissue fibroblasts were prepared from polyvinyl alcohol sponges implanted in the backs of rats. These fibroblasts were treated with various doses of ssPTs in the presence and absence of TGF-beta1. Single-stranded PTs also blocked both the TGF-beta1-induced increase in collagen synthesis and noncollagen synthesis in these fibroblasts. However, the TGF-beta1-induced increase in collagen and noncollagen protein synthesis was not blocked by ssPTs containing a mutated TGF-beta response element. In addition, ssPT did not significantly alter the basal levels of collagen and noncollagen protein synthesis in rat lung fibroblasts or in granuloma derived fibroblasts. Since dexamethasone was also able to block the TGF-beta1-induced increase in collagen and noncollagen protein synthesis (Meisler et al., [1997] J. Invest. Dermatol. 108:285-289), these data indicate that phosphorothioate oligodeoxynucleotide antifibrotic agents mimic the inhibitory effect of glucocorticoids on collagen synthesis without the untoward side effects of these steroids.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Rats were administered CCl4, a well-defined nephrotoxin, for 20 weeks to produce glomerular sclerosis. Tubular degeneration and necrosis with interstitial fibrosis was clearly evident by histological examination. Kidneys were homogenized in phosphate-buffered saline and a collagen synthesis-stimulating factor was isolated by Sephadex G-50 gel filtration. The 5 kDa component stimulated both type I and type IV procollagen synthesis by mesangial cells and type I procollagen synthesis by rat skin fibroblasts. In each cell type, 2-6-fold increases in procollagen protein production or cell proliferation was noted. The steady-state levels of mRNA encoding for procollagen alpha 1(I) and procollagen alpha 1(IV) chains in mesangial cells were determined by by hybridization to their corresponding cDNA clones. The type I procollagen mRNA was elevated 1.4-fold compared to a 1.6-fold increase in mRNA encoding for type IV procollagen. The similar properties and chemical characteristics of this fibrogenic factor with a factor from fibrotic liver suggests they are the same and that a common endogenous collagen synthesis stimulator may be present in fibrosing organs, thus providing a driving force for collagen over-production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号