首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Eosin, erythrosin, rose bengale, cyanosin, acridine, and methylene blue act photodynamically on the luminescence of a Cypridina luciferin-luciferase solution. In presence of these dyes inhibition of luminescence, which without the dye occurs only in blue-violet light, takes place in green, yellow, orange, or red light, depending on the position of the absorption bands of the dye. 2. Inhibition of Cypridina luminescence without photosensitive dye in blue-violet light, or with photosensitive dye in longer wave-lengths, does not occur in absence of oxygen. Light acts by accelerating the oxidation of luciferin without luminescence. Eosin or methylene blue act by making longer wave-lengths effective, but there is no evidence that these dyes become reduced in the process. 3. The luciferin-oxyluciferin system is similar to the methylene white-methylene blue system in many ways but not exactly similar in respect to photochemical change. Oxidation of the dye is favored in acid solution, reduction in alkaline solution. However, oxidation of luciferin is favored in all pH ranges from 4 to 10 but is much more rapid in alkaline solution, either in light or darkness. There is no evidence that reduction of oxyluciferin is favored in alkaline solution. Clark''s observation that oxidation (blueing) of methylene white occurs in complete absence of oxygen has been confirmed for acid solutions. I observed no blueing in light in alkaline solution.  相似文献   

2.
A study of the oxygen consumed per lumen of luminescence during oxidation of Cypridina luciferin in presence of luciferase, gives 11.4 x 10–5 gm. oxygen per lumen or 88 molecules per quantum of λ = 0.48µ, the maximum in the Cypridina luminescence spectrum. For reasons given in the text, the actual value is probably somewhat less than this, perhaps of the order of 6.48 x 10–5 gm. per lumen or 50 molecules of oxygen and 100 molecules of luciferin per quantum. It is quite certain that more than 1 molecule per quantum must react. On the basis of a reaction of the type: luciferin + 1/2 O2 = oxyluciferin + H2O + 54 Cal., it is calculated that the total efficiency of the luminescent process, energy in luminescence/heat of reaction, is about 1 per cent; and that a luciferin solution containing 4 per cent of dried Cypridina material should rise in temperature about 0.001°C. during luminescence, and contain luciferin in approximately 0.00002 molecular concentration.  相似文献   

3.
4.
1. A photometric method was devised for measuring the intensities of light emitted per cc. of hiciferin solution and calculating the amount of light emitted per gm. of dried Cypridina powder. A total of 128 runs was made and the data are incorporated in this report. 2. The maximum amount of light emitted from 1 gm. of powder under the experimental conditions was 0.655 lumens. Different samples of powder vary greatly in amount of light production. 3. When the concentration of substrate is doubled, nearly twice as much light is emitted, or an average ratio 2C/C of 1.86. Calculations of total light emissions per gm. of powder at different concentrations indicate that slightly more light is produced from the smaller concentrations. The maximum amount of light was produced by the solutions made with neutral sea water and averaged 0.445 lumens. The least light was obtained from solutions in distilled water saturated with hydrogen. The technique allows too rapid spontaneous oxidation prior to the saturation with hydrogen. The maximum amount of light from such experiments was only 0.077 lumens. Acid sea water solutions subsequently neutralized gave an average maximum of 0.386 lumens per gm. of powder per second. 4. When the concentration of enzyme is doubled, approximately the same amount of light is produced by both concentrations, although the stronger concentrations are slightly less effective than weaker ones. This undoubtedly is due to the colloidal nature of the enzyme and is a function of surface rather than of mass. In dilute solutions greater dispersion probably allows for greater adsorption to the surface of the enzyme. The average maximum amount of light produced in the series of enzyme experiments is of the magnitude 0.56 lumens per gm. of powder.  相似文献   

5.
1. Small dumps of the luminous cells of Mnemiopsis cannot readily be stimulated mechanically but will luminesce on treatment with saponin solution. Larger groups of luminous cells (such as are connected with two paddle plates) luminesce on mechanical stimulation. This suggests that mechanical stimulation to luminesce occurs chiefly through a nerve mechanism which has been broken up in the small dumps of luminous tissue. 2. The smallest bits of luminous tissue, even cells freed from the animal by agitation, that will pass through filter paper, lose their power to luminesce in daylight and regain it (at least partially) in the dark. 3. Luminescence of the whole animal and of individual cells is suppressed by near ultra-violet light (without visible light). 4. Inhibition in ultra-violet light is not due to stimulation (by the ultra-violet light) of the animal to luminesce, thereby using up the store of photogenic material. 5. Animals stimulated mechanically several times and placed in ultra-violet light show a luminescence along the meridians in the same positions as the luminescence that appears on stimulation. This luminescence in the ultra-violet or "tonic luminescence," is not obtained with light adapted ctenophores and is interpreted to be a fluorescence of the product of oxidation of the photogenic material. 6. Marked fluorescence of the luminous organ of the glowworm (Photuris) and of the luminous slime of Chatopterus may be observed in ultra-violet but no marked fluorescence of the luminous substances of Cypridina is apparent. 7. Evidence is accumulating to show a close relation between fluorescent and chemiluminescent substances in animals, similar to that described for unsaturated silicon compounds and the Grignard reagents.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
The photoinactivation of complement has been studied with a view to determining if possible how many kinds of molecules disappeared during the reaction. It was found that: 1. The apparent course of photoinactivation is that of a monomolecular reaction. 2. Diffusion is not the limiting factor responsible for this fact, because the temperature coefficient of diffusion is much higher than that of photoinactivation (Q 10 = 1.22 to 1.28, and Q 10 = 1.10 respectively). 3. There is no change in the transparency of serum solutions during photoinactivation, at least for light of the effective wave-length, which is in the ultra-violet region probably at about 2530 Ångström units. It is pointed out that under these conditions only one interpretation is possible; namely, that during photoinactivation a single disappearing molecular species governs the rate of reaction. This substance must be primarily responsible for the hemolytic power of serum when it is used as complement.  相似文献   

14.
15.
类胡萝卜素对亚油酸甲酯氧化的抑制作用   总被引:1,自引:0,他引:1  
研究溶液中类胡萝卜素对2 ,2’ -偶氮二 (2 ,4短杠二甲基戊腈 ) (AMVN)引发的亚油酸甲酯氧化的抑制作用及色素的消耗变化。表明 β-胡萝卜素 ,叶黄素及胭脂树橙都按依赖于剂量的方式抑制亚油酸甲酯氢过氧化物的形成。41.7×10 -6mol/L的叶黄素及玉米黄质的抑制活性相近 ,高于β-胡萝卜素与胭脂树橙的活性 ,后两者活性近似。在83.3×10 -6mol/L浓度下鸡油菌黄质活性高于叶黄素 ,后者又高于 β-胡萝卜素与胭脂树橙 ,最后两者仍近似。结果表明下列五种类胡萝卜素对亚油酸甲酯氧化的抑制能力为 :鸡油菌黄质>玉米黄质≈叶黄素> β-胡萝卜素≈胭脂树橙。类胡萝卜素在抑制脂质氧化过程中 ,本身逐渐损失消耗 ,4h后在试验所用浓度下最高剩余量不超过20 %。其中鸡油菌黄质与胭脂树橙的消耗速度慢于 β-胡萝卜素与玉米黄质。  相似文献   

16.
17.
18.
19.
20.
A method is described for measuring the concentration of oxygen to allow just perceptible luminescence of luminous bacteria. The value turns out to be extraordinarily low, about 0.005 mm. Hg pressure O2 or 1 part by weight oxygen dissolved in 3,700,000,000 cc. sea water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号