首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Post‐harvest storage is largely limited by fruit softening, a result of cell wall degradation. Pectin methylesterase (PE) (EC 3.1.1.11) is a major hydrolase responsible for pectin de‐esterification in the cell wall, a response to fruit ripening. Two major PE isoforms, PE1 and PE2, have been isolated from tomato (Solanum lycopersicon) pericarp tissue and both have previously been down‐regulated using antisense suppression. In this paper, PE1 and PE2 double antisense tomato plants were successfully generated through crossing the two single antisense lines. In the double antisense fruit, approximately 10% of normal PE activity remained and ripening associated pectin de‐esterification was almost completely blocked. However, double antisense fruit softened normally during ripening. In tomato fruit, the PE1 isoform was found to contribute little to total PE activity and have little effect on the degree of esterification of pectin. In contrast, the other dominant fruit isoform, PE2, has a major impact on de‐esterification of total pectin. PE2 appears to act on non‐CDTA‐soluble pectin during ripening and on CDTA‐soluble pectin before the start of ripening in a potentially block‐wise fashion.  相似文献   

2.
The role of the cell wall hydrolase polygalacturonase (PG) during fruit ripening was investigated using novel mutant tomato lines in which expression of the PG gene has been down regulated by antisense RNA. Tomato plants were transformed with chimaeric genes designed to express anti-PG RNA constitutively. Thirteen transformed lines were obtained of which five were analysed in detail. All contained a single PG antisense gene, the expression of which led to a reduction in PG enzyme activity in ripe fruit to between 5% and 50% that of normal. One line, GR16, showed a reduction to 10% of normal PG activity. The reduction in activity segregated with the PG antisense gene in selfed progeny of GR16. Plants homozygous for the antisense gene showed a reduction of PG enzyme expression of greater than 99%. The PG antisense gene was inherited stably through two generations. In tomato fruit with a residual 1% PG enzyme activity pectin depolymerisation was inhibited, indicating that PG is involved in pectin degradation in vivo. Other ripening parameters, such as ethylene production, lycopene accumulation, polyuronide solubilisation, and invertase activity, together with pectinesterase activity were not affected by the expression of the antisense gene.  相似文献   

3.
Pectin methylesterase (PME, EC 3.1.11) demethoxylates pectins and is believed to be involved in degradation of pectic cell wall components by polygalacturonase in ripening tomato fruit. We have introduced antisense and sense chimeric PME genes into tomato to elucidate the role of PME in fruit development and ripening. Fruits from transgenic plants expressing high levels of antisense PME RNA showed <10% of wild-type PME enzyme activity and undetectable levels of PME protein and mRNA. Lower PME enzyme activity in fruits from transgenic plants was associated with an increased molecular weight and methylesterification of pectins and decreased levels of total and chelator soluble polyuronides in cell walls. The fruits of transgenic plants also contained higher levels of soluble solids than wild-type fruits. This trait was maintained in subsequent generations and segregated in normal Mendelian fashion with the antisense PME gene. These results indicate that reduction in PME enzyme activity in ripening tomato fruits had a marked influence on fruit pectin metabolism and increased the soluble solids content of fruits, but did not interfere with the ripening process.  相似文献   

