首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Sixteen female piglets (58 d of age, 16.8 ± 0.8 kg body weight [BW]) were assigned to two groups (n = 8) and received until day 100 of age (50.3 ± 1.2 kg BW) ad libitum either a diet with a standard (diet C) or low (diet L) total phosphorus (P) content (5.38 and 4.23 g/kg, respectively). Diet C was supplemented with mineral P (1.15 g/kg) and did not contain microbial phytase. Diet L did not contain any inorganic P but 750 FTU/kg of microbial phytase. Despite these treatments, both diets were composed with the same ingredients. Body mineralisation of each gilt was assessed by determining the bone mineral content (BMC), area bone mineral density (BMD) by the dual-energy X-ray absorptiometry (DXA) at days 58, 72, 86 and 100 of age. Feeding diet L caused a higher P digestibility (p = 0.008) measured from days 72 to 86 of age and at 100 days of age a higher BMC and BMD (p ≤ 0.01). Furthermore, the gilts of group L deposited more minerals in the body than control pigs (by 2.4 g/d, p = 0.008). It was found that BMD and BMC were positively correlated with body lean mass and digestible P intake. The results indicated that, even for very young pigs, the addition of microbial phytase instead of inorganic P increases the amount of digestible P covering the requirements of piglets for proper bone mineralisation. Furthermore, it was proved that the DXA method can be successfully applied to measure body fat and lean mass contents as well as bone mineralisation of growing pigs using the same animals.  相似文献   

2.
Two experiments, a performance experiment and a mineral balance study, were conducted on grower-finisher pigs (42 to 101 kg live weight) to investigate the effects of Peniophora lycii phytase enzyme and 25-hydroxyvitamin D3 (25-OHD3) on growth performance, carcass characteristics, nutrient retention and excretion, and bone and blood parameters. The two experiments were designed as a 2 × 2 factorial (two levels of phytase and two levels of 25-OHD3). The four diets were T1, low-phosphorous diet; T2, T1 + phytase; T3, T1 + 25-OHD3 and T4, T1 + phytase + 25-OHD3 diet. In all, 25 μg of 25-OHD3 was used to replace 1000 IU of vitamin D3 in diets T3 and T4. Diets were pelleted (70°C) and formulated to contain similar concentrations of energy (13.8 MJ DE/kg), lysine (9.5 g/kg) and digestible phosphorus (P; 1.8 g/kg). Neither the inclusion of phytase nor 25-OHD3 in the diet had any effect on pig performance. There was an interaction between phytase and 25-OHD3 on calcium (Ca) and P retention (P < 0.01) and on the apparent digestibility of ash (P < 0.01), P (P < 0.001) and Ca (P < 0.001). Pigs offered phytase diets only, had a higher retention of Ca and P and digestibility of ash (P < 0.01), P (P < 0.001) and Ca (P < 0.01) compared with pigs offered unsupplemented diets. However, when the combination of phytase and 25-OHD3 were offered, no effects were detected compared with 25-OHD3 diets only. Pigs fed phytase diets had higher bone ash (P < 0.01), bone P (P < 0.01) and bone Ca (P < 0.05) concentrations compared with pigs offered non-phytase diets. In conclusion, pigs offered phytase diets had a significantly increased bone ash, Ca and P than pigs offered unsupplemented phytase diets. However, there was no advantage to offering a combination of phytase and 25-OHD3 on either bone strength or mineral status compared to offering these feed additives separately.  相似文献   

3.
Two experiments in a 2 x 2 factorial arrangement were conducted to evaluate the effect of crude protein (CP) (130 vs. 200 g/kg) and phosphorus (P) (4.0 vs. 6.0 g total P/kg) level in a phytase supplemented diet (500 FTU [phytase units]/kg) in grower-finisher pigs. Owing to the design of the experiment, as dietary P level increased, there was also an increase in dietary calcium (Ca) level in order to maintain a dietary Ca to P ratio of 1.6:1. In Experiment 1, four diets were fed to 56 pigs (n = 14, initial body weight [BW] 36.7 +/- 4.2 kg) to investigate the interaction between CP and P on growth performance, bone mineralisation and digesta pH. Experiment 2 consisted of 16 entire male pigs (n = 4; offered identical diets to that offered in Experiment 1) for the determination of total tract apparent digestibility and nitrogen (N), P and Ca utilisation. There was an interaction between CP and P level on bone ash, bone P and bone Ca concentrations (p < 0.05). Pigs offered low CP-low P diets had a higher bone ash, P and Ca concentrations than pigs offered high CP-low P diets. However, there was no effect of CP level at high P levels on bone ash, P and Ca concentrations. Pigs offered low P diets had a lower ileal pH compared with pigs offered high P diets (p < 0.05). In conclusion, offering pigs a high CP-low P, phytase-supplemented diet resulted in a decrease in bone mineralisation.  相似文献   

