首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 110 毫秒
1.
The northern San Francisco Estuary (nSFE) is an urban estuary supplied with anthropogenic nutrient inputs, yet spring blooms are uncommon and phytoplankton biomass is low. The low levels of chlorophyll (<5 µg L?1) have likely contributed to declines in several native fishes, and there is a need to evaluate the conditions that could allow for increased phytoplankton. Increased ammonium (NH4) loads have been hypothesized to modulate the magnitude of blooms in nSFE (the “NH4 hypothesis”) as a result of inhibition of phytoplankton NO3 uptake that limits access to the greater nitrogen (N) pool of nitrate (NO3). This hypothesis, tested in enclosures, but not in the field until now, is that lack of access to NO3 limits primary production and consequently the accumulation of chlorophyll. Here, we test this in the field with the following aims: (1) to observe the uptake response of phytoplankton in different flow and N loading conditions, (2) determine whether the sequence of uptake rates suggested by the “NH4 hypothesis” occurs and (3) obtain depth-integrated nutrient uptake rates to better constrain published criteria for bloom formation. Weekly measurements of NH4 and NO3 uptake, and primary production rates were made during spring 2011–2012, along with nutrient and chlorophyll concentrations during two contrasting hydrological conditions of high vs low freshwater flow. In conditions with high freshwater flow (maximum of 2405 m3 s?1), there were lower nutrient concentrations than with low/normal flows (e.g., NO3 of 10 µmol L?1 compared to 30 µmol L?1), with low N uptake and primary production rates. With low flow (maximum of 1304 m3 s?1), there was elevated chlorophyll and blooms occurred, especially in shallow well-lit shoals where chlorophyll reached 60 µg L?1. The higher levels of chlorophyll and primary productivity resulted from uptake of ambient NO3 by phytoplankton, and f-ratios >0.5. This was enabled by phytoplankton uptake of NH4 to below inhibitory levels, as proposed by the “NH4 hypothesis.” The depth-integrated uptake rate data were used to refine a model that yields flow and nutrient concentration criteria necessary for bloom formation and confirmed that washout flows were the most useful predictor of blooms. Understanding the interaction of phytoplankton biomass with nutrient variability requires evaluating changes in C and N uptake rates and river flow. These dynamic changes are central to understanding why some urban estuaries have lower productivity than expected, and would be difficult to evaluate using biomass data alone. This study points to the importance of treating inorganic N separately as NH4 and NO3 rather than lumping together as DIN and to use rate process data as a mechanistic way to understand, predict and minimize cultural eutrophication impacts.  相似文献   

2.
The winter dynamics of several chemical, physical, and biological variables of a shallow, polymictic lake (Opinicon) are compared to those of a deep, nearby dimictic lake (Upper Rock) during ice cover (January to early April) in 1990 and 1991. Both lakes were weakly inversely thermally stratified. Dissolved oxygen concentration was at saturation (11–15 mg l−1) in the top 3 m layer, but declined to near anoxic levels near the sediments. Dissolved oxygen concentrations in the deep lake were at saturation in most of the water column and approached anoxic levels near the sediments only. Nutrient concentrations in both lakes were fairly high, and similar in both lakes during ice cover. Total phosphorus concentrations generally ranged between 10–20 μg l−1, NH4-N between 16–100 μg l−1, and DSi between 0.9–1.9 mg l−1; these concentrations fell within summer ranges. NO3-N concentrations were between 51–135 μg l−1 during ice cover, but occurred at trace concentrations (<0.002 μg l−1) during the summer. The winter phytoplankton community of both lakes was dominated by flagellates (cryptophytes, chrysophytes) and occasionally diatoms. Dinoflagellates, Cyanobacteria and green algae were poorly represented. Cryptophytes often occurred in fairly high proportions (20–80%) throughout the water column, whereas chrysophytes were more abundant just beneath the ice. Zooplankton population densities were extremely low during ice cover (compared to maximum densities measured in spring or summer) in both lakes, and were comprised largely of copepods.  相似文献   