4.
G Q Tang  M Lüscher    A Sturm 《The Plant cell》1999,11(2):177-189
To unravel the functions of cell wall and vacuolar invertases in carrot, we used an antisense technique to generate transgenic carrot plants with reduced enzyme activity. Phenotypic alterations appeared at very early stages of development; indeed, the morphology of cotyledon-stage embryos was markedly changed. At the stage at which control plantlets had two to three leaves and one primary root, shoots of transgenic plantlets did not separate into individual leaves but consisted of stunted, interconnected green structures. When transgenic plantlets were grown on media containing a mixture of sucrose, glucose, and fructose rather than sucrose alone, the malformation was alleviated, and plantlets looked normal. Plantlets from hexose-containing media produced mature plants when transferred to soil. Plants expressing antisense mRNA for cell wall invertase had a bushy appearance due to the development of extra leaves, which accumulated elevated levels of sucrose and starch. Simultaneously, tap root development was markedly reduced, and the resulting smaller organs contained lower levels of carbohydrates. Compared with control plants, the dry weight leaf-to-root ratio of cell wall invertase antisense plants was shifted from 1:3 to 17:1. Plants expressing antisense mRNA for vacuolar invertase also had more leaves than did control plants, but tap roots developed normally, although they were smaller, and the leaf-to-root ratio was 1.5:1. Again, the carbohydrate content of leaves was elevated, and that of roots was reduced. Our data suggest that acid invertases play an important role in early plant development, most likely via control of sugar composition and metabolic fluxes. Later in plant development, both isoenzymes seem to have important functions in sucrose partitioning.  相似文献   

5.
Polygalacturonase (PG, EC 3.2.1.15), an enzyme commonly found in ripening fruit, has also been shown to be associated with abscission. A zone-specific rise in PG activity accompanies the abscission of both leaves and flowers of tomato (Lycopersicon esculentum Mill.) plants. Studies of transgenic plants expressing an antisense RNA for fruit PG indicate that although the enzyme activity in transgenic fruit is < 1 % of that in untransformed fruit, the PG activity in the leaf abscission zone increases during separation to a similar value to that in untransformed plants. The timing and rate of leaf abscission in transgenic plants are unaffected by the introduction of the antisense gene. A polyclonal antibody raised against tomato fruit PG does not recognise the leaf abscission protein. Furthermore a complementary DNA (cDNA) clone (pTOM6), which has been demonstrated to code for fruit PG, does not hybridise to mRNA isolated from the abscission-zone region of tomato leaves. These results indicate that the PG protein in abscission zones of tomato is different from that in the fruit, and that the gene coding for this protein may also be different.Abbreviation PG polygalacturonase The authors of this paper are grateful to David Jackson of the John Innes Institute, Norwich, UK for his assistance with the in-situ hybridisation work. This research was supported by an Agricultural and Food Research Council Post-Doctoral award to J.E.T., and by a grant to D.G. from the Science and Engineering Research Council Biotechnology Directorate in association with ICI seeds. The work was carried out under Ministry of Agriculture, Food and Fisheries licences.  相似文献   

6.
Phan TD  Bo W  West G  Lycett GW  Tucker GA 《Plant physiology》2007,144(4):1960-1967
Pectinesterase (PE; E.C. 3.1.1.11) is an enzyme responsible for the demethylation of galacturonyl residues in high-molecular-weight pectin and is believed to play an important role in cell wall metabolism. In this study, Pmeu1, a ubiquitously expressed PE gene, has been characterized by antisense suppression in tomato (Solanum lycopersicum). Transgenic tomato plants showed reduced PE activity levels in both green fruit and leaf tissue to around 65% and 25% of that found in wild-type plants, respectively. Pmeu1 was observed to encode a salt-dependent PE isoform that correlated with PE1 as previously described in fruit tissue. Silencing of Pmeu1 did not result in any detectable phenotype within the leaf tissue despite the gene product representing the major isoform in this tissue. In comparison, silencing in fruit resulted in an enhancement to the rate of softening during ripening. The role of PMEU1 in fruit ripening is discussed.  相似文献   

