首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Measurements were made of the rate of consumption of oxygen by suspensions of B. cereus, in sodium chloride solutions of concentration up to 1.8 M and over a range of pH from 6.0 to 7.5. It was found: 1. That the temperature coefficient was independent of the presence of sodium chloride in concentrations between 0.2 and 1.8 M, although the rate of respiration was lowered considerably under these conditions. 2. That in the presence of concentrations of sodium chloride less than 0.2 M, the rate of respiration was increased, and so was the temperature coefficient. 3. That small changes in the temperature coefficient occurred when the pH was changed. The temperature coefficient was higher the higher the rate of respiration. These data may be more readily interpreted by the hypothesis that the temperature coefficient is controlled by some master reaction, than by that which supposes that the temperature coefficient is determined by protoplasmic viscosity.  相似文献   

2.
The process of endogenous respiration of two strains of bakers'' yeast, Saccharomyces cerevisiae, was examined kinetically. The rate of respiration with respect to time in a non-nutrient medium was found to exhibit two phases: (a) a period of constant rate of O2 consumption and CO2 production (R.Q. = 1) characteristic of cells with ample concentrations of stored material; (b) a first order decline in rate of respiration with respect to time, where the rate was proportional to the concentration of some substrate, S. (R.Q. = 1 throughout second phase.) The nature of this substrate was reexamined and the evidence summarized confirms the notion that it is a carbohydrate, probably glycogen. These phases of endogenous respiration were shown to depend upon the age of the culture and the amount of substrate available.  相似文献   

3.
1. The velocity of decomposition of hydrogen peroxide by catalase as a function of (a) concentration of catalase, (b) concentration of hydrogen peroxide, (c) hydrogen ion concentration, (d) temperature has been studied in an attempt to correlate these variables as far as possible. It is concluded that the reaction involves primarily adsorption of hydrogen peroxide at the catalase surface. 2. The decomposition of hydrogen peroxide by catalase is regarded as involving two reactions, namely, the catalytic decomposition of hydrogen peroxide, which is a maximum at the optimum pH 6.8 to 7.0, and the "induced inactivation" of catalase by the "nascent" oxygen produced by the hydrogen peroxide and still adhering to the catalase surface. This differs from the more generally accepted view, namely that the induced inactivation is due to the H2O2 itself. On the basis of the above view, a new interpretation is given to the equation of Yamasaki and the connection between the equations of Yamasaki and of Northrop is pointed out. It is shown that the velocity of induced inactivation is a minimum at the pH which is optimal for the decomposition of hydrogen peroxide. 3. The critical increment of the catalytic decomposition of hydrogen peroxide by catalase is of the order 3000 calories. The critical increment of induced inactivation is low in dilute hydrogen peroxide solutions but increases to a value of 30,000 calories in concentrated solutions of peroxide.  相似文献   

4.
The alternation of substrate specificity expands the application range of enzymes in industrial, medical, and pharmaceutical fields. l‐Glutamate oxidase (LGOX) from Streptomyces sp. X‐119‐6 catalyzes the oxidative deamination of l‐glutamate to produce 2‐ketoglutarate with ammonia and hydrogen peroxide. LGOX shows strict substrate specificity for l‐glutamate. Previous studies on LGOX revealed that Arg305 in its active site recognizes the side chain of l‐glutamate, and replacement of Arg305 by other amino acids drastically changes the substrate specificity of LGOX. Here we demonstrate that the R305E mutant variant of LGOX exhibits strict specificity for l‐arginine. The oxidative deamination activity of LGOX to l‐arginine is higher than that of l‐arginine oxidase form from Pseudomonas sp. TPU 7192. X‐ray crystal structure analysis revealed that the guanidino group of l‐arginine is recognized not only by Glu305 but also Asp433, Trp564, and Glu617, which interact with Arg305 in wild‐type LGOX. Multiple interactions by these residues provide strict specificity and high activity of LGOX R305E toward l‐arginine. LGOX R305E is a thermostable and pH stable enzyme. The amount of hydrogen peroxide, which is a byproduct of oxidative deamination of l‐arginine by LGOX R305E, is proportional to the concentration of l‐arginine in a range from 0 to 100 μM. The linear relationship is maintained around 1 μM of l‐arginine. Thus, LGOX R305E is suitable for the determination of l‐arginine.  相似文献   