4.
Forty crossbred barrows (Camborough 15 Line female x Canabred sire) weighing an average of 79.6 +/- 8.0 kg were used in a factorial design experiment (5 barleys x 2 enzyme levels) conducted to determine the effects of phytase supplementation on nutrient digestibility in low-phytate barleys fed to finishing pigs. The pigs were assigned to one of 10 dietary treatments comprised of a normal 2-rowed, hulled variety of barley (CDC Fleet, 0.26% phytate) or 2 low-phytate hulled genotypes designated as LP422 (0.14% phytate) and LP635 (0.09% phytate). A normal, hulless barley (CDC Dawn, 0.26% phytate) and a hulless genotype designated as LP422H (0.14% phytate) were also included. All barleys were fed with and without phytase (Natuphos 5000 FTU/kg). The diets fed contained 98% barley, 0.5% vitamin premix, 0.5% trace mineral premix, 0.5% NaCl and 0.5% chromic oxide but no supplemental phosphorus. The marked feed was provided for a 7-day acclimatization period, followed by a 3-day faecal collection. In the absence of phytase, phosphorus digestibility increased substantially (P < 0.05) as the level of phytate in the barley declined. For the hulled varieties, phosphorus digestibility increased from 12.9% for the normal barley (0.26% phytate) to 35.3 and 39.8% for the two low-phytate genotypes (0.14 and 0.09% phytate respectively). For the hulless varieties, phosphorus digestibility increased from 9.2% for the normal barley (0.26% phytate) to 34.7% for the hulless variety with 54% of the normal level of phytate (0.14% phytate). In contrast, when phytase was added to the diet, there was little difference in phosphorus digestibility between pigs fed normal barley and those fed the low-phytate genotypes (significant barley x enzyme interaction, P = 0.01). For the hulled varieties, phosphorus digestibility was 50.1% for the barley with the normal level of phytate (0.26% phytate) compared with 51.1 and 52.4% for the varieties with 54 and 35% of the normal level of phytate (0.14 and 0.09% phytate respectively). For the hulless varieties, phosphorus digestibility increased from 47.1% for the normal barley (0.26% phytate) to 54.4% for the hulless variety with 54% of the normal level of phytate (0.14% phytate). In conclusion, both supplementation with phytase and selection for low-phytate genotypes of barley were successful in increasing the digestibility of phosphorus for pigs. Unfortunately, the effects did not appear to be additive. Whether or not swine producers will choose low-phytate barley or supplementation with phytase as a means to improve phosphorus utilization, will likely depend on the yield potential of low-phytate barley and the additional costs associated with supplementation with phytase.  相似文献   

5.
Two experiments in a 2?×?2 factorial arrangement were conducted to evaluate the effect of crude protein (CP) (130 vs. 200 g/kg) and phosphorus (P) (4.0 vs. 6.0 g total P/kg) level in a phytase supplemented diet (500 FTU [phytase units]/kg) in grower-finisher pigs. Owing to the design of the experiment, as dietary P level increased, there was also an increase in dietary calcium (Ca) level in order to maintain a dietary Ca to P ratio of 1.6:1. In Experiment 1, four diets were fed to 56 pigs (n?=?14, initial body weight [BW] 36.7?±?4.2 kg) to investigate the interaction between CP and P on growth performance, bone mineralisation and digesta pH. Experiment 2 consisted of 16 entire male pigs (n?=?4; offered identical diets to that offered in Experiment 1) for the determination of total tract apparent digestibility and nitrogen (N), P and Ca utilisation. There was an interaction between CP and P level on bone ash, bone P and bone Ca concentrations (p?<?0.05). Pigs offered low CP–low P diets had a higher bone ash, P and Ca concentrations than pigs offered high CP–low P diets. However, there was no effect of CP level at high P levels on bone ash, P and Ca concentrations. Pigs offered low P diets had a lower ileal pH compared with pigs offered high P diets (p?<?0.05). In conclusion, offering pigs a high CP–low P, phytase-supplemented diet resulted in a decrease in bone mineralisation.  相似文献   

