首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We performed an investigation of two unrelated cases with extremal variants of chromosome 21 without visible materials of the short arms (Christchurch or Ch1 chromosome). In the first case chromosome 21p- was initially detected during routine cytogenetic amniocentesis. Chromosomal variant was inherited from phenotypically normal father to phenotypically normal fetus (phenotypically normal boy after the birth). The second case of chromosome 21p- was detected in 7 years old boy, referred to cytogenetic analysis due to mental retardation and mild congenital malformation, including prenatal hypoplasia, microcephaly, low-set dysplastic ears, short nose, micrognatia, short neck. Molecular characterization of 21p-variant chromosomes was performed by the use of FISH with DNA probes specific to the short arm and centromeric region of chromosome 21 (telomeric, beta-satellite, ribosomal, classical satellite and alphoid DNA probes). Chromosomes 21p-hybridized positively only with telomeric DNA at both chromosomal ends and alphoid DNA probes at centromeric region of the first patient. In second case (de novo deletion of 21p), the Ch1 was associated with clinical phenotype and loss of telomeric and subtelomeric DNA in the p-arm of chromosome 21. Therefore, the complete absent of the short arm of chromosome 21 may be considered as abnormal. We propose that de novo deletion 21p- could have negative consequences due to absence of large portion of chromosomal DNA from the p-arm (telomeric, satellite or ribosomal DNAs) and following imbalance in organization and functioning of genome.  相似文献   

2.
3.
Rice (Oryza sativa ssp. japonica cv. Nipponbare) harbors a ribosomal RNA gene (rDNA) cluster in the nucleolar-organizing region at the telomeric end of the short arm of chromosome 9. We isolated and sequenced two genomic clones carrying rice rDNA fragments from this region. The rice rDNA repeat units could be classified into three types based on length, which ranged from 7,928 to 8,934 bp. This variation was due to polymorphism in the number of 254-bp subrepeats in the intergenic spacer (IGS). Polymerase chain reaction (PCR) analysis suggested that the rDNA units in rice vary widely in length and that the copy number of the subrepeats in the IGS ranges from 1 to 12 in the rice genome. PCR and Southern blot analyses showed that most rDNA units have three intact and one truncated copies of the subrepeats in the IGS, and distal (telomere-side) rDNA units have more subrepeats than do proximal (centromere-side) ones. Both genomic clones we studied contained rDNA-flanking DNA sequences of either telomeric repeats (5′-TTTAGGG-3′) or a chromosome-specific region, suggesting that they were derived from the distal or proximal end, respectively, of the rDNA cluster. A similarity search indicated that retrotransposons appeared more frequently in a 500-kb portion of the proximal rDNA-flanking region than in other subtelomeric regions or sequenced regions of the genome. This study reveals the repetitive nature of the telomeric end of the short arm of chromosome 9, which consists of telomeric repeats, an rDNA array, and a retrotransposon-rich chromosomal region.Sequence accession numbers in DDBJ assigned for OSJNOa063K24 and OSJNBb0013K10 are AP009051 and AP008245, respectively.  相似文献   

4.
The genome of Drosophila melanogaster contains a class of repetitive DNA sequences called the He-T family, which is unusual in being confined to telomeric and heterochromatic regions. The specific He-T fragment designated Dm665 was cloned in yeast by selection for an autonomously replicating sequence (ARS). Dm665 contains a restriction fragment length polymorphism (RFLP) that is specific to males and thus derives from the Y chromosome. Deletion mapping using X-Y translocations indicates that sequences homologous to Dm665 occur in at least one major cluster in each arm of the Y chromosome. Among 20 yeast artificial chromosome (YAC) clones containing Drosophila sequences homologous with Dm665, four clones derive from defined regions of the long arm of the Y and two from the short arm. The sequence of Dm665 is 2443 bp long, consists of 59% A+T, and contains no significant open reading frames or direct or inverted repeats. However, Dm665 contains a region of 650 bp that shares homology with portions of the X-linked locus Stellate.by W. Hennig  相似文献   