5.
1. 72 hour isolated chick hearts show an increase in pulsation rate when placed in M/1000, M/10,000, and M/50,000 l-tyrosine solutions. The optimal effect is seen in M/10,000 and M/50,000 l-tyrosine. 2. All hearts show disturbance of rhythm either in the form of irregular rhythm or heart block. 3. 62 hour isolated chick hearts are not susceptible to l-tyrosine while 96 hour hearts are markedly sensitive. 4. 72 hour isolated chick hearts placed in 1 part in 10,000 and 1 part in 50,000 l-epinephrine show approximately the same effects as were seen with l-tyrosine. 5. 72 hour isolated chick hearts placed in M/1000 and M/10,000 l-phenylalanine show an initial depression followed by an l-tyrosine effect.  相似文献   

6.
1. The inhibition of oxygen consumption produced by a series of concentrations of ethyl carbamate has been measured in the protozoan Tetrahymena geleii. 2. The relation found between the narcotic concentration and its effect on respiration leads to the conclusion that urethane has two distinct modes of action in this cell. The respiratory data can be accurately predicted by assuming that the inhibitor acts on two independent parallel respiratory systems. 3. Complete suppression of cell division in this organism is brought about by approximately 0.1 M urethane. 4. Urethane concentrations up to 0.1 M affect primarily only one of the two postulated respiratory systems. The mechanism of the narcosis of cell division in this organism by urethane thus appears to be inhibition of this "activity" system.  相似文献   

7.
1. By means of the Warburg-Barcroft microrespirometer apparatus and the Warburg direct method, the relative effect of caffeine upon the O2 consumption of the fertilized egg of Arbacia punctulata was shown for the following concentrations in sea water: 0.002 per cent (M/10,000), 0.004 per cent (M/5,000), 0.02 per cent (M/1,000), 0.1 per cent (M/200), 0.2 per cent (M/100), 0.5 per cent (M/40), and 2 per cent (M/10). 2. In comparison with the normal eggs (uninhibited, non-caffeine-treated controls), caffeine in concentrations including and greater than 0.1 per cent (M/200) depressed the average uptake from approximately 25 to 61 per cent over the 3 hour period. In a number of instances, as typified by Experiment 10, the effective inhibitory concentration ranged from 0.02 per cent (M/1,000) upward and the degree of depression of the O2 consumption ranged from 10.6 per cent to 60.6 per cent. 3. All caffeine concentrations including and above 0.02 per cent (M/1,000) in the series used, resulted in decreasing the normal rate of cleavage division in the fertilized Arbacia eggs. 4. The higher concentrations (0.5 and 2 per cent) produced a complete blockage of the cleavage process. 5. Complete cleavage inhibition was noted only when the O2 uptake had been depressed to 50 per cent or more of the normal controls. 6. O2 consumption-time relationship data indicate an average depression, in O2 consumption over a 3 hour period, ranging from 25 per cent with a caffeine concentration of 0.1 per cent to a 61 per cent inhibition with a concentration of 2 per cent. 7. Concentrations of less than 0.1 per cent (certainly of less than 0.02 per cent) give variable results and indicate no significant effect. 8. It is inferred from the respiration data presented that it is probable that the inhibition of the O2 consumption in fertilized Arbacia eggs is due to the influence of caffeine upon the main (activity or primary) pathway. It will be observed that there are certain similarities of the caffeine data to the degree of inhibition accomplished by sodium cyanide. Moreover, it has been demonstrated that the cyanide probably acts on the cytochrome oxidase step in the cytochrome oxidase-cytochrome chain of reactions constituting the O2 uptake phase of respiratory metabolism. It is not improbable, therefore, that caffeine also may act upon the cytochrome oxidase enzyme. 9. From the viewpoint of environmental conditions influencing reproductive phenomena, it is of interest that caffeine can affect the normal metabolism of the zygote.  相似文献   