6.
The aim was to evaluate the effect of heat-treatment, microbial phytase addition and feeding strategy (dry feeding v. fermented liquid feeding) on degradation of phytate (myo-inositol hexakisphosphate, InsP6) and formation and further degradation of lower inositol phosphates (myo-inositol pentakisphosphate-myo-inositol bisphosphate, InsP5-InsP2) at the distal ileum of pigs. Furthermore, the apparent ileal digestibility/degradability (AID) of phosphorus (P), InsP6-P and calcium (Ca) and the apparent total tract digestibility (ATTD) of P and Ca were studied. Pigs were fitted with a T-shaped ileal cannula for total collection of digesta at 2 h intervals during an 8 h sampling period after feeding the morning meal. Each period lasted for 2 weeks: 8 days of adaptation followed by 3 days of total collection of faeces and 3 days of total collection of ileal digesta. The experiment was designed as a 4 × 4 Latin square with four pigs fed four diets. A basal wheat/barley-based diet was fed either as non-heat-treated or heat-treated (steam-pelleted at 90°C). The heat-treatment resulted in an inactivation of plant phytase below detectable level. Diet 1 (non-heat-treated basal diet fed dry); diet 2 (heat-treated basal diet fed dry); diet 3 (as diet 2 but with microbial phytase (750 FTU/kg as fed) fed dry); diet 4 (as diet 3 fed liquid (fermented for 17.5 h nighttime and 6.5 h daytime at 20°C with 50% residue in the tank)). Chromic oxide (Cr2O3) was included as marker and ATTD was determined both by total collection of faeces (ATTDTotal) and Cr2O3 (ATTDCr). InsP6 was completely degraded in diet 4 before feeding resulting in no InsP6-P being present in ileal digesta. InsP6-P concentration in ileal digesta decreased with increasing dietary levels of plant or microbial phytase in pigs fed the dry diets. Consequently, AID and ATTD of P and Ca were greatest for pigs fed diet 4 followed by diets 3, 1 and 2. The ATTD of P depended on the used method as ATTDTotal of P was 72%, 61%, 44% and 34%, whereas ATTDCr of P was 65%, 52%, 38% and 23% for diets 4, 3, 1 and 2, respectively. In all pigs the ileal concentration of InsP5-InsP2-P was extremely small, and thus unimportant for maximisation of ATTD of plant P. In conclusion, fermented liquid feeding with microbial phytase seems to be an efficient approach to improve ATTD of plant P compared with dry feeding. This opens up for further reductions in P excretion.  相似文献   

7.
Six ileally cannulated pigs (mean initial body weight 34.8 kg) were used to study the effect of microbial phytase on apparent ileal digestibility of P, total N and amino acids. Three P-adequate diets (digestible P concentration 2.3 g kg(- )l) containing barley (B), soyabean meal (S) or a mixture of the two (BS) with or without phytase supplement (1000 FTU x kg(-1)) were fed to pigs using a 6 x 6 Latin square design. The addition of phytase increased (p < 0.05) apparent ileal P digestibility of diets B, S and BS by 16.5, 19.2 and 19.2%, respectively. There was no effect of phytase on the ileal digestibility of total N. Apparent ileal digestibility of amino acids tended to increase in the BS diet supplemented with phytase (mean improvement of 2.2%); but no significant difference was found for any amino acid as compared with the unsupplemented diet. To asses the additivity of apparent amino acid digestibility, the determined values for the BS diet were compared to those calculated from digestibilities found in diets B and S. There were no significant differences between the determined and calculated values. It is concluded that the addition of microbial phytase to P-adequate diets does not affect ileal amino acid digestibility in growing pigs and that the apparent amino acid digestibility values determined in single ingredients may be additive when included into a complex diet.  相似文献   