7.
Chitinases accumulate in higher plants upon pathogen attack are capable of hydrolyzing chitin-containing fungal cell walls and are thus implicated as part of the plant defense response to fungal pathogens. To evaluate the relative role of the predominate chitinase (class I, basic enzyme) of Arabidopsis thaliana in disease resistance, transgenic Arabidopsis plants were generated that expressed antisense RNA to the class I chitinase. Young plants or young leaves of some plants expressing antisense RNA had <10% of the chitinase levels of control plants. In the oldest leaves of these antisense plants, chitinase levels rose to 37–90% of the chitinase levels relative to vector control plants, most likely because of accumulation and storage of the enzyme in vacuoles. The rate of infection by the fungal pathogen Botrytis cinerea was measured in detached leaves containing 7–15% of the chitinase levels of control plants prior to inoculation. Antisense RNA was not effective in suppressing induced chitinase expression upon infection as chitinase levels increased in antisense leaves to 47% of levels in control leaves within 24 hours after inoculation. Leaves from antisense plants became diseased at a slightly faster rate than leaves from control plants, but differences were not significant due to high variability. Although the tendency to increased susceptibility in antisense plants suggests that chitinases may slow the growth of invading fungal pathogens, the overall contribution of chitinase to the inducible defense reponses in Arabidopsis remains unclear.  相似文献   

8.
C F Watson  L Zheng    D DellaPenna 《The Plant cell》1994,6(11):1623-1634
The developmental changes that accompany tomato fruit ripening include increased solubilization and depolymerization of pectins due to the action of polygalacturonase (PG). Two PG isoenzymes can be extracted from ripe fruit: PG2, which is a single catalytic PG polypeptide, and PG1, which is composed of PG2 tightly associated with a second noncatalytic protein, the beta subunit. Previous studies have correlated ripening-associated increases in pectin solubilization and depolymerization with the presence of extractable PG1 activity, prior to the appearance of PG2, suggesting a functional role for the beta subunit and PG1 in pectin metabolism. To assess the function of the beta subunit, we produced and characterized transgenic tomatoes constitutively expressing a beta subunit antisense gene. Fruit from antisense lines had greatly reduced levels of beta subunit mRNA and protein and accumulated < 1% of their total extractable PG activity in ripe fruit as PG1, as compared with 25% for wild type. Inhibition of beta subunit expression resulted in significantly elevated levels of EDTA-soluble polyuronides at all stages of fruit ripening and a significantly higher degree of depolymerization at later ripening stages. Decreased beta subunit protein and extractable PG1 enzyme activity and increased pectin solubility and depolymerization all cosegregated with the beta subunit antisense transgene in T2 progeny. These results indicate (1) that PG2 is responsible for pectin solubilization and depolymerization in vivo and (2) that the beta subunit protein is not required for PG2 activity in vivo but (3) does play a significant role in regulating pectin metabolism in wild-type fruit by limiting the extent of pectin solubilization and depolymerization that can occur during ripening. Whether this occurs by direct interaction of the beta subunit with PG2 or indirectly by interaction of the beta subunit with the pectic substrate remains to be determined.  相似文献   

9.
Tomatoes (Lycopersicon esculentum Mill cv. Ailsa Craig) were transformed with a gene construct having 244 bp of the 5 end of a polygalacturonase (PG) cDNA, coding for a 71 amino acid N-terminal extension to the mature protein, fused to 1320 bp of a pectinesterase (PE) cDNA encoding the full sequence of the mature PE protein. This chimaeric gene was inserted in a sense orientation between a CaMV 35S promoter and terminator for constitutive expression. In transformed tomato plants expression of the endogenous PG and PE genes in the fruit was inhibited; there was little or no observable PG and PE mRNA and a substantial reduction in the level of PG and PE enzyme activity. The transgene was expressed in the leaves of the transformed plants as demonstrated by the accumulation of mRNA, but no protein product could be identified. However, no transgene mRNA or protein were observed in the transgenic fruit.This paper represents the first report of the down-regulation of two non-homologous endogenous genes using a single gene construct. A sense gene construct was responsible for these effects. These findings are discussed in relation to possible mechanisms of action of co-suppression.  相似文献   