8.
1. Comparison of the rates of activation of unfertilized starfish eggs in pure solutions of a variety of parthenogenetically effective organic acids (fatty acids, carbonic acid, benzoic and salicylic acids, chloro- and nitrobenzoic acids) shows that solutions which activate the eggs at the same rate, although widely different in molecular concentration, tend to be closely similar in CH. The dissociation constants of these acids range from 3.2 x 10–7 to 1.32 x 10–3. 2. In the case of each of the fourteen acids showing parthenogenetic action the rate of activation (within the favorable range of concentration) proved nearly proportional to the concentration of acid. The estimated CH of solutions exhibiting an optimum action with exposures of 10 minutes (at 20°) lay typically between 1.1 x 10–4 M and 2.1 x 10–4 M (pH = 3.7–3.96), and in most cases between 1.6 x 10–4 M and 2.1 x 10–4 M (pH = 3.7–3.8). Formic acid (CH = 4.2 x 10–4 M) and o-chlorobenzoic acid (CH = 3.5 x 10–4 M) are exceptions; o-nitrobenzoic acid is ineffective, apparently because of slow penetration. 3. Activation is not dependent on the penetration of H ions into the egg from without, as is shown by the effects following the addition of its Na salt to the solution of the activating acid (acetic, benzoic, salicylic). The rate of activation is increased by such addition, to a degree indicating that the parthenogenetically effective component of the external solution is the undissociated free acid. Apparently the undissociated molecules alone penetrate the egg freely. It is assumed that, having penetrated, they dissociate in the interior of the egg, furnishing there the H ions which effect activation. 4. Attention is drawn to certain parallels between the physiological conditions controlling activation in the starfish egg and in the vertebrate respiratory center.  相似文献   

9.
1. When a watery solution is separated from pure water by a collodion membrane, the initial rate of diffusion of water into the solution is influenced in an entirely different way by solutions of electrolytes and of non-electrolytes. Solutions of non-electrolytes, e.g. sugars, influence the initial rate of diffusion of water through the membrane approximately in direct proportion to their concentration, and this. influence begins to show itself under the conditions of our experiments when the concentration of the sugar solution is above M/64 or M/32. We call this effect of the concentration of the solute on the initial rate of diffusion of water into the solution the gas pressure effect. 2. Solutions of electrolytes show the gas pressure effect upon the initial rate of diffusion also, but it commences at a somewhat higher concentration than M/64; namely, at M/16 or more (according to the nature of the electrolyte). 3. Solutions of electrolytes of a lower concentration than M/16 or M/8 have a specific influence on the initial rate of diffusion of water through a collodion membrane from pure solvent into solution which is not found in the case of the solutions of non-electrolytes and which is due to the fact that the particles of water diffuse in this case through the membrane in an electrified condition, the sign of the charge depending upon the nature of the electrolyte in solution, according to two rules given in a preceding paper. 4. In these lower concentrations the curves representing the influence of the concentration of the electrolyte on the initial rate of diffusion of water into the solution rise at first steeply with an increase in the concentration, until a maximum is reached at a concentration of M/256 or above. A further increase in concentration causes a drop-in the curve and this drop increases with a further increase of concentration until that concentration of the solute is reached in which the gas pressure effect begins to prevail; i.e., above M/16. Within a range of concentrations between M/256 and M/16 or more (according to the nature of the electrolyte) we notice the reverse of what we should expect on the basis of van''t Hoff''s law; namely, that the attraction of a solution of an electrolyte for water diminishes with an increase in concentration. 5. We wish to make no definite assumption concerning the origin of the electrification of water and concerning the mechanism whereby ions influence the rate of diffusion of water particles through collodion membranes from pure solvent to solution. It will facilitate, however, the presentation of our results if it be permitted to present them in terms of attraction and repulsion of the charged particles of water by the ions. With this reservation we may say that in the lowest concentrations attraction of the electrified water particles by the ions with the opposite charge prevails over the repulsion of the electrified water particles by the ions with the same sign of charge as that of the water; while beyond a certain critical concentration the repelling action of the ion with the same sign of charge as that of the water particles upon the latter increases more rapidly with increasing concentration of the solute than the attractive action of the ion with the opposite charge. 6. It is shown that negative osmosis, i.e. the diminution of the volume of the solution of acids and of alkalies when separated by collodion membranes from pure water, occurs in the same range of concentrations in which the drop in the curves of neutral salts occurs, and that it is due to the same cause; namely, the repulsion of the electrified particles of water by the ion with the same sign of charge as that of the water. This conclusion is supported by the fact that negative osmosis becomes pronounced when the ion with the same sign of charge as that of the electrified particles of water carries more than one charge.  相似文献   