8.
Forty crossbred barrows (Camborough 15 Line female×Canabred sire) weighing an average of 79.6±8.0?kg were used in a factorial design experiment (5 barleys×2 enzyme levels) conducted to determine the effects of phytase supplementation on nutrient digestibility in low-phytate barleys fed to finishing pigs. The pigs were assigned to one of 10 dietary treatments comprised of a normal 2-rowed, hulled variety of barley (CDC Fleet, 0.26% phytate) or 2 low-phytate hulled genotypes designated as LP422 (0.14% phytate) and LP635 (0.09% phytate). A normal, hulless barley (CDC Dawn, 0.26% phytate) and a hulless genotype designated as LP422H (0.14% phytate) were also included. All barleys were fed with and without phytase (Natuphos 5000 FTU/kg). The diets fed contained 98% barley, 0.5% vitamin premix, 0.5% trace mineral premix, 0.5% NaCl and 0.5% chromic oxide but no supplemental phosphorus. The marked feed was provided for a 7-day acclimatization period, followed by a 3-day faecal collection. In the absence of phytase, phosphorus digestibility increased substantially (P<0.05) as the level of phytate in the barley declined. For the hulled varieties, phosphorus digestibility increased from 12.9% for the normal barley (0.26% phytate) to 35.3 and 39.8% for the two low-phytate genotypes (0.14 and 0.09% phytate respectively). For the hulless varieties, phosphorus digestibility increased from 9.2% for the normal barley (0.26% phytate) to 34.7% for the hulless variety with 54% of the normal level of phytate (0.14% phytate). In contrast, when phytase was added to the diet, there was little difference in phosphorus digestibility between pigs fed normal barley and those fed the low-phytate genotypes (significant barley×enzyme interaction, P=0.01). For the hulled varieties, phosphorus digestibility was 50.1% for the barley with the normal level of phytate (0.26% phytate) compared with 51.1 and 52.4% for the varieties with 54 and 35% of the normal level of phytate (0.14 and 0.09% phytate respectively). For the hulless varieties, phosphorus digestibility increased from 47.1% for the normal barley (0.26% phytate) to 54.4% for the hulless variety with 54% of the normal level of phytate (0.14% phytate). In conclusion, both supplementation with phytase and selection for low-phytate genotypes of barley were successful in increasing the digestibility of phosphorus for pigs. Unfortunately, the effects did not appear to be additive. Whether or not swine producers will choose low-phytate barley or supplementation with phytase as a means to improve phosphorus utilization, will likely depend on the yield potential of low-phytate barley and the additional costs associated with supplementation with phytase.  相似文献   

9.
The objective of this study was to evaluate the effect of a combined low-protein, low-phosphorus diet supplemented with limiting amino acids and microbial phytase on performance, nutrient utilization and carcass characteristics of late-finishing barrows. 4?×?8 crossbreed barrows were continuously housed in metabolism cages from 70?–?110?kg BW and were fed diets, either conventional (A) or protein reduced (B) or protein and phosphorus reduced diets (C) based on barley, maize and soybean meal. Diet A (positive control) contained in air dry matter 13% and 10% CP as well as 0.49% and 0.42% P at growth phases I (70?–?100?kg BW) or II (100?–?110?kg BW), respectively. Diet B was low in CP (11.3%, 8.4%), diet C low in CP and low in P (CP: as B, P: 0.36%, 0.30%). To diet B the limiting amino acids lysine, methionine, threonine and trypthophan were added to meet the levels in diet A. To diet C the limiting amino acids and 800 FTU/kg Aspergillus-phytase were supplemented. At the end of the balance periods the barrows were slaughtered, the carcasses scored and loin chops, ham and Phalanx prima IV were analysed for nutrients and minerals. The CP or P reduction in diets B and C did not generally negatively affect growth, feed efficiency, absolute nitrogen retention or overall carcass performances of the pigs. With the low CP diets B and C, N excretion per unit BWG was decreased by about 23%. The addition of microbial phytase (diet C) increased apparent total tract digestibility of P by about 20%. In spite of 30% reduction of P intake (diet C), the absolute P retention related to 1?kg BW did not differ between treatments. Thus, phytase supplementation in diet C reduced P excretion per unit BWG by about 33%. Phytase raised apparent digestibility of Zn by about 20% but not Ca digestibility. Generally the carcass traits and meat characteristics were not affected by any of the diet strategies. Mineralization of the Phalanx prima IV was also similar in all treatment groups. However, phytase supplementation led to significantly increased zinc concentration in bones (25%). In contrast, Fe incorporation into the Phalanx prima IV was not affected. In general, the feeding regimen introduced in this experiment offers substantial benefits in maintaining a sustainable environmental-friendly pork production even at the stage of late-finishing barrows.  相似文献   

10.
Feeding pharmacological zinc (Zn) to weaned pigs improves growth, and dietary phytase improves P and Zn availability. Metallothionein (MT) increases in the duodenum, kidney, and liver of pigs fed 1000 mg Zn/kg with phytase or 2000 mg Zn/kg with or without phytase when fed for 14 d postweaning. The goal of this study was to determine the effects of feeding pharmacological Zn and phytase on tissue minerals, MT, mineral excretion, and apparent retention. Twenty-four newly weaned pigs (20 d; 7.2 kg) were individually fed twice daily, a basal diet supplemented with 0, 1000, or 4000 mg Zn/kg as Zn oxide, without or with phytase (500 phytase units [FTU]/kg) for 14 d, followed by a basal diet (100 mg Zn/kg) without phytase for 7 d. Pigs fed 4000 mg Zn/kg without phytase had higher (p=0.01) plasma, hepatic, renal Zn, renal Cu, and hepatic, renal, and jejunal MT than pigs fed the basal diet or 1000 mg Zn/kg. Duodenal MT was higher (p=0.0001) in pigs fed 1000 and 4000 mg Zn/kg than in pigs fed the basal diet. In pigs fed 1000 and 4000 mg Zn/kg, Zn loading occurred during the first 11 d of supplementation; by d 14, excess Zn was being excreted in the feces.  相似文献   