5.
Here we demonstrate fluorescencein situ hybridization (FISH) of chromosome-specific cytogenetic DNA markers for chromosome identification in maize using repetitive and single copy probes. The fluorescently labeled probes, CentC and pZm4–21, were shown to be reliable cytogenetic markers in the maize inbred line KYS for identification of mitotic metaphase chromosomes. The fluorescent strength of CentC signal, relative position, knob presence, size and location were used for the karyotyping. Based on direct visual analysis of chromosome length and position of FISH signals, a metaphase karyotype was constructed for maize inbred line KYS. All chromosomes could be identified unambiguously. The knob positions in the karyotype agreed well with those derived from traditional cytological analyses except chromosomes 3, 4 and 8. One chromosome with a telomeric knob on the short arm was assigned to 3. A chromosome with a knob in the middle of the long arm was assigned number 4 by simultaneous hybridization with a knob-specific probe pZm4–21 and a chromosome 4-specific probe Cent 4. On chromosome 8, we found an additional small telomeric knob on the short arm. In addition, chromosome-specific probes were employed to identify chromosome 6 (45S rDNA) and chromosome 9 (single-copy probeumc105a cosmid).  相似文献   

6.
After mating, hypotrichous ciliated protozoa transform a set of their micronuclear chromosomes into thousands of short, linear DNA molecules that form the macronuclear genome. To examine micronuclear genome organization in the hypotrich Euplotes crassus, we have analyzed two cloned segments of micronuclear DNA as well as the macronuclear DNA molecules that are derived from them. E. crassus was found to display a number of features characteristic of other hypotrich genomes, including (i) clustering and close spacing of the precursors of macronuclear DNA molecules, (ii) the frequent occurrence of internal eliminated sequences within macronuclear precursors, (iii) overlapping macronuclear precursors, (iv) lack of telomeric repeats at the ends of macronuclear precursors, and (v) alternative processing of the micronuclear chromosome to yield multiple macronuclear DNA molecules. In addition, a moderately repetitive, transposonlike element that interrupts the precursors of two macronuclear DNA molecules has been identified and characterized. This transposonlike element, designated Tec1, is shown to be reproducibly removed from one of the macronuclear precursors during independent episodes of macronuclear development.  相似文献   

7.
Previous studies of follicular thyroid tumors have shown loss of heterozygosity (LOH) on the short arm of chromosome 3 in carcinomas, and on chromosome 10 in atypical adenomas and carcinomas, but not in common adenomas. We studied LOH on these chromosomal arms in 15 follicular thyroid carcinomas, 19 atypical follicular adenomas and 6 anaplastic (undifferentiated) carcinomas. Deletion mapping of chromosome 10 using 15 polymorphic markers showed that 15 (37.5%) of the tumors displayed LOH somewhere along the long arm. Thirteen of these tumors showed deletions involving the telomeric part of chromosome 10q, distal to D1OS 187. LOH on chromosome 3p was found in 8 (20%) cases. Seven of these also showed LOH on chromosome 10q. In eight cases LOH was seen on chromosome 10q but not 3p. In comparison, the retinoblastoma gene locus at chromosome 13q showed LOH in 22% of the tumors. Most of these also had deletions on chromosome 10q. The results indicate that a region at the telomeric part of 10q may be involved in progression of follicular thyroid tumors.  相似文献   