10.
1. Collodion bags coated with gelatin on the inside were filled with a M/256 solution of neutral salt (e.g., NaCl, CaCl2, CeCl3, or Na2SO4) made up in various concentrations of HNO3 (varying from N/50,000 to N/100). Each collodion bag was put into an HNO3 solution of the same concentration as that inside the bag but containing no salt. In this case water diffuses from the outside solution (containing no salt) into the inside solution (containing the salt) with a relative initial velocity which can be expressed by the following rules: (a) Water diffuses into the salt solution as if the particles of water were negatively charged and as if they were attracted by the cation and repelled by the anion of the salt with a force increasing with the valency of the ion. (b) The initial rate of the diffusion of water is a minimum at the hydrogen ion concentration of about N/50,000 HCl (pH 4.7, which is the point at which gelatin is not ionized), rises with increasing hydrogen ion concentration until it reaches a maximum and then diminishes again with a further rise in the initial hydrogen ion concentration. 2. The potential differences between the salt solution and the outside solution (originally free from salt) were measured after the diffusion had been going on for 1 hour; and when these values were plotted as ordinates over the original pH as abscissae, the curves obtained were found to be similar to the osmotic rate curves. This confirms the view expressed by Girard) Bernstein, Bartell, and Freundlich that these cases of anomalous osmosis are in reality cases of electrical endosmose where the driving force is a P.D. between the opposite sides of the membrane. 3. The question arose as to the origin of these P. D. and it was found that the P.D. has apparently a double origin. Certain features of the P.D. curve, such as the rise and fall with varying pH, seem to be the consequence of a Donnan equilibrium which leads to some of the free HNO3 being forced from the solution containing salt into the outside solution containing no (or less) salt. This difference of the concentration of HNO3, on the opposite sides of the membrane leads to a P.D. which in conformity with Nernst''s theory of concentration cells should be equal to 58 x (pH inside minus pH outside) millivolts at 18°C. The curves of the values of (pH inside minus pH outside) when plotted as ordinates over the original pH as abscissae lead to curves resembling those for the P. D. in regard to location of minimum and maximum. 4. A second source of the P.D. seems to be diffusion potentials, which exist even if no membranes are present and which seem to be responsible for the fact that the rate of diffusion of negatively charged water into the salt solution increases with the valency of the cation and diminishes with the valency of the anion of the salt. 5. The experiments suggest the possibility that the establishment of a Donnan equilibrium between membrane and solution is one of the factors determining the Helmholtzian electrical double layer, at least in the conditions of our experiments.  相似文献   

11.
1. In the presence of 0.05 per cent dextrose the respiration of Aspergillus niger is increased by NaCl in concentrations of 0.25 to 0.5M, and by 0.5M CaCl2. 2. Stronger concentrations, as 2M NaCl and 1.25M CaCl2, decrease the respiration. The decrease in the higher concentrations is probably an osmotic effect of these salts. 3. A mixture of 19 cc. of NaCl and 1 cc. of CaCl2 (both 0.5M) showed antagonism, in that the respiration was normal, although each salt alone caused an increase. 4. Spores of Aspergillus niger did not germinate on 0.5M NaCl (plus 0.05 per cent dextrose) while they did on 0.5M CaCl2 (plus 0.05 per cent dextrose) and on various mixtures of the two. This shows that a substance may have different effects on respiration from those which it has upon growth.  相似文献   

12.
1. The effects of a number of respiratory inhibiting agents on the cell division of fertilized eggs of Arbacia punctulata have been determined. For eggs initially exposed to the reagents at 30 minutes after fertilization at 20°C., the levels of oxygen consumption prevailing in the minimum concentrations of reagents which produced complete cleavage block were (as percentages of the control): In 0.4 per cent O2-99.6 per cent N2, 32; in 0.7 per cent O2-99.3 per cent CO, 32; in 1.6 x 10–4 M potassium cyanide, 34; in 1 x 10–3 M phenylurethane, 70; in 4 x 10–3 M 5-isoamyl-5-ethyl barbituric acid, 20; in 3 x 10–4 M iodoacetic acid, 53. 2. The carbon monoxide inhibition of oxygen consumption and cell division was reversed by light. The percentage inhibition of oxygen consumption by carbon monoxide in the dark is described by the usual mass action equation with K, the inhibition constant, equal to approximately 60, as compared to values of 5 to 10 for yeast and muscle. In 20 per cent O2-80 per cent CO in the dark there was a slight stimulation of oxygen consumption, averaging 20 per cent. 3. Spectroscopic examination of fertilized and unfertilized Arbacia eggs reduced by hydrosulfite revealed no cytochrome bands. The thickness and density of the egg suspension was such as to indicate that, if cytochrome is present at all, the amount in Arbacia eggs is extremely small as compared to that in other tissues having a comparable rate of oxygen consumption. 4. Three reagents poisoning copper catalyses, potassium dithio-oxalate (10–2 M), diphenylthiocarbazone (10–4 M), and isonitrosoacetophenone (2 x 10–3 M) produced no inhibition of division of fertilized Arbacia eggs. 5. These results indicate that the respiratory processes required to support division in the Arbacia egg may perhaps differ in certain essential steps from the principal respiratory processes in yeast and muscle.  相似文献   