3.
Alpine lakes receive a large fraction of their nutrients from atmospheric sources and are consequently sensitive to variations in both the amount and chemistry of atmospheric deposition. In this study we explored the spatial changes in lake water chemistry and biology along a gradient of dust deposition in the Wind River Range, Wyoming. Regional differences were explored using the variation in bulk deposition, lake water, sediment, and bedrock geochemistry and catchment characteristics. Dust deposition rates in the Southwestern region averaged 3.34 g m?2 year?1, approximately three times higher than deposition rates in the Northwestern region (average 1.06 g m?2 year?1). Dust-P deposition rates ranged from 87 µg P m2 day?1 in the Northwestern region to 276 µg P m2 day?1 in the Southwestern region. Subalpine and alpine lakes in the Southwestern region had greater total phosphorus (TP) concentrations (5–13 µg L?1) and greater sediment phosphorus (SP) concentrations (2–5 mg g?1) than similar lakes elsewhere in the region (1–8 µg L?1 TP, 0.5–2 mg g?1 SP). Lake phosphorus concentrations were related to dissolved organic carbon (DOC) across vegetation gradients, but related to the percent of bare rock, catchment area to lake area, and catchment steepness across dust deposition gradients. Modern phytoplankton and zooplankton biomasses were two orders of magnitude greater in the Southwest than in the Northwest, and alpine lakes in the Southwest had a unique diatom species assemblage with relatively higher concentrations of Asterionella formosa, Pseudostaurosira pseudoconstruens, and Pseudostaurosira brevistriata. These results suggests that catchment controls on P export to lakes (i.e. DOC) are overridden in dominantly bare rock basins where poor soils cannot effectively retain dust deposited P.  相似文献   

4.
Assessment of temporal trends and rates of change in hydrochemical parameters and forest cover has been conducted to elucidate key drivers of surface water acidification in glacial lakes in the Czech Republic. Since 1984, the key driver in acidification reversal was sulphate (SO4) concentration (median decrease of ?3.58 μeq L?1 yr?1) which fell in line with reductions in sulphur (S) deposition. Reduction of nitrogen (N) deposition was followed by proportional reduction in nitrate (NO3) leaching although decline in NO3 concentrations was more pronounced at two sites, the ?ertovo Lake (CT) and Prá?ilské Lake (PR) until 2006; only ??árské pond showed effective catchment N immobilization. Coherent decline of chloride concentration was detected across all sites. The decrease of strong mineral acids was partly compensated by decrease of inorganic aluminium (Alin), especially at sites most acidified in the beginning of observations (ANC1984–1986 between ?160 and ?90 μeq L?1 at CT, ?erné Lake—CN and Ple?né lake—PL) and by reductions of base cations and increases of pH. All lakes (CN, CT, PL, PR and LK) moved to the ANC range between ?29 and 30 μeq L?1 (2010–2012) where sensitivity of pH to further reductions in acid anions may be expected. Concurrently, charge of weak organic acids (OAs) increased and partly balanced the strong mineral acid decrease as a consequence of (i) significant DOC (dissolved organic carbon) increase (median change of 0.13 mgC L?1 yr?1 since 1993) and (ii) deprotonation of weak OAs caused by pH rise. Since 2000s, bark beetle induced forest decline accelerated NO3 leaching at most of the catchments (by 200 % at LK, PL and PR). However, elevated N leaching was effectively neutralized by base cations (K, Mg, Ca) originating from decaying fresh litter, thus acidification recovery was not reversed, but slowed down. After cessation of NO3 leaching we hypothesise that collapsed tree canopy across catchments (from 12 to 87 % compared to 1984) will cause lower total acid input in precipitation (S + N) and regrowth of vegetation may stimulate higher N immobilization (in biomass and soil); processes which could lead to further increase of ANC and pH, key indicators for biological recovery.  相似文献   