11.
The optimization of dietary phosphorus (P) and calcium (Ca) supply requires a better understanding of the effect of dietary fiber content of co-products on the digestive utilization of minerals. This study was designed to evaluate the effects of dietary fiber content from 00-rapeseed meal (RSM) on P and Ca digestibility throughout the gastrointestinal tract in growing pigs fed diets without or with microbial phytase. In total, 48 castrated male pigs (initial BW=36.1±0.4 kg) were housed in metabolic crates for 29 days. After an 8-day adaptation period, pigs were allocated to one of the eight treatments. The impact of dietary fiber was modulated by adding whole RSM (wRSM), dehulled RSM (dRSM) or dRSM supplemented with 4.5% or 9.0% rapeseed hulls (dRSMh1 and dRSMh2). Diets contained 0 or 500 phytase unit of microbial phytase per kg. From day 14 to day 23, feces and urine were collected separately to determine apparent total tract digestibility (ATTD) and apparent retention (AR) of P and Ca. At the end of the experiment, femurs and digestive contents were sampled. No effect of variables of interest was observed on growth performance. Microbial phytase increased ATTD and AR of P (P<0.001) but the P equivalency with the wRSM diet was lower than expected. Moreover, stomach inorganic P (iP) solubility was improved by microbial phytase (P<0.001). The ATTD of Ca was not affected by microbial phytase which increased AR of Ca and femur characteristics (P<0.05). Ileal recovery of P was not affected by microbial phytase but cecal recovery was considerably reduced by microbial phytase (P<0.001). The decrease in digesta pH between the distal ileum and cecum (7.6 v. 5.9) enhanced the solubility of iP and may have improved its absorption, as supported by the negative relationship between soluble iP and pH (R2=0.40, P<0.001 without microbial phytase and R2=0.24, P=0.026 with microbial phytase). The inclusion of hulls improved the solubility of iP (P<0.05). In conclusion, dehulling does not largely increase nutrient digestibility although dRSM seems to improve the efficacy of microbial phytase in releasing phosphate in the stomach. Moreover, dietary fiber may affect solubilization process in the cecum which potentiates the effect of microbial phytase on P digestibility.  相似文献   

12.
Low phosphorus (P) digestibility combined with intensive pig production can increase P diffuse pollution and environmental load. The aim of this paper was to develop a deterministic, dynamic model able to represent P digestion, retention and ultimately excretion in growing and finishing pigs of different genotypes, offered access to diets of different composition. The model represented the limited ability of pig endogenous phytase activity to dephosphorylate phytate as a linear function of dietary calcium (Ca). Phytate dephosphorylation in the stomach by exogenous microbial phytase enzymes was expressed by a first order kinetics relationship. The absorption of non-phytate P from the lumen of the small intestine into the blood stream was set at 0.8 and the dephosphorylated phytate from the large intestine was assumed to be indigestible. The net efficiency of using digested P was set at 0.94 and assumed to be independent of BW, and constant across genotype and sex. P requirements for both maintenance and growth were made simple functions of body protein mass, and hence functions of animal genotype. Undigested P was assumed to be excreted in the feaces in both soluble and insoluble forms. If digestible P exceeded the requirements for P then the excess digestible P was excreted through the urinary flow; thus the model represented both forms of P excretion (soluble and insoluble) into the environment. Using a UK industry standard diet, model behaviour was investigated for its predictions of P digestibility, retention and excretion under different levels of inclusion of microbial phytase and dietary Ca, and different non-phytate P : phytate ratios in the diet, thus covering a broad space of potential diet compositions. Model predictions were consistent with our understanding of P digestion, metabolism and excretion. Uncertainties associated with the underlying assumptions of the model were identified. Their consequences on model predictions, as well as the model evaluation are assessed in a companion paper.  相似文献   