13.
The theoretical aspects of the problem of sieve-like membranes are developed. The method of preparing the dried collodion membrane is described, and the method of defining the property of a particular membrane is given. It consists of the measurement of the Co P, that is the P.D. between an 0.1 and an 0.01 M KCl solution separated by the membrane. Co P is in the best dried membranes 50 to 53 millvolts, the theoretically possible maximum value being 55 millivolts. Diffusion experiments have been carried out with several arrangements, one of which is, for example, the diffusion of 0.1 M KNO3 against 0.1 M NaCl across the membrane. The amount of K+ diffusing after a certain period was in membranes with a sufficiently high Co P (about 50 millivolts or more) on the average ten times as much as the amount of diffused Cl-. In membranes with a lower Co P the ratio was much smaller, down almost to the proportion of 1:1 which holds for the mobility of these two ions in a free aqueous solution. When higher concentrations were used, e.g. 0.5 M solution, the difference of the rate of diffusion for K+ and Cl- was much smaller even in the best membranes, corresponding to the fact that the P.D. of two KCl solutions whose concentrations are 10:1 is much smaller in higher ranges of concentration than in lower ones. These observations are confirmed by experiments arranged in other ways. It has been shown that, in general, the diffusion of an anion is much slower than the one of a cation across the dried collodion membrane. The ratio of the two diffusion coefficients would be expected to be calculable in connection with the potential difference of such a membrane when interposed between these solutions. The next problem is to show in how far this can be confirmed quantitatively.  相似文献   

14.
The P.D. across the protoplasm of Valonia macrophysa has been studied while the cells were exposed to artificial solutions resembling sea water in which the concentration of KCl was varied from 0 to 0.500 mol per liter. The P.D. across the protoplasm is decreased by lowering and increased by raising the concentration of KCl in the external solution. Changes in P.D. with time when the cell is treated with KCl-rich sea water resemble those observed with cells exposed to Valonia sap. Varying the reaction of natural sea water from pH 5 to pH 10 has no appreciable effect on the P.D. across Valonia protoplasm. Similarly, varying the pH of KCl-rich sea water within these limits does not alter the height of the first maximum in the P.D.-time curve. The subsequent behavior of the P.D., however, is considerably affected by the pH of the KCl-rich sea water. These changes in the shape of the P.D.-time curve have been interpreted as indicating that potassium enters Valonia protoplasm more rapidly from alkaline than from acidified KCl-rich sea water. This conclusion is discussed in relation to certain theories which have been proposed to explain the accumulation of KCl in Valonia sap. The initial rise in P.D. when a Valonia cell is transferred from natural sea water to KCl-rich sea water has been correlated with the concentrations of KCl in the sea waters. It is assumed that the observed P.D. change represents a diffusion potential in the external surface layer of the protoplasm, where the relative mobilities of ions may be supposed to differ greatly from their values in water. Starting with either Planck''s or Henderson''s formula, an equation has been derived which expresses satisfactorily the observed relationship between P.D. change and concentration of KCl. The constants of this equation are interpreted as the relative mobilities of K+, Na+, and Cl- in the outer surface layer of the protoplasm. The apparent relative mobility of K+ has been calculated by inserting in this equation the values for the relative mobilities of Na+ (0.20) and Cl- (1.00) determined from earlier measurements of concentration effect with natural sea water. The average value for the relative mobility of K+ is found to be about 20. The relative mobility may vary considerably among different individual cells, and sometimes also in the same individual under different conditions. Calculation of the observed P.D. changes as phase-boundary potentials proved unsatisfactory.  相似文献   