10.
11.
12.
13.
Infection of strawberry plants with binucleate Rhizoctonia spp. results in an increase in peroxidase activity and the appearance of new isoforms of the enzyme. In healthy and diseased roots of two different strawberry genotypes seven peroxidase isoenzymes were found. In healthy strawberry cv. Senga Sengana, which was moderately resistant to infection, four isoenzymes (1, 2, 5, and 6) were found. Moreover the activity of these isoenzymes was increased and three new isoenzymes (3, 4, and 7) were found in infected roots. In the strawberry hybrid 3/2/86/88/R, which is very susceptible to infection, only isoenzyme 2 was present in the roots of healthy plants. Following infection, the activity of isoenzyme 2 was increased and five new isoenzymes (1, 4, 5, 6, and 7) were detectable. The results obtained indicate that strawberry resistance to binucleate Rhizoctonia may be correlated with peroxidase isoenzyme profile with particular reference to isoform 3, which is only present in infected roots of the moderately resistant cv., Senga Sengana.  相似文献   

14.
15.
The effects of aqueous methanol solutions applied as a foliar spray or via irrigation were investigated in Arabidopsis, tobacco, and tomato plants. Methanol applied to roots leads to phytotoxic damage in all three species tested. Foliar application causes an increase of fresh and dry weight in Arabidopsis and tobacco plants, but not in tomato plants. The increase in fresh and dry weight of Arabidopsis plants does not correlate with increased levels of soluble sugars, suggesting that increased accumulation of other products is responsible for the differences in the methanol-treated leaves. Foliar application of methanol can induce pectin methylesterase (PME) gene expression in Arabidopsis and tomato plants, activating specific PME genes.  相似文献   

16.
A potential problem in the field release of transgenic plants is the spread of foreign gene products via pollen. Therefore, the use of the tomato pollen-specific lat52 gene promoter was investigated as a means of targeting antisense RNA to pollen without affecting transgene expression elsewhere in the plant. A transgenic tobacco line T115, which showed GUS expression in pollen, leaves and roots were retransformed with a construct containing the pollen-specific lat52 promoter driving the GUS encoding uid A gene in antisense orientation. From 24 independent transformants obtained, 19 showed a significant reduction in pollen GUS activity. Of these lines, four showed a reproducible antisense effect in pollen in the next generation, while it was shown in one line that GUS activity in leaves and roots was also unaffected. To ascertain the effectiveness of the antisense strategy to downregulate very high levels of pollen expression, a lat52-gus antisense construct was introduced into tobacco lines containing lat52-gus, which had pollen GUS activity of up to 250 times greater than in line T115. Results showed that 30 out of 34 independent lines exhibited a significant antisense effect in pollen, confirming the effectiveness of pollen-targeted antisense strategy to reduce undesirable expression in pollen independent of expression level in pollen.  相似文献   

17.
Pilling J  Willmitzer L  Fisahn J 《Planta》2000,210(3):391-399
Transgenic potato (Solanum tuberosum L.) plants were constructed with a Petunia inflata-derived cDNA encoding a pectin methyl esterase (PME; EC 3.1.1.11) in sense orientation under the control of the cauliflower mosaic virus 35S promoter. The PME activity was elevated in leaves and tubers of the transgenic lines but slightly reduced in apical segments of stems from mature plants. Stem segments from the base of juvenile PME-overexpressing plants did not differ in PME activity from the control, whereas in apical parts PME was less active than in the wild-type. During the early stages of development stems of these trangenic plants elongated more rapidly than those of the wild-type. Further evidence that overexpression of a plant-derived PME has an impact on plant development is based on modifications of tuber yield, which was reduced in the transgenic lines. Cell walls from transgenic tubers showed significant differences in their cation-binding properties in comparison with the wild-type. In particular, cell walls displayed increased affinity for sodium and calcium, while potassium binding was constant. Furthermore, the total ion content of transgenic potatoes was modified. Indications of PME-mediated differences in the distribution of ions in transgenic plants were also obtained by monitoring relaxations of the membrane potential of roots subsequent to changes in the ionic composition of the bathing solution. However, no effects on the chemical structure of pectin from tuber cell walls could be detected. Received: 24 March 1999 / Accepted: 20 August 1999  相似文献   