13.
This study evaluated the effects of feeding pigs low protein (LP) diets for different lengths of time after weaning on indices of protein fermentation, the incidence of postweaning diarrhoea (PWD), growth performance, and total-tract apparent digestibility. Sixty weaner pigs weighing 6.1 +/- 0.13 kg (mean +/- SEM) were used in a completely randomised design having five treatments: (i) a high protein diet (HP, 243 g/kg CP) fed for 14 d after weaning (HP14); (ii) a low protein diet (LP, 173 g CP/kg) fed for 5 d after weaning (LP5); (iii) LP diet fed for 7 d after weaning (LP7); (iv) LP diet fed for 10 d after weaning (LP10), and (v) LP diet fed for 14 d after weaning (LP14). All diets were supplemented with lysine, methionine, tryptophan and threonine, with all LP diets additionally fortified with crystalline isoleucine and valine to conform to a proposed ideal amino acid (AA) pattern. A second-stage diet (215 g CP/kg) was fed to pigs at the conclusion of each treatment. None of the diets contained antimicrobial compounds. Feeding a LP diet, regardless of duration of feeding, decreased plasma urea nitrogen (p < 0.001) and faecal ammonia-nitrogen (p < 0.001) contents. Feeding a LP diet, irrespective of feeding duration, decreased the incidence of PWD at day 8 after weaning (p = 0.044), and pigs fed diets LP7, LP010 and LP14 had firmer faeces (p = 0.030, p = 0.047 and p = 0.007, respectively) between days 10 and 12 after weaning. Treatments LP5, LP7, LP10 and LP14 did not reduce (p > 0.05) growth performance up to 106 days after weaning compared to pigs fed the HP diet. Total-tract apparent digestibility of dry matter, energy and crude protein were similar (p > 0.05) between treatments. Our data suggest that feeding a LP diet, supplemented with AA to conform to an ideal AA pattern, for 7-10 days after weaning can reduce PWD in pigs fed antibiotic-free diets without compromising production.  相似文献   

14.
The objective was to evaluate the effect of microbial phytase (1250 FTU/kg diet with 88% dry matter (DM)) on apparent total tract digestibility (ATTD) of phosphorus (P) in pigs fed a dry or soaked diet. Twenty-four pigs (65±3 kg) from six litters were used. Pigs were housed in metabolism crates and fed one of four diets for 12 days; 5 days for adaptation and 7 days for total, but separate collection of feces and urine. The basal diet was composed of wheat, barley, maize, soybean meal and no mineral phosphate. Dietary treatments were: basal dry-fed diet (BDD), BDD with microbial phytase (BDD+phy), BDD soaked for 24 h at 20°C before feeding (BDS) and BDS with microbial phytase (BDS+phy). Supplementation of microbial phytase increased ATTD of DM and crude protein (N×6.25) by 2 and 3 percentage units (P<0.0001; P<0.001), respectively. The ATTD of P was affected by the interaction between microbial phytase and soaking (P=0.02). This was due to a greater increase in ATTD of P by soaking of the diet containing solely plant phytase compared with the diet supplemented with microbial phytase: 35%, 65%, 44% and 68% for BDD, BDD+phy, BSD and BSD+phy, respectively. As such, supplementation of microbial phytase increased ATTD of P in the dry-fed diet, but not in the soaked diet. The higher ATTD of P for BDS compared with BDD resulted from the degradation of 54% of the phytate in BDS by wheat and barley phytases during soaking. On the other hand, soaking of BDS+phy did not increase ATTD of P significantly compared with BDD+phy despite that 76% of the phytate in BDS+phy was degraded before feeding. In conclusion, soaking of BDS containing solely plant phytase provided a great potential for increasing ATTD of P. However, this potential was not present when microbial phytase (1250 FTU/kg diet) was supplemented, most likely because soaking of BDS+phy for 24 h at 20°C did not result in a complete degradation of phytate before feeding.  相似文献   

15.
ABSTRACT

The objectives of this meta-analysis were to determine to which extent phosphorus (P) digestibility and digestible P concentration in pig diets were increased by phytase supplementation and to quantify factors that potentially influence effects of phytase supplementation. A data set with a total of 547 data lines was compiled from 88 experiments published in 74 peer-reviewed papers between 2007 and April 2019. An exponential model was determined as more suitable to describe the response of P digestibility to phytase supplementation than a polynomial model. Phytase supplementation increased P digestibility by 25.6 percentage points (standard error (SE) = 1.54) to a plateau at 64.9% (SE = 1.82). The digestible P concentration was increased by phytase supplementation in the order of 1.01 g/kg (SE = 0.102) to a plateau at 2.62 g/kg (SE = 0.122). Goodness-of-fit criteria were R2 = 0.780 and root mean square error = 7.55% for P digestibility, and R2 = 0.691 and root mean square error = 0.48 g/kg for digestible P concentration. Consideration of further factors such as mineral P supplementation (yes or no), ad libitum vs. restrictive feeding, mixed diets vs. single feed ingredients, sex and age of pigs did not increase the accuracy of prediction in this data set. Some of these traits exhibited responses, but they likely are artefacts generated through the imbalanced structure of the data set. Effects of dietary total P, phytate (InsP6), InsP6-P to total P ratio, and Ca on the effect of supplemented phytase were not quantifiable. The present meta-analysis showed that responses to phytase supplementation can be well predicted although variation in P digestibility and digestible P concentration in the data set was high. Overall, predicted effects of phytase on P digestibility well corresponded to predictions made 25 years ago.  相似文献   

16.