8.
Bacteriophage lambda clones containing Theileria parva genomic DNA derived from two different telomeres were isolated and the nucleotide sequences of the telomeric repeats and adjacent telomere-associated (TAS) DNA were determined. The T.parva telomeric repeat sequences, a tandem array of TTTTAGGG or TTTAGGG interspersed with a few variant copies, showed a high degree of sequence identity to those of the photosynthetic algae Chlamydomonas reinhardtii (97% identity) and Chlorella vulgaris (87.7% identity) and the angiosperm Arabidopsis thaliana (84.4% identity). Unlike most organisms which have been studied, no significant repetitive sequences were found in the nucleotide sequences of TAS DNA located centromere-proximal to the telomeric repeats. Restriction mapping and hybridisation analysis of lambda EMBL3 clones containing 16 kilobases of TAS DNA derived from one telomere suggested that they did not contain long regions of repetitive DNA. The cloned TAS DNAs were mapped to T.parva Muguga genomic SfiI fragments 8 and 20, which are located at opposite ends of the largest T.parva chromosome. A 126 bp sequence located directly centromere-proximal to the telomeric repeats was 94% identical between the two cloned telomeres. The conserved 126 bp sequence was present on all T.parva Muguga telomeric SfiI fragments.  相似文献   

9.
Eukaryotic chromosome ends are protected from illicit DNA joining by protein-DNA complexes called telomeres. In most studied organisms, telomeric DNA is composed of multiple short G-rich repeats that end in a single-stranded tail that is protected by the protein POT1. Mammalian POT1 binds two telomeric repeats as a monomer in a sequence-specific manner, and discriminates against RNA of telomeric sequence. While addressing the RNA discrimination properties of SpPot1, the POT1 homolog in Schizosaccharomyces pombe, we found an unanticipated ssDNA-binding mode in which two SpPot1 molecules bind an oligonucleotide containing two telomeric repeats. DNA binding seems to be achieved via binding of the most N-terminal OB domain of each monomer to each telomeric repeat. The SpPot1 dimer may have evolved to accommodate the heterogeneous spacers that occur between S. pombe telomeric repeats, and it also has implications for telomere architecture. We further show that the S. pombe telomeric protein Tpz1, like its mammalian homolog TPP1, increases the affinity of Pot1 for telomeric single-stranded DNA and enhances the discrimination of Pot1 against RNA.  相似文献   

10.
Using human telomeric repeats and centromeric alpha repeats, we have identified adjacent single copy cosmid clones from human chromosome 22 cosmid libraries. These single copy cosmids were mapped to chromosome 22 by fluorescence in situ hybridisation (FISH). Based on these cosmids, we established contigs that included part of the telomeric and subtelomeric regions, and part of the centromeric and pericentromeric regions of the long arm of human chromosome 22. Each of the two cosmid contigs consisted of five consecutive steps and spanned approximately 100–150 kb at both extreme ends of 22q. Moreover, highly informative polymorphic markers were identified in the telomeric region. Our results suggest that the telomere specific repeat (TTAGGG) n encompasses a region that is larger than 40 kb. The cosmid contigs and restriction fragment length polymorphism markers described here are useful tools for physical and genetic mapping of chromosome 22, and constitute the basis of further studies of the structure of the subtelomeric and pericentromeric regions of 22q. We also demonstrate the use of these clones in clinical diagnosis of different chromosome 22 aberrations by FISH.  相似文献   

11.
12.
Summary We have used a recombinant DNA clone derived from the Y-specific 3,4-kb repeats for in situ chromosome hybridization and Southern blotting analysis to identify a case of de novo Y;18 translocation. The proband has a chromosome complement of 46,XY and a variant chromosome 18 with a Q-bright and C-positive short arm. The father has a normal male karyotype of 46,XY. The mother has a female karyotype of 46,XX and an unusually large Q-bright satellite on one chromosome 22. In situ hybridization with the 3,4-kb probe to the metaphase preparations of family members indicated that the additional Q-bright material in the proband's variant chromosome 18 derived from the Y chromosome of his father, and not from the variant chromosome 22 of his mother. On Southern hybridization, the proband had approximately twice the amount of 3,4-kb repeats per cell as his father. These observations suggest a de novo genetic rearrangement in the proband which probably occurred during the father's spermatogenesis.  相似文献   