18.
磷酸蔗糖合酶(sucrose phosphate synthase,SPS)是植物中蔗糖合成的主要限速酶,影响植物的生长发育和果实中蔗糖的含量。为探明苹果中SPS基因家族特性及其在蔗糖合成中的作用,该研究从苹果基因组中分离了MdSPS家族基因,分析了它们的进化关系以及mRNA表达特性与酶活性和蔗糖含量的关系。结果显示:(1)在苹果基因组中有8个SPS家族基因表达,它们分别属于双子叶植物的3个SPS亚家族。(2)荧光定量PCR分析显示,苹果C类的MdSPS6基因和A类的MdSPS1a/b基因是苹果中表达丰度最高的SPS基因成员,其中MdSPS6在苹果成熟果中表达丰度最高,其次是成熟叶片,而MdSPS1a/b在不积累蔗糖的幼果中表达丰度最高。(3)在果实发育过程中,除MdSPS1a/b之外,其它5个苹果MdSPS家族基因均随果实的生长表达丰度增加,与SPS活性和蔗糖含量明显呈正相关关系。研究表明,C类家族MdSPS6是苹果果实发育后期和叶片中蔗糖合成的主要SPS基因。  相似文献   

19.
Nucleoside diphosphate kinase required for coleoptile elongation in rice   总被引:6,自引:0,他引:6  
Pan L  Kawai M  Yano A  Uchimiya H 《Plant physiology》2000,122(2):447-452
Although several nucleoside diphosphate (NDP) kinase genes have been cloned in plants, little is known about the functional significance of this enzyme during plant growth and development. We introduced a chimeric gene encoding an antisense RNA of NDP kinase under the control of the Arabidopsis heat shock protein HSP81-1 promoter into rice (Oryza sativa L.) plants using the Agrobacterium tumefaciens transformation system. The expression of antisense RNA down-regulated the accumulation of mRNA, resulting in reduced enzyme activity even under the standard growth temperature (25 degrees C) in transgenic plants. Following heat shock treatment (37 degrees C), NDP kinase activities in some transgenic rice plants were more reduced than those grown under 25 degrees C. The comparison of the coleoptile growth under submersion showed that cell elongation process was inhibited in antisense NDP kinase transgenic plants, suggesting that an altered guanine nucleotide level may be responsible for the processes.  相似文献   

20.
The catabolism of phospholipids initiated by phospholipase D (PLD, EC 3.1.4.4) is an inherent feature of developmental processes that include fruit growth and ripening. In cherry tomatoes (Lycopersicon esculentum Mill.), soluble and membrane-associated PLD activities increased during fruit development, which peaked at the mature green and orange stages. The increase in PLD activity was associated with a similar increase in the intensity of a 92 kDa band as demonstrated by western blot analysis. A full-length cDNA having 2430 bp and encoding a putative polypeptide with 809 amino acids, was isolated using tomato RNA, RT-PCR and 5' and 3' rapid amplification of cloned ends (RACE). Analysis of the primary and secondary structures showed the presence of the C2 domain, the PLD domain and several other features characteristic of PLD alpha. Microtom tomato plants transformed with antisense PLD alpha cDNA, were similar to untransformed plants and showed normal fruit set and development. The ethylene climacteric was delayed by over 7 d in the antisense PLD fruits, indicative of a slower ripening process. The leaves and unripened fruits of antisense PLD microtom plants possessed lowered PLD activity and PLD protein, as demonstrated by western blotting. However, during ripening, PLD activity in the transgenic fruits was maintained at a higher level than that in the untransformed control. Immunolocalization of PLD in microtom tomato fruits revealed the cytosol-membrane translocation of PLD during fruit development. The ripe fruits of antisense PLD celebrity plants possessed lowered PLD expression and activity and showed increased firmness and red colour. These results suggest that the expression of antisense PLD cDNA could be variable in different tomato varieties. The potential role of PLD in ethylene signal transduction events is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号