The efficacy of Aspergillus niger (APhy) phytase, Trichoderma reesei (TPhy) phytase and acid phosphatase (TAcPh) preparations in improving the utilization of phytin‐phosphorus in the maize‐soybean meal (SBM) or barley‐SBM (800: 200g kg‐1) diets was studied in two separate digestibility and balance trials with ten growing pigs using 5×5 Latin square designs. The positive control diet contained a total phosphorus (P) of 6.5gkg‐1, while the negative control as well as the APhy, TPhy and TAcPh supplemented diets which did not contain additional inorganic‐P, had a total P of 4.1 g kg‐1. The APhy and TPhy supplements provided phytase activity of 1000 PU g‐1 together with AcPh of 8000HFUg‐1. TAcPh at a level of 8000 HFUg‐1 was the only addition to one diet. The intrinsic phytase activity of barley was 355 PU g‐1 while maize and soybean meal showed no phytase activity. Phytase supplements of the APhy and TPhy sources increased ash digestibility in both diets but had only a minor effect on nitrogen utilization. The addition of phytase improved absorption of P by 21 %‐units in barley‐SBM diet and 29%‐units in maize‐SBM diet, without any difference between the two phytase sources. The retained P in diets with phytase was higher than in diets without phytase, 4.4 (APhy), 4.5 (TPhy) vs. 2.9gd‐1 in barley‐SBM‐diets and 3.7 (APhy), 4.0 (TPhy) vs. 1.8gd‐1 in maize‐SBM‐diets. No difference was found between the two sources of phytase. TAcPh without additional phytase did not show any effect on P absorption or retention. Ca absorption and retention were improved due to the phytase treatments. Supplementing pig diets with either APhy or TPhy sources seems to be equally effective in enhancing the availability of phytate‐P. Consequently, these supplements can reduce the P‐excretion of pigs by 32–40% as compared with the diet supplemented with inorganic‐P.  相似文献   

17.
Around 70% of total seed phosphorus is represented by phytate which must be hydrolysed to be bioavailable in non-ruminant diets. The limited endogenous phytase activity in non-ruminant animals make it common practice to add an exogenous phytase source to most poultry and pig feeds. The mature grain phytase activity (MGPA) of cereal seeds provides a route for the seeds themselves to contribute to phytate digestion, but MGPA varies considerably between species and most varieties in current use make negligible contributions. Currently, all phytases used for feed supplementation and transgenic improvement of MGPA are derived from microbial enzymes belonging to the group of histidine acid phosphatases (HAP). Cereals contain HAP phytases, but the bulk of MGPA can be attributed to phytases belonging to a completely different group of phosphatases, the purple acid phosphatases (PAPhy). In recent years, increased MGPAs were achieved in cisgenic barley holding extra copies of barley PAPhy and in the wheat HIGHPHY mutant, where MGPA was increased to ~6200 FTU/kg. In the present study, the effect of replacing 33%, 66% and 100% of a standard wheat with HIGHPHY wheat was compared with a control diet with and without 500 FTU of supplemental phytase. Diets were compared by evaluating broiler performance, ileal Ca and P digestibility and tibia development, using nine replicate pens of four birds per diet over 3 weeks from hatch. There were no differences between treatments in any tibia or bird performance parameters, indicating the control diet did not contain sufficiently low levels of phosphorus to distinguish effect of phytase addition. However, in a comparison of the two wheats, the ileal Ca and P digestibility coefficients for the 100% HIGHPHY wheat diets are 22.9% and 35.6% higher, respectively, than for the control diet, indicating the wheat PAPhy is functional in the broiler digestive tract. Furthermore, 33% HIGHPHY replacement of conventional wheat, significantly improved Ca and P digestibility over the diet-supplemented exogenous phytase, probably due to the higher phytase activity in the HIGHPHY diet (1804 v. 1150 FTU). Full replacement by HIGHPHY gave 14.6% and 22.8% higher ileal digestibility coefficients for Ca and P, respectively, than for feed supplemented with exogenous HAP phytase at 500 FTU. This indicates that in planta wheat PAPhys has promising potential for improving P and mineral digestibility in animal feed.  相似文献   