13.
A number of Xp22;Yq11 translocations involving the transposition of Yq material to the distal short arm of the X chromosome have been described. The reciprocal product, i.e. the derivative Y chromosome resulting from the translocation of a portion of Xp to Yq, has never been recovered. We searched for this reciprocal product by performing dosage analysis of Xp22-pter loci in 9 individuals carrying a non-fluorescent Y chromosome. In three mentally retarded and dysmorphic patients, dosage analysis indicated the duplication of Xp22 loci. Use of the highly polymorphic probe CRI-S232 demonstrated the inheritance of paternal Xp-specific alleles in the probands. In situ hybridization, performed in one case, confirmed that 29CL pseudoautosomal sequences were present, in addition to Xpter and Ypter, in the telomeric portion of Yq. To our knowledge, these are the first cases in which the translocation of Xp material to Yq has been demonstrated. The X and Y breakpoints were mapped in the three patients by dosage and deletion analysis. The X breakpoint falls, in the three cases, in a region of Xp22 that is not recognized as sharing sequence similarities with the Y chromosome, thus suggesting that these translocations are not the result of a homologous recombination event.  相似文献   

14.
Summary We have used two repeated DNA fragments (3.4 and 2.1 kb) released from Y chromosome DNA by digestion with the restriction endonuclease Hae III to analyze potential Y chromosome/autosome translocations. Two female patients were studied who each had an abnormal chromosome 22 with extra quinacrine fluorescent material on the short arm. The origin of the 22p+ chromosomes was uncertain after standard cytologic examinations. Analysis of one patient's DNA with the Y-specific repeated DNA probes revealed the presence of both the 3.4 and 2.1 kb Y-specific fragments. Thus, in this patient, the additional material was from the Y chromosome. Analysis of the second patient's DNA for Y-specific repeated DNA was negative, indicating that the extra chromosomal segment was not from the long arm of the Y chromosome. These two cases demonstrate that repeated DNA can distinguish between similar appearing aberrant chromosomes and may be useful in karyotypic and prenatal diagnosis.  相似文献   

15.
The sequence organization of four different families of Y chromosomal repetitive DNA is characterized at three levels of spatial extension along the Y chromosome of Drosophila hydei. At the lowest level of resolution, DNA blot analysis of Y chromosomal fragments of different lengths and in situ hybridization experiments on metaphase chromosomes demonstrate the clustering of each particular sequence family within one defined region of the chromosome. At a higher level of resolution, family specific repeats can be detected within these clusters by crosshybridization within 10–20 kb long continuous stretches of cloned DNA in EMBL3 phages. At the highest level of resolution, detailed sequence analysis of representative subclones about 1 kb in length reveals a satellite-like head to tail arrangement of family specific degenerated subrepeats as the building scheme common to all four families. Our results provide the first comparative sequence analysis of three novel families of repetitive DNA on the long arm of the F chromosome of D. hydei. Additional data are presented which support the existence of two related subfamilies of repetitive DNA on the short arm of the Y chromosome.  相似文献   

16.
A minimum of 11 bands hybridising to an oligonucleotide complementary to the putative telomeric repeat sequence (TTAGGG)n was visible in a Southern blot of EcoRI-digested Aspergillus nidulans genomic DNA. All 11 were sensitive to BAL 31 exonuclease digestion, consistent with telomeric locations. Blots of DNA from aneuploid strains deleted for a dispensable, extreme distal region on the right arm of chromosome III lack a 1.3-kb EcoRI band, indicating that this fragment is located at or near the chromosome III right arm telomere.  相似文献   