5.
This study examined the effects of a freshwater filter feeding bivalve (Corbicula leana Prime) and large zooplankton (>200 μm, mostly cladocerans and copepods) on the phytoplankton communities in two lakes with contrasting trophic conditions. A controlled experiment was conducted with four treatments (control, zooplankton addition, mussel addition, and both zooplankton and mussel addition), and each established in duplicate 10-l chambers. In both lakes there were significant effects of mussel grazing on phytoplankton density and biomass. The effects were greater in mesotrophic Lake Soyang than in hypertrophic Lake Ilgam. Effects of zooplankton grazing did not differ between these lakes, and zooplankton effects on phytoplankton were much less than the effects of mussels. Although mussels exerted a varying effect on phytoplankton according to their size, mussels reduced densities of almost all phytoplankton taxa. Total mean filtering rate (FR) of mussels in Lake Soyang was significantly greater than that in Lake Ilgam (p=0.002, n=5). Carbon fluxes from phytoplankton to mussels (977–2,379 μgC l?1d?1) and to zooplankton (76–264 μgC l?1 d?1) were always greater in Lake Ilgam due to the greater phytoplankton biomass (p<0.01, n=6). Based on the C-flux to biomass ratios, the mussels consumed 170–754% (avg. 412%) of phytoplankton standing stock in Lake Soyang, and 38–164% (avg. 106%) in Lake Ilgam per day. The C-flux to biomass ratio for mussels within each lake was much greater than for large zooplankton. Mussels reduced total phosphorus concentration by 5–34%, while increasing phosphate by 30–55% relative to the control. Total nitrogen also was reduced (by 9–25%), but there was no noticeable change in nitrate among treatments. The high consumption rate of phytoplankton by Corbicula leana even in a very eutrophic lake suggests that this mussel could affect planktonic and benthic food web structure and function by preferential feeding on small seston and by nutrient recycling. Control of mussel biomass therefore might be an effective tool for management of water quality in shallow eutrophic lakes and reservoirs in Korea.  相似文献   

6.
Recent measurements have demonstrated unprecedented increase in atmospheric deposition of nutrients in many parts of India. To determine whether atmospheric nutrient inputs would increase phytoplankton growth and catchment dissolved organic carbon (DOC) flushing to constrain benthic algae, we analyzed NO3 ? and PO 4 ?3 in atmospheric deposits; nutrients and DOC in runoff and lake water and standing crop biomass of phytoplankton and periphyton at Jaisamand Lake of Rajasthan, India. Atmospheric deposition of NO3 ? (7.18–29.95 kg ha?1 year?1) and PO 4 ?3 (0.56–2.15 kg ha?1 year?1) showed a consistently rising trend across the year. Microbial biomass and activity in catchment increased in response to atmospheric deposition. Lake DOC and nutrients showed strong coherence with their terrestrial and atmospheric fluxes. Phytoplankton development showed significant linearity with atmospheric input of nutrients. Air-driven input appeared to have compensated the nutrient constraints to phytoplankton during drought. The N:P stoichiometry of deposition and that of lake water indicated that, although there was a seasonal switchover to N- or P-limitation, phytoplankton were mainly co-limited by N and P due probably to the synergistic effects of combined N + P enrichment in the pelagic zone of the lake. Periphyton standing crop showed inverse relationship with phytoplankton and lake DOC. The study indicated that enhanced phytoplankton development and terrestrial DOC flushing in response to atmospheric nutrient input attenuated light penetration to constrain algal periphyton. We suggests that data on these issues may be considered in developing aquatic ecosystem models to establish future links between changing air–water–land interactions and associated shifts in lake ecosystem functioning for more accurately predicting climate change drivers and designing integrated lake basin management strategies.  相似文献   

7.
Nitrate dual stable isotopes (δ15N and δ18O of NO3 ?) have proven to be a powerful technique to elucidate nitrogen (N) cycling pathways in aquatic systems. We applied this technique for the first time in the pelagic zone of a small temperate meso-eutrophic lake to identify the dominant N cycling pathways, and their spatial and temporal variability. We measured the lake NO3 ? δ15N and δ18O signatures over an annual cycle and compared them to that of the watershed. Both δ15N and δ18O of NO3 ? in the lake increased during summer relative to the inputs. Relationships between lake NO3 ? isotopic composition and concentrations were different across thermal strata with an apparent isotope effect in the epilimnion of 15εepi = 4.6‰ and 18εepi = 10.9‰. We found a strong deviation of the lake NO3 ? δ18O and δ15N from the expected 1:1 line for assimilation (slope = 1.73) suggesting that nitrification was co-occurring. We estimated that nitrification could support between 5 and 30% of nitrate-based production during the growing season, but was negligible in early spring and fall, and probably more dominant under ice. We showed that the technique is promising to study N processes at the ecosystem scale in shallow lakes, particularly during winter. Our results suggest that recycled NO3 ? could support primary productivity and influence phytoplankton composition in the surface waters of small lakes.  相似文献   

8.
This study focused on unraveling the natural mechanism for the frequent shifts in alternative regimes in pristine shallow lakes of the Boreal Plains, Alberta, Canada. The lakes tend to be clear and dominated by submerged aquatic vegetation (SAV) or turbid and dominated by phytoplankton. We report on the inter-annual response of 23 lakes from 2001 to 2007. We explore the effect of fluctuations in annual precipitation on the lake response including water depth, total phosphorus (TP) concentration, turbidity, phytoplankton biomass, SAV biomass, and the proportion of clear and turbid lakes. The regime switches appear driven by the transient dynamics of phytoplankton, and dilution of nutrients, phytoplankton biomass, and turbidity during wet years, and evapoconcentration during dry years. Increased precipitation was correlated with decreased phytoplankton biomass, TP concentration, chloride concentration, and turbidity. In 2005, the wettest year, no phytoplankton-dominated lakes were observed. During the driest year (2002), the phytoplankton-dominant regime (>18 μg chl-a L?1) occurred in 22% of lakes, which was higher than the study period average. SAV biomass was not directly affected by precipitation, but was negatively associated with phytoplankton biomass and positively associated with the previous year’s SAV growth. SAV biomass was carried over from year-to-year, and the occurrence of SAV-dominated (>25% cover) lakes was significantly higher in 2007 (90%) following 3 years of high precipitation levels.  相似文献   

9.
10.
1. Recent experimental and field studies on temperate shallow lakes indicate that nitrogen may play a greater role in their functioning than previously thought. Several studies document that abundance and richness of submerged macrophytes, both central in shallow lake ecology, may decrease with increasing nitrogen loading, especially at high phosphorus levels. However, the role of nitrogen in warm lakes with fluctuating water regimes remains to be described in detail. 2. The effect of increasing nitrate and phosphate concentrations on submerged macrophyte growth was examined in a 3‐month mesocosm experiment conducted in summer in a shallow freshwater lake on the north western coast of Turkey with a Mediterranean climate. Twenty four field mesocosms, open to the sediment and atmosphere, were stocked with Myriophyllum spicatum shoots and small cyprinid fish. Three nitrate loadings in combination with two phosphate loadings were applied in a fourfold replicated design. 3. Mean ± SD nutrient concentrations maintained throughout the experiment were 0.55 ± 0.17, 2.2 ± 0.97, 9.2 ± 5.45 mg L?1 total nitrogen and 55 ± 19.2, 73 ± 22.9 μg L?1 total phosphorus. Mean periphyton biomass increased with increasing nutrient concentrations and peaked at the highest nitrogen and phosphorus loadings, while the mean phytoplankton biomass remained relatively low in all treatments. 4. Percent volume inhabited (% PVI) by macrophytes throughout the experiment and total macrophyte biomass at the end of the experiment did not differ among treatments. In addition to stocked M. spicatum, Ceratophyllum demersum and Potamogeton crispus appeared in the majority of the mesocosms. The plants grew continuously up to 50% PVI throughout the experiment and remained resilient to shading provided by periphyton and phytoplankton. 5. The mean summer air temperature in 2007 was 2.2 °C higher than the average of the last 32 years, which resulted in a water level decrease of 0.3 m in the mesocosms over three months. This might have counteracted the shading of submerged macrophytes provided by phytoplankton and periphyton. The results of the experiment are consistent with observations of higher macrophyte resilience to nutrient loading in Mediterranean lakes compared with northern temperate lakes.  相似文献   

11.
Chemical characteristics of lakes in the High Tatra Mountains,Slovakia   总被引:2,自引:2,他引:0  
The chemistry of 53 lakes at various stages of acidification and inhabited (at the presence and/or in the past) by pelagic Crustacea was studied in September 1984. Ten of these lakes were investigated in detail biannually (July and October 1987–1990). The July results reflect the influence of snowmelt and were compared with the October ones. The most important anion was sulphate with the average values of 98 and 104 μeq 1-1 in 1984 and 1987–1990, respectively. High concentrations of nitrate (21–56 μeq 1-1) were observed in lakes above the treeline. Mean relative composition of cations does not differ between July and October; small changes are in the mean relative composition of anions. Acidification of lakes, expressed as a decrease in alkalinity, is 100 μeq l-1, and is equal to the increase in the sum of sulphate and nitrate. The values of total phosphorus and COD are the lowest in the range of pH 5–6.5. Alkalinity, sulphate, nitrate and pH do not show any trend with time over the last ten years.  相似文献   

12.
Classification of waters using biological quality elements and determination of the degree of deviation from reference levels is a key issue in the Water Framework Directive of EU. Lakes in reference conditions with sufficient biological data are available for several boreal lake types with the exception of naturally eutrophic lakes. An empirical approach is one alternative for estimating the reference conditions of such lakes. We used the water transparency of the naturally eutrophic Lake Tuusulanjärvi recorded in August in the early 1910s to estimate reference values for phytoplankton biomass and chlorophyll a concentrations. Three phytoplankton samples during August 2000–2001 corresponded to the estimated reference values for total biomass (<5.6 mg l?1) and chlorophyll a (<28 μg l?1), as did the simultaneous Secchi depths. The phytoplankton assemblage in these samples with 24 eutrophy indicators (17% of the total taxa number) corresponded in general the species list from the early 1900s, which as such could be regarded as reference assemblage. Furthermore, in August 2000, 3 years after intensive fish removal a prominent decrease in cyanobacterial biomass and toxin concentration was observed. The costs of the measures and studies in Lake Tuusulanjärvi during 1989–2003 have been approximately 2.5 million euros.  相似文献   

13.
The effect of phosphate (PO4 +3) and pH in regulating nitrate (NO3) and ammonia (NH3 +) uptake by phytoplankton was investigated in two Oklahoma lakes using 15N tracers. Addition of PO4 +3 above ambient concentrations had a negligible effect on the rate of uptake of NO3 or NH3 +. Manipulation of pH of lake water had little effect on uptake of either NO3 or NH3 +. A correlation analysis suggested that NO3 is not used by phytoplankton when NH3 + concentrations exceed about 210 µg NH3 +-N(1)–1.  相似文献   

14.
Trophic status of Tilitso,a high altitude Himalayan lake   总被引:1,自引:1,他引:0  
The trophic status and water quality of Lake Tilitso (4920 m above sea level) in a high altitude region in central Nepal were surveyed in September, 1984. The lake is rather large with a maximum depth of 95 m and a surface area of 10.2 km2. The lake water was turbid due to glacier silt and the euphotic layer was only 5 m deep. The nutrient concentration was very low with total phosphorus concentration 1–6 μg l−1, and DTN concentration 0.10–0.22 mg l−1. The phytoplankton biomass and chlorophyll-a concentration were also low. Primary production was estimated to be about 12 mg C m−2 d−1. The concentrations of particulate matter and most cations and bacterial number were higher in the epilimnion than in the hypolimnion. The trophic status of this lake was estimated as ultraoligotrophic.  相似文献   

15.
Among marine phytoplankton groups, diatoms span the widest range of cell size, with resulting effects upon their nitrogen uptake, photosynthesis and growth responses to light. We grew two strains of marine centric diatoms differing by ~4 orders of magnitude in cell biovolume in high (enriched artificial seawater with ~500 µmol L?1 µmol L?1 NO3 ?) and lower-nitrogen (enriched artificial seawater with <10 µmol L?1 NO3 ?) media, across a range of growth light levels. Nitrogen and total protein per cell decreased with increasing growth light in both species when grown under the lower-nitrogen media. Cells growing under lower-nitrogen media increased their cellular allocation to RUBISCO and their rate of electron transport away from PSII, for the smaller diatom under low growth light and for the larger diatom across the range of growth lights. The smaller coastal diatom Thalassiosira pseudonana is able to exploit high nitrogen in growth media by up-regulating growth rate, but the same high-nitrogen growth media inhibits growth of the larger diatom species.  相似文献   