18.
Experimental hyperthyroidism had a negative effect on bone mineral density, but did not significantly alter mechanical properties of femur and femoral bone thickness. Estradiol at a dose used in humans for the treatment of osteoporosis decreased seminal vesicle weight and concentration of testosterone but increased bone density in male rats compared to intact animals. In these rats, the mechanical analysis revealed an increased mechanical femur strength higher than the increase in bone density and femoral cortical thickness. When hyperthyroid male rats with low bone density were treated with estradiol in spite of a low plasma testosterone, the changes in bone density resulting from hyperthyroidism were entirely prevented. Estrogens protect the male skeleton against resorbing action of T (3). Treatment with estradiol in male rats with hyperthyroidism did not increase mechanical bone strength or femoral cortical thickness as it did with estradiol administration alone. Our results suggest that exogenously administered estrogens may have therapeutic value in preventing bone loss accompanying triiodothyronine administration, even in male rats with a low testosterone levels. At the concentration studied, estradiol increased in spite of low plasma testosterone, bone mineral density, mechanical strength of femur, and femoral cortical thickness.  相似文献   

19.
Crossbred pigs (n=720; average age=28±3 days and weight=9.5±0.3 kg) were used in a 20-day trial in order to determine the influence of phosphorus (P) source and various doses of pharmacological zinc (Zn) on growth performance, plasma minerals and mineral digestibility. Pigs (five intact males and five females per pen) were randomly allotted to treatments in a 3×3 factorial arrangement with three sources of dietary P (4.5 g/kg digestible P, 4.5 g/kg digestible P plus 2500 phytase units (FTU)/kg, or 5.5 g/kg digestible P) and three dietary levels of supplemental Zn (0, 1750 or 3500 mg/kg) from ZnO (82% Zn) with eight pens per treatment. Diets were formulated to exceed all nutrient requirements, including calcium (Ca), P and Zn from day 0 to 20. Zn supplementation increased (quadratic P<0.05) average daily feed intake. There was a significant Zn level×P source interaction on average daily gain and feed conversion ratio (FCR). Pigs fed 4.5 g/kg digestible P without or with 2500 FTU/kg phytase gained more per day (quadratic P<0.05) and had better FCR (quadratic P<0.05) when they were fed 1750 mg/kg supplemental Zn. However, pigs fed 5.5 g/kg digestible P gained more per day (linear P<0.05) and were more efficient (linear P<0.05) when they were fed 3500 mg/kg supplemental Zn. Plasma Zn and Zn digestibility increased (linear P<0.05) as pharmacological Zn supplementation increased from 0 to 3500 mg/kg, irrespective of P source. However, Ca, P, sodium (Na), potassium (K) and copper (Cu) digestibility were reduced (P<0.05) as pharmacological Zn supplementation increased, and this was mitigated or exacerbated by the supplementation of 5.5 g/kg digestible P or phytase. In conclusion, increasing the dietary inclusion of pharmacological Zn may impact growth performance in young pigs through the interaction with minerals such as Ca, P, Na and K. Pharmacological Zn may reduce Na or K digestibility and indirectly reduce water secretion into the lumen, resulting in an increase in faecal dry matter as pharmacological Zn supplementation in the diet increased.  相似文献   

20.
The present study gives an overview on the whole mechanism of phytate degradation in the gut and the enzymes involved. Based on the similarity of the human and pigs gut, the study was carried out in pigs as model for humans. To differentiate between intrinsic feed phytases and endogenous phytases hydrolysing phytate in the gut, two diets, one high (control diet) and the other one very low in intrinsic feed phytases (phytase inactivated diet) were applied. In the chyme of stomach, small intestine and colon inositol phosphate isomers and activities of phytases and alkaline phosphatases were determined. In parallel total tract phytate degradation and apparent phosphorus digestibility were assessed. In the stomach chyme of pigs fed the control diet, comparable high phytase activity and strong phytate degradation were observed. The predominant phytate hydrolysis products were inositol phosphates, typically formed by plant phytases. For the phytase inactivated diet, comparable very low phytase activity and almost no phytate degradation in the stomach were determined. In the small intestine and colon, high activity of alkaline phosphatases and low activity of phytases were observed, irrespective of the diet fed. In the colon, stronger phytate degradation for the phytase inactivated diet than for the control diet was detected. Phytate degradation throughout the whole gut was nearly complete and very similar for both diets while the apparent availability of total phosphorus was significantly higher for the pigs fed the control diet than the phytase inactivated diet. The pathway of inositol phosphate hydrolysis in the gut has been elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号