15.
The nucleoprotamine of trout sperm can be extracted completely with 1 M sodium chloride. On reducing the salt concentration to 0.14 M, physiological saline, the nucleoprotamine precipitates in long, fibrous strands. When the nucleoprotamine, dissolved in M NaCl, is dialyzed all the protamine diffuses through the membrane leaving behind highly polymerized, protein-free desoxyribose nucleic acid. The nucleoprotamine constitutes 91 per cent of the lipid-free mass of the sperm nucleus. While nucleoprotamine is being extracted by M NaCl a stage is reached at which the sperm chromosomes are clearly visible.  相似文献   

16.
1. The addition of Na taurocholate produces an increase in the rate of respiration at a concentration of 0.0000125 M, and a decrease at 0.001 M and in higher concentrations. 2. NaCl is antagonized by Na taurocholate, the most favorable proportion being 14,375 parts of NaCl to 1 part of Na taurocholate (molecular proportions). 3. Solutions of saponin, at concentrations from 0.00005 M to 0.001 M, decrease the rate of respiration: lower concentrations produce no effect.  相似文献   

17.
The nature and origin of the large "protoplasmic" potential in Halicystis must be studied by altering conditions, not only in external solutions, but in the sap and the protoplasm itself. Such interior alteration caused by the penetration of ammonia is described. Concentrations of NH4Cl in the sea water were varied from 0.00001 M to above 0.01 M. At pH 8.1 there is little effect below 0.0005 M NH4Cl. At about 0.001 M a sudden reversal of the potential difference across the protoplasm occurs, from about 68 mv. outside positive to 30 to 40 mv. outside negative. At this threshold value the time curve is characteristically S-shaped, with a slow beginning, a rapid reversal, and then an irregularly wavering negative value. There are characteristic cusps at the first application of the NH4Cl, also immediately after the reversal. The application of higher NH4Cl concentrations causes a more rapid reversal, and also a somewhat higher negative value. Conversely the reduction of NH4Cl concentrations causes recovery of the normal positive potential, but the threshold for recovery is at a lower concentration than for the original reversal. A temporary overshooting or increase of the positive potential usually occurs on recovery. The reversals may be repeated many times on the same cell without injury. The plot of P.D. against the log of ammonium ion concentration is not the straight line characteristic of ionic concentration effects, but has a break of 100 mv. or more at the threshold value. Further evidence that the potential is not greatly influenced by ammonium ions is obtained by altering the pH of the sea water. At pH 5, no reversal occurs with 0.1 M NH4Cl, while at pH 10.3, the NH4Cl threshold is 0.0001 M or less. This indicates that the reversal is due to undissociated ammonia. The penetration of NH3 into the cells increases both the internal ammonia and the pH. The actual concentration of ammonium salt in the sap is again shown to have little effect on the P.D. The pH is therefore the governing factor. But assuming that NH3 enters the cells until it is in equilibrium between sap and sea water, no sudden break of pH should occur, pH being instead directly proportional to log NH3 for any constant (NH4) concentration. Experimentally, a linear relation is found between the pH of the sap and the log NH3 in sea water. The sudden change of P.D. must therefore be ascribed to some system in the cell upon which the pH change operates. The pH value of the sap at the NH3 threshold is between 6.0 and 6.5 which corresponds well with the pH value found to cause reversal of P.D. by direct perfusion of solutions in the vacuole.  相似文献   

18.
Leading off from two places on the same cell (of Nitella) with 0.001 M KCl we observe that a cut produces only a temporary negative current of injury. If we lead off with 0.001 M KCl from any cell to a neighboring cell we find that when sap comes out from the cut cell and reaches the neighboring intact cell a lasting negative "current of injury" is produced. This depends on the fact that the intact cell is in contact with sap at one point and with 0.001 M KCl at the other (this applies also to tissues composed of small cells). If we employ 0.1 M KCl in place of 0.001 M the current of injury with a single cell is positive (and is more lasting when a neighboring cell is present). Divergent results obtained with tissues and single cells may be due in part to these factors.  相似文献   