17.
Terminal inversion duplications of the short arm of chromosome 8 are one of the more common chromosome rearrangements in humans. We report an infant with multiple congenital anomalies, in whom karyotype analysis showed a terminal inversion duplication of 8p including additional material at the distal end of the derivative chromosome, shown to be of chromosome 18q origin. Terminal inversion duplications of 8p are the result of meiotic recombination between inverted olfactory gene receptor repeats in 8p. This recombination generates a dicentric intermediate that breaks during anaphase, and the broken chromosome end is stabilized by telomere healing or telomere capture. The origin of the telomeric region in the majority of constitutional chromosome deletions studied to date was shown to be from telomere healing; the de novo addition of telomeric repeats. In the proband a cytogenetically detectable piece of chromosome 18q was present on the distal end of the derivative 8, suggesting that this chromosome was stabilized by telomere capture of 18q. FISH analyses of additional cases may yield information as to whether telomere capture or telomere-healing events are the predominant mechanism of chromosome stabilization in terminal inversion duplications of 8p.  相似文献   

18.
The effect of telomere heterochromatin on metaphase I association of chromosome pair 1R of rye was analyzed in normal diploid plants of rye (2n=14) and in wheat-rye derivatives with the chromosome constitution (0–7)A(0–7)BRR (2n=20, 21 and 22). The C-banding pattern of 1R was variable between plants. In diploid rye the presence or absence of telomeric heterochromatin in 1R does not influence its meiotic pairing. However, in wheat-rye derivatives the presence of telomeric heterochromatin decreases chiasma frequency in the 1R bivalent. This cannot be attributed to interference of heterochromatin with chiasma terminalization. This effect of heterochromatin is most pronounced in heterozygous condition. In plants heterozygous for telomeric C-bands the reduction of pairing is stronger in the short arm than in the long arm of the 1R bivalent.  相似文献   

19.
The ends of eukaryotic chromosomes have special properties and roles in chromosome behavior. Selection for telomere function in yeast, using a Chinese hamster hybrid cell line as the source DNA, generated a stable yeast artificial chromosome clone containing 23 kb of DNA adjacent to (TTAGGG)n, the vertebrate telomeric repeat. The common repetitive element d(GT)n appeared to be responsible for most of the other stable clones. Circular derivatives of the TTAGGG-positive clone that could be propagated in E. coli were constructed. These derivatives identify a single pair of hamster telomeres by fluorescence in situ hybridization. The telomeric repeat tract consists of (TTAGGG)n repeats with minor variations, some of which can be cleaved with the restriction enzyme MnlI. Blot hybridization with genomic hamster DNA under stringent conditions confirms that the TTAGGG tracts are cleaved into small fragments due to the presence of this restriction enzyme site, in contrast to mouse telomeres. Additional blocks of (TTAGGG)n repeats are found 4–5 kb internally on the clone. The terminal region of the clone is dominated by a novel A-T rich 78 bp tandemly repeating sequence; the repeat monomer can be subdivided into halves distinguished by more or less adherence to the consensus sequence. The sequence in genomic DNA has the same tandem organization in probably a single primary locus of >20–30 kb and is thus termed a minisatellite.  相似文献   

20.
Summary A phenotypically normal male (WSm) was found to have an unusually large short arm of chromosome 14. Increase in the size of this variant chromosome [Wsm-var(14)] was estimated to be approximately 30% that of a normal chromosome 14 by G-banding using trypsin and staining with Leishman. The extra chromosomal material was positive in CBG staining (C-banding using BaOH and staining with Giemsa), suggesting the presence of repetitive DNA. In situ hybridisation using repetitive probes demonstrated this material to be strongly positive for satellite III DNA, and negative for Y-specific heterochromatic DNA. Hybridisation with an alpha DNA probe specific for human acrocentric chromosomes indicated the retention of the centromere, and the absence of alpha DNA in the extra chromosomal material. We propose the origin of the extra chromosomal material in WSm-var(14) to be a result of amplification of contiguous satellite III DNA that is normally present in the short arm of chromosome 14. This variant chromosome does not appear to be associated with the abnormal phenotype in WSm's daughter who is mentally retarded and carries a t(1;?)(q41;?) translocation of chromosome 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号