16.
1. Nutrient and fish manipulations in mesocosms were carried out on food‐web interactions in a Mediterranean shallow lake in south‐east Spain. Nutrients controlled biomass of phytoplankton and periphyton, while zooplankton, regulated by planktivorous fish, influenced the relative percentages of the dominant phytoplankton species. 2. Phytoplankton species diversity decreased with increasing nutrient concentration and planktivorous fish density. Cyanobacteria grew well in both turbid and clear‐water states. 3. Planktivorous fish increased concentrations of soluble reactive phosphorus (SRP). Larger zooplankters (mostly Ceriodaphnia and copepods) were significantly reduced when fish were present, whereas rotifers increased, after fish removal of cyclopoid predators and other filter feeders (cladocerans, nauplii). The greatest biomass and diversity of zooplankton was found at intermediate nutrient levels, in mesocosms without fish and in the presence of macrophytes. 4. Water level decrease improved underwater light conditions and favoured macrophyte persistence. Submerged macrophytes (Chara spp.) outcompeted algae up to an experimental nutrient loading equivalent to added concentrations of 0.06 mg L?1 PO4‐P and 0.6 mg L?1 NO3‐N, above which an exponential increase in periphyton biomass and algal turbidity caused characean biomass to decline. 5. Declining water levels during summer favoured plant‐associated rotifer species and chroococcal cyanobacteria. High densities of chroococcal cyanobacteria were related to intermediate nutrient enrichment and the presence of small zooplankton taxa, while filamentous cyanobacteria were relatively more abundant in fishless mesocosms, in which Crustacea were more abundant, and favoured by dim underwater light. 6. Benthic macroinvertebrates increased significantly at intermediate nutrient levels but there was no relationship with planktivorous fish density. 7. The thresholds of nutrient loading and in‐lake P required to avoid a turbid state and maintain submerged macrophytes were lower than those reported from temperate shallow lakes. Mediterranean shallow lakes may remain turbid with little control of zooplankton on algal biomass, as observed in tropical and subtropical lakes. Nutrient loading control and macrophyte conservation appear to be especially important in these systems to maintain high water quality.  相似文献   

17.
In the last 40 years, the shallow steppe lake, Neusiedler See, was ice covered between 0 and 97 days. The North Atlantic Oscillation (NAO) as well as the Mediterranean Oscillation affected the lake and its conditions during winter. Both climate indices correlated negatively with the duration of ice cover and the timing of ice-out. Average winter phytoplankton biomass increased from less than 0.2 (0.05–0.84) mg FM l?1 in the late 1960s/beginning of 1970s to 3.1 (1.72–5.61) mg FM l?1 in the years 2001–2004. The increase in annual winter biomass of phytoplankton was associated with a significant shift in the composition of the algal assemblage. In the winter 1997/1998, diatoms contributed between 40 and 80% to the phytoplankton biomass while in 2006/2007 cyanoprokaryotes contributed 46%. Mean chlorophyll-a concentrations during winter were significantly correlated with those of total phosphorus (Ptot). Together with cold-water species (rotifer Rhinoglena fertöensis), perennial, eurythermal ones (copepod Arctodiaptomus spinosus) contributed to the zooplankton community. High zooplankton numbers were encountered when rotifers, particularly when densities of Rhinoglena fertöensis were high (r 2 = 0.928). Zooplankton abundance and biomass varied from year to year but correlated positively with Chl-a (biomass ? r 2 = 0.69; numbers ? r 2 = 0.536). Winter zooplankton populations were primarily influenced by winter conditions, but in early winter also by survival of autumn populations, i.e., the more adults of Arctodiaptomus spinosus survived into winter, the higher was the zooplankton biomass in early winter. Phyto- and zooplankton dynamics in shallow lakes of the temperate region seem to critically depend on the biomass in autumn and on winter conditions, specifically on ice conditions and thus are related to climate signals such as the NAO.  相似文献   

18.
Being both stable carbon sinks and greenhouse gas sources, boreal lake sediments represent significant players in carbon (C) cycling. The release of dissolved organic carbon (DOC) into anoxic water is a widespread phenomenon in boreal lakes with impact on sediment C budgets. The association of OC with iron (Fe) is assumed to play an important role for this anoxic OC release via the dissimilatory reduction of Fe, but also to influence the stabilization of OC in sediments. To investigate the role of Fe–OC association for OC dynamics in different boreal lake sediments, we compared the content of Fe-bound OC [Fe–OC, defined as citrate bicarbonate dithionite (CBD) extractable OC] and the extent of reductive dissolution of solid-phase Fe and OC at anoxia. We found high among-lake variability in Fe–OC content, and while the amount of Fe–OC was high in three of the lakes (980–1920 µmol g?1), the overall contribution of Fe–OC to the sediment OC pool in all study lakes was not higher than 11%. No linkages between the amount of the Fe–OC pool and lake or sediment characteristics (e.g., pH, DOC concentration, sediment OC content, C:N ratio) could be identified. The observed release of OC from anoxic sediment may be derived from dissolution of Fe–OC in the lake sediments with high Fe–OC, but in other lake sediments, OC release during anoxia exceeded the sediment Fe–OC pool, indicating low contribution of reductive Fe dissolution to OC release from these lake sediments. The range of the investigated boreal lakes reflects the high variability in the size of the sediment Fe–OC pool (0–1920 µmol g?1) and CBD-extractable Fe (123–4050 µmol g?1), which was not mirrored in the extent of reductive dissolution of Fe (18.9–84.6 µmol g?1) and OC (1080–1700 µmol g?1) during anoxia, suggesting that Fe-bound OC may play a minor role for sediment OC release in boreal lakes. However, studies of redox-related OC cycling in boreal lake sediments should consider that the amount of Fe–OC can be high in some lakes.  相似文献   

19.
We studied extracellular acid phosphatase activity (AcPA) of planktonic microorganisms, aluminium (Al) speciation, and phosphorus (P) cycling in three atmospherically acidified (pH of 4.5–5.1) mountain forest lakes: ?ertovo jezero (CT), Prá?ilské jezero (PR), and Ple?né jezero (PL) in the Bohemian Forest (?umava, Böhmerwald). Microorganisms dominated pelagic food webs of the lakes and crustacean zooplankton were important only in PR, with the lowest Al concentrations (193 µg L?1) due to 3–4 times lower terrestrial input. The lakes differed substantially in Al speciation, i.e., in the proportion of ionic and particulate forms, with the highest proportion of ionic Al in the most acid CT (pH = 4.5). The P concentration in the inlet of PL (mean: 22.9 µg L?1) was about five times higher than in CT and PR (3.9 and 5.1 µg L?1, respectively). Average total biomass of planktonic microorganisms in PL (593 µg C L?1) was, however, only ~2-times higher than in CT and PR (235 and 272 µg C L?1, respectively). Enormous AcPA (means: 2.17–6.82 µmol L?1 h?1) and high planktonic C : P ratios suggested severe P limitation of the plankton in all lakes. Comparing 1998 and 2003 seasons, we observed changes in water composition (pH and Al speciation) leading to a significant increase in phytoplankton biomass in the lakes. The increase in the seston C : P ratio during the same time, however, indicates a progressive P deficiency of the lakes. The terrestrial Al inputs, together with in-lake processes controlling the formation of particulate Al, reduced P availability for planktonic microorganisms and were responsible for the differences in AcPA. At pH < 5, moreover, ionic Al forms caused inhibition of extracellular phosphatases. We postulate that both particulate and ionic Al forms affect P availability (i.e., inhibition of extracellular phosphatases and inactivation of P), specifically shape the plankton composition in the lakes and affect plankton recovery from the acid stress.  相似文献   

20.
Changes in lake water chemistry were studied for >4 years following a large wildfire in a boreal forest area in Mykland, southern Norway, an area characterized by thin and patchy, base-poor and slow-weathering soils and bedrock. Accordingly, the lakes have low acid neutralizing capacity (ANC), calculated as the difference between the total concentration of base cations ([ΣBC]) and strong acid anions ([SAA]). During the initial post-fire period, and peaking about two months after the fire, the mobilization of SAA from terrestrial to aquatic systems caused a dramatic drop in ANC. In one of the lakes, ANC dropped from about 20 to ?80 μeq L?1, while [H+] and inorganic aluminum ([Ali]) increased to 38 μeq L?1 (pH 4.42) and 326 μg Al L?1 (36.2 μeq L?1 as Al3+), respectively. Sulfate and chloride were the predominant anions responsible for this decline in ANC, as the nitrate increase was small. After the severe chemical episode, [SAA] in the lakes declined faster than [ΣBC], and within about one year after the wildfire, ANC was back to almost pre-fire values. However, despite the fact that [SAA] also continued to decline faster than [ΣBC] the following years, no further increase in ANC was documented. The strong ionic strength decline and the increase in TOC during the same period have likely counteracted for the potential ANC increase. There were large lake-to-lake variations in water chemistry of the wildfire affected lakes. Hydrology, geology, lake residence time and the catchment area to lake area ratio are important explanatory factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号