19.
1. It is shown that a neutral salt depresses the potential difference which exists at the point of equilibrium between a gelatin chloride solution contained in a collodion bag and an outside aqueous solution (without gelatin). The depressing effect of a neutral salt on the P.D. is similar to the depression of the osmotic pressure of the gelatin chloride solution by the same salt. 2. It is shown that this depression of the P.D. by the salt can be calculated with a fair degree of accuracy on the basis of Nernst''s logarithmic formula on the assumption that the P.D. which exists at the point of equilibrium is due to the difference of the hydrogen ion concentration on the opposite sides of the membrane. 3. Since this difference of hydrogen ion concentration on both sides of the membrane is due to Donnan''s membrane equilibrium this latter equilibrium must be the cause of the P.D. 4. A definite P.D. exists also between a solid block of gelatin chloride and the surrounding aqueous solution at the point of equilibrium and this P.D. is depressed in a similar way as the swelling of the gelatin chloride by the addition of neutral salts. It is shown that the P.D. can be calculated from the difference in the hydrogen ion concentration inside and outside the block of gelatin at equilibrium. 5. The influence of the hydrogen ion concentration on the P.D. of a gelatin chloride solution is similar to that of the hydrogen ion concentration on the osmotic pressure, swelling, and viscosity of gelatin solutions, and the same is true for the influence of the valency of the anion with which the gelatin is in combination. It is shown that in all these cases the P.D. which exists at equilibrium can be calculated with a fair degree of accuracy from the difference of the pH inside and outside the gelatin solution on the basis of Nernst''s logarithmic formula by assuming that the difference in the concentration of hydrogen ions on both sides of the membrane determines the P.D. 6. The P.D. which exists at the boundary of a gelatin chloride solution and water at the point of equilibrium can also be calculated with a fair degree of accuracy by Nernst''s logarithmic formula from the value pCl outside minus pCl inside. This proves that the equation x2 = y ( y + z) is the correct expression for the Donnan membrane equilibrium when solutions of protein-acid salts with monovalent anion are separated by a collodion membrane from water. In this equation x is the concentration of the H ion (and the monovalent anion) in the water, y the concentration of the H ion and the monovalent anion of the free acid in the gelatin solution, and z the concentration of the anion in combination with the protein. 7. The similarity between the variation of P.D. and the variation of the osmotic pressure, swelling, and viscosity of gelatin, and the fact that the Donnan equilibrium determines the variation in P.D. raise the question whether or not the variations of the osmotic pressure, swelling, and viscosity are also determined by the Donnan equilibrium.  相似文献   

20.
1. Exposure of unfertilized starfish eggs to dilute solutions of weak acids (fatty acids, benzoic and carbonic acids) in isotonic balanced salt solution causes complete activation with the proper durations of exposure. For each acid the rate of activation (reciprocal of optimum duration) varies with concentration and temperature; at a given temperature and within a considerable range of concentrations (e.g. 0.00075 to 0.004 M for butyric acid), this rate is approximately proportional to concentration. We may thus speak of a molecular rate of action characteristic of each acid. 2. In general the molecular rate of action increases with the dissociation constant and surface activity of the acids. In the fatty acid series (up to caproic), formic acid has the most rapid effect, acting about four times as rapidly as acetic; for the other acids the order is: acetic = propionic ≦ butyric < valeric < caproic. Carbonic acid acts qualitatively like the fatty acids, but its molecular rate of action is only about one-fourteenth that of acetic acid. 3. Hydrochloric and lactic acids are relatively ineffective as activating agents, apparently because of difficulty of penetration. Lactic acid is decidedly the more effective. The action of both acids is only slightly modified by dissolving in pure (isotonic NaCl and CaCl2) instead of in balanced salt solution. 4. The rate of action of acetic acid, in concentrations of 0.002 M to 0.004 M is increased (by 10 to 20 per cent) by adding Na-acetate (0.002 to 0.016) to the solution. The degree of acceleration is closely proportional to the estimated increase in undissociated acetic acid molecules. Activation thus appears to be an effect of the undissociated acid molecules in the external solution and not of the ions. Acetate anions and H ions acting by themselves, in concentrations much higher than those of the solutions used, have no activating effect. The indications are that the undissociated molecules penetrate rapidly, the ions slowly. Having penetrated, the molecules dissociate inside the egg, yielding the ions of the acid. 5. When the rate of activation is slow, as in 0.001 M acetic acid, the addition of Na-acetate (0,008 M to 0.016 M) has a retarding effect, referable apparently to the gradual penetration of acetate ions to the site of the activation reaction with consequent depression of dissociation. 6. An estimate of the CH of those solutions (of the different activating acids) which activate the egg at the same rate indicates that their H ion concentrations are approximately equal. On the assumptions that only the undissociated molecules penetrate readily, and that the conditions of dissociation are similar inside and outside the egg, this result indicates (especially when the differences in adsorption of the acids are considered) that the rate of activation is determined by the CH at the site of the activation reaction within the